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1. Introduction 

Grid computing involves the application of resources in a network to solve one problem at the same 
time. We are rather used to solving scientific or technical issues, such as high-energy physics, earth 
observation, and biological applications, all of which require many cycles of computer processing or 
access to large amounts of data. Grid computing can be considered to be a form of large-scale distributed 
cluster computing and a type of distributed parallel network processing [1]. The two most important 
issues in managing user work are resource allocation and scheduling of work based on the support 
required. When a user’s job is submitted, the situation will be handled by a resource broker, who must 
find and allocate the correct resources for the job. After the resource allocation phase, jobs must be 
scheduled on existing resources and according to user requirements.  

In general, when a user sends a job, they request several processors, memory, and provide the 
maximum time limit required to run the job. Then, the scheduler gives priority to work, according to 
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 Grid computing is a collection of heterogeneous resources that is highly 
dynamic and unpredictable. It is typically used for solving scientific or 
technical problems that require a large number of computer processing 
cycles or access to substantial amounts of data. Various resource allocation 
strategies have been used to make resource use more productive, with 
subsequent distributed environmental performance increases. The user 
sends a job by providing a predetermined time limit for running that job. 
Then, the scheduler gives priority to work according to the request and 
scheduling policy and places it in the waiting queue. When the resource is 
released, the scheduler selects the job from the waiting queue with a specific 
algorithm. Requests will be rejected if the required resources are not 
available. The user can re-submit a new request by modifying the parameter 
until available resources can be found. Eventually, there is a decrease in idle 
resources between work and resource utilization, and the waiting time will 
increase. An effective scheduling policy is required to improve resource use 
and reduce waiting times. In this paper, the FCFS-LRH method is 
proposed, where jobs received will be sorted by arrival time, execution time, 
and the number of resources needed. After the sorting process, the work 
will be placed in a logical view, and the job will be sent to the actual 
resource when it executes. The experimental results show that the proposed 
model can increase resource utilization by 1.34% and reduce waiting time 
by 20.47% when compared to existing approaches. This finding could be 
beneficially implemented in cloud systems resource allocation management. 
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the scheduling requests and policies, and places it in the waiting queue. When the resource is released, 
the scheduler selects the job from the waiting queue with a specific algorithm. In rigid scheduling such 
as first come first serve (FCFS), three parameters are used to request resources, namely start time, 
execution time, and the number of resources used [2]. The scheduler will look for the availability of 
resources requested by users within the specified time interval. Requests will be rejected if the required 
resources are not available [3]–[5]. 

Inelastic reservations are used for the user request parameter as a soft constraint. The reservation 
system instead rejects the request but provides an alternative that can be chosen by the user. This 
approach gives users the flexibility to select the best choice according to the needs of quality of Service 
(QoS) [6]–[8]. Relax advance reservation uses overlapping timeslots due to a tendency of the application 
to exaggerate the reservation deadline to ensure its completion. User jobs are scheduled, even if booking 
violations occur because of overlapping jobs [9]–[13]. Shukla et al. [14] proposed an algorithm with the 
primary objective being that if there is more than one resource chosen by a job, then the job that has 
the least workload will be executed first to reduce the average waiting time of the job queue. The 
algorithm will check the availability of resources that have the least load. In this rigid scheduling, work 
must wait in a queue to be scheduled.  

In a flexible reservation, the work user has a flexible start time and can vary within a certain time 
interval [15][16]. Moaddeli et al. [17] have examined the impact of the backfilling algorithm on flexible 
job ordering. In his research, both aggressive and conservative backfilling are compared. The result is 
that aggressive backfilling is more beneficial. Gomes and Dantas [18] propose checking free slots on 
available resources; if free slots are available, reservations are scheduled, but if such slots are not available 
during reservation requests, then the next available free slots will be reserved. The impact of the 
backfilling algorithm in flexible reservations has been analyzed in references [19]–[22]. Backfilling was 
proposed to increase the utilization of the grid system. The advantage of this strategy is that it makes 
shift reservations early to make room for new reservations to be allocated. The disadvantage of backfilling 
is that the next job must wait in line until it has finished execution; hence, there is no certainty regarding 
when the job will complete. 

Netto et al. [23] conducted a study by rescheduling the allocated work. The experimental results 
show that the system’s utilization will be better if the user waits for up to 75% of the waiting time. 
Barzegar et al. [24] introducing a reservation scheduling algorithm referred to as GELSAR in the grid 
system. GELSAR will reschedule all new arrivals to find the best solution. New reservations will be 
rejected if there is no solution. The results of GELSAR outperform other genetic algorithms. 
Grandinetti et al. [25] have researched a local scheduler, where a group of independent jobs has been 
scheduled, with processing time restrictions provided by the user. It is assumed that all processing nodes 
are identical. Umar et al. [26] introduced first come first serve-ejecting based dynamic scheduling 
(FCFS-EDS). The results of the FCFS-EDS experiments compared to FCFS without reservations are 
better in terms of resource utilization [17][23][24]. The advantage of FCFS-EDS is the provision of a 
one-time notification if a reservation is received because FCFS-EDS works in a logical manner. In 
another approach, information is processed whenever there is a revision made in the planning [23][24]. 
In the FCFS-EDS strategy, incoming reservations will find an empty timeslot. If no timeslot is found, 
the job will move to the upper limit of the execution, or if the old job has used the timeslot, then that 
old job will be shifted so that the new job can be allocated. The impact of shifting the job to the right 
is a reduction in resource utilization and increased waiting time.  

In this research, the main focus is to overcome the problem of resource allocation on local scheduling 
in grid computing. The performance matrix used is resource utilization and job waiting time. The main 
contributions of this paper are (1) increasing resource utilization in grid computing scheduling, and (2) 
reducing work waiting times with a comparison workload sent by users.  

Section 2 contains the methods and algorithms proposed to solve the problem of resource allocation 
and waiting time. Section 3 describes the results and analyses comparing FCFS-EDS with FCFS-LRH. 
The last section provides conclusions. 
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2. Method 

2.1. Proposed advanced reservation strategy 

In this study, a proposed reservation strategy model termed first come first served left-right hole 
scheduling (FCFS-LRH) is shown in Fig 1. Job requests are sent based on (𝑛𝑢𝑚𝐶, 𝑡𝑒𝑠𝑟, 𝑡𝑙𝑠𝑟, 𝑡𝑒). 
Incoming user requests will be sorted by the priority of start time of execution, time of execution, and 
the number of resources required. Jobs will be sorted at each timeslot before being allocated to the 
virtual view. Work is scheduled at the virtual computing node with a first-fit strategy. If an empty 
timeslot is obtained between the start time (𝑡𝑒𝑠𝑟) and the upper limit to begin the job execution (last 
start time) 𝑡𝑙𝑠𝑟, the user is notified that the work has been received. If there is no empty slot between 
𝑡𝑒𝑠𝑟 and 𝑡𝑙𝑠𝑟, the job is rejected, and the user is notified. The parameter 𝑡0 is the current time. The 
parameter 𝑡𝑛 is the time of initial flexibility of work. The parameters 𝑡𝑟1 and 𝑡𝑟2 indicate that there are 
empty timeslots on the left and right. 𝑡𝑒𝑙 shows the lower time limit for the last execution of the job. 
Work executed until the deadline (𝑡𝑒𝑠𝑙). The function of the 𝑡𝑓 is to provide time flexibility on the job. 

Jobs that are placed in a logical view are still fragmented. Recombination is achieved when a job is 
executed at the actual computing node [27][28]. 

 

Fig. 1. Flexible reservation scheduling 

2.2. Performance matrix of FCFS-LRH method 

The metrics considered for measuring the FCFS-LRH algorithm are resource utilization and waiting 
time. Average resource utilization is calculated using (1). This formula refers to the comparison of the 
number of 𝑅j resources executed against the total amount of available resources. In the formula, s 

indicates the number of slots used by the resource. 𝑡𝑠𝑖 refers to the start time when jobs are executed 
on  𝑅j resources, and 𝑡𝑒𝑖 refers to the final time that a task completed on 𝑅j resources. The 𝑇 parameter 

is defined as the execution time of all jobs. 

𝑅𝑈𝑗 =
∑ (𝑡𝑒𝑖−𝑡𝑠𝑖)𝑠

𝑖=1

𝑇
  

Waiting time (𝑊𝑇) of the reservation is calculated. Occasionally, resources are not available at the 
time of reservation. However, resources can be used at different times. In this case, the difference 
between expected (𝑠𝑡𝑎𝑟𝑡𝑅) and actual (𝑠𝑡𝑎𝑟𝑡𝑁) start times is the waiting time. 

𝑊𝑇 = 𝑆𝑡𝑎𝑟𝑡𝑅 –  𝑆𝑡𝑎𝑟𝑡𝑁  

Total Wait Time (𝑇𝑊𝑇) is calculated as the sum of all waiting times at a particular timeslot. 
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Where size refers to the length of the reservation at a certain point in time. Then, the average waiting 
time (𝐴𝑊𝑇) is 

𝐴𝑊𝑇 =
𝑇𝑊𝑇

𝑁𝑜 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
  

2.3. Proposed FCFS-LRH algorithm 

The proposed algorithm is shown in Fig. 2. The user needs to send a reservation, with parameters 
qReserv (𝑡𝑒𝑠𝑟, 𝑡𝑙𝑠𝑟, 𝑡𝑒, 𝑛𝑢𝑚𝐶), to order resources. New reservation requests are explained in the FCFS-
LRH algorithm below, and sort jobs are based on both arrival (𝑡𝑒𝑠𝑟) and execution (𝑡𝑒) times and the 
number of resources required (line 1 to 3).  

Algorithm: Resource Allocation Algorithm 

Input: Job (jobId, 𝑡𝑒𝑠𝑟 ,𝑡𝑙𝑠𝑟,𝑡𝑒, 𝑛𝑢𝑚𝐶 )  
Output: RU, AWT 
1. For j=0:jumJob 
2.    sort arrival jobs based on priority 𝑡𝑒𝑠𝑟, 𝑡𝑒, 𝑛𝑢𝑚𝐶   
3. Endfor  
4. For i=0:jumJob  // jumjob is the amount of job/timeslot 
5.    calculate the value of  d2=𝑡𝑒𝑠𝑟+𝑡𝑒-1 
6.    Search timeslot free with First fit strategy 
7.    IF (timeslot==empty) then insert Jobid  value  
8.      IF (timeslot!=empty) then execution procedure movejob(). 
9.   Endfor 
 
10. Procedure moveJob(); 
11. Initialization; finish=0,suc=false, start=𝑡𝑒𝑠𝑟, finish=𝑡𝑒𝑠𝑟+𝑡𝑒-1. 
12.  relax=start–𝑡𝑒𝑠𝑟, 𝑡𝑟=𝑡𝑙𝑠𝑟–𝑡𝑒𝑠𝑟,CNs=0. 
13. while (!suc and relax <=𝑡𝑟)  
14.     For cek=start:finish 
15.   set the variable CNs=0 
16. For s=0:atrans.size()    
17.     IF atrans.get(s,cek)!=0 then    
18.        variable CNs increases by 1     
19.     Endif     
20. Endfor      
21.    calculate the variable sel=maxC-CNs // maxC is the number of physical nodes 
22. IF (sel>=CN) then 
23.     calculate the variable t=start, suc=true 
24.     Else  
25.        calculate the variable t=cek, finish=start+𝑡𝑒-1, relax=start-𝑡𝑒𝑠𝑟, suc=true 
26.        IF (start>=𝑡𝑙𝑠𝑟) then continuous to line 4 
27.  Endif 
28.    Endfor           
29. Endwhile   
30. IF (suc==true) then 
31.    calculate the variable start=t+1, finish=start+𝑡𝑒-1, relax=start-𝑡𝑒𝑠𝑟 
32.    insert JobID with the first fit strategy 
33.    calculate waiting time(AWT)      
34. Endif        
35.    For y=0:sList.size()     
36.      IF (sList.get(y)!=0) then 
37. calculate resource utilization(RU)  
38.      Endif 
39.  Endfor   

Fig. 2. Resource Allocation Algorithm 
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Line 4 is a looping to read the jobs that arrive in each timeslot and place them in a virtual view if 
there are empty timeslots. Line 5 calculate the value of  d2, line 6 is the process of finding an empty slot 
with a first fit strategy starting from CN=0 to CN, and a timeslot starting from 𝑡𝑒𝑠𝑟 to the upper limit 
(d2). Insert job (Line 7) occurs if an empty slot is found. Line 8, if no empty slots are found, works on 
the moveJob() procedure, and line 9 is the end of the loop. 

The moveJob() procedure is used to move jobs if an empty timeslot is not found, until the upper 
limit of the start time of execution (𝑡𝑙𝑠𝑟). Line 11 and Line 12 are variable initialization. Line 13 to 29 
are search loop that begins from the left to the timeslot, with relax=0 to 𝑡𝑟(flexibility value (𝑡𝑙𝑠𝑟 - 𝑡𝑒𝑠𝑟)). 
If an empty timeslot is found between the lower limit (𝑡𝑒𝑠𝑟) to the value of the finished variable, indicated 
by line 30 to 34 (suc == true), jobId is inserted in the timeslot with the first fit strategy, and the number 
of jobsID received in the sList dynamic array is saved, and the waiting time is calculated. Line 35 to 38 
are used to calculate time slot utilization, where sList is a dynamic array used to hold the number of job 

IDs used at a certain timeslot. 

2.3.1. Illustration of FCFS-LRH 

An example will be provided to explain FCFS-LRH. If the model knows that the actual compute 
node 𝑚𝑎𝑥𝐶=6 (c0-c5) is a physical node, then the number of virtual nodes will have the same number 
of 6 (v0–v5). The order of arrival of the reservation is illustrated in Table 1, where 𝑛𝑢𝑚𝐶≤ 𝑚𝑎𝑥𝐶  and 
numJob are the numbers of jobs sent by the user. For example, the parameters are given by userID=6 as 
in Table 1 as follows: userID6 orders 3 time slots starting from timeslot 1 to 6, and it takes 2 computing 
nodes for 1 independent work, which can be shifted (𝑡𝑒𝑠𝑟=1, 𝑡𝑙𝑠𝑟=6, 𝑡𝑒=3, 𝑛𝑢𝑚𝐶=2, 𝑛𝑢𝑚𝐽𝑜𝑏=1). 

Table 1.  Reservation from the user 

userID 𝒕𝒆𝒔𝒓 𝒕𝒍𝒔𝒓 𝒕𝒆 numC numJob 

1 0 0 2 2 1 

2 0 3 3 2 1 

3 0 1 4 1 1 

4 0 0 4 1 1 

5 1 5 5 1 1 

6 1 6 3 2 1 

7 1 6 3 1 1 

8 2 9 5 2 1 

9 2 9 3 1 1 

10 3 8 3 2 1 

11 2 8 4 2 1 

12 2 8 3 1 1 

 

Table 2 shows the userID jobs that have been sorted by 𝑡𝑒𝑠𝑟, 𝑡𝑒, and 𝑛𝑢𝑚𝐶. Fig. 3 shows the logical 
view of the results of FCFS-LRH from Table 2, the x-axis shows the time slot, and the y-axis displays 
the virtual computing node. There are six of these nodes, which are displayed on the y-axis; 11 user 
reservations are allocated from timeslots 0 to 11.  

 Consider userID6 from Table 2 and Fig. 3. The virtual node given to this user is in timeslot 3 with 
compute nodes v4 and v5, timeslot 4 with compute nodes v2 and v3, and timeslot 5 with compute nodes 
v1 and v2. Two computing nodes will do one job at a specific time slot sent by the user. For example, 
userID12 wants to order three timeslots starting from timeslots 2 to 8, requiring one computational 
node for one independent job and with the ability to shift from start time to timeslot 8 (𝑡𝑒𝑠𝑟=2, 𝑡𝑙𝑠𝑟=8, 
𝑡𝑒=2, numC=2, jumJob=1); in Fig. 3, userID12 begins the execution time from timeslot 4 to timeslot 
6. 
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Table 2.  Results of the arrival time of the userId 

userID 𝒕𝒆𝒔𝒓 𝒕𝒍𝒔𝒓 𝒕𝒆 numC numJob 

1 0 0 2 2 1 

4 0 0 4 1 1 
3 0 1 4 1 1 

2 0 3 3 2 1 

7 1 6 3 1 1 

5 1 5 5 1 1 
6 1 6 3 2 1 

12 2 8 3 1 1 

9 2 9 3 1 1 

11 2 8 8 2 1 
8 2 9 5 2 1 

10 3 8 3 2 1 

 

               

v5 2.0 2.0 5.0 6.0 9.0     10.0 10.0 10.0      

v4 2.0 2.0 7.0 6.0 12.0 9.0 11.0 10.0 10.0 10.0      

v3 3.0 3.0 2.0 5.0 6.0 12.0 11.0 8.0 8.0 8.0      

v2 4.0 4.0 2.0 7.0 6.0 6.0 9.0 8.0 8.0 8.0      

v1 1.0 1.0 3.0 3.0 5.0 6.0 12.0 11.0 11.0 11.0 8.0 8.0  

v0 1.0 1.0 4.0 4.0 7.0 5.0 5.0 11.0 11.0 11.0 8.0 8.0   

  0 1 2 3 4 5 6 7 8 9 10 11 12 

 Time slot 

Fig. 3.  Job placement in a logical view with FCFS-LRH method 

In Fig. 3, userID12 will be rejected if a reservation is made using a rigid reservation. 𝑡𝑒𝑠𝑟 parameters 
in rigid reservations cannot shift. The userID12 job is placed on timeslot 4 through timeslot 6, on 
different virtual computing nodes. Notifications will be only sent to users if the reservation is successful 
(FCFS-LRH works in the virtual view) [27]. 

2.3.2. Mapping from virtual nodes to actual computing nodes  

Fig. 3 shows the job placement (logical view) from the results of Table 2. In contrast, Fig. 4 is the 
result of the recombination of logical views, which are mapped to the physical view for all userIDs in 
Table 2, an approach that guarantees that all jobs can execute on the actual node. 

               

c5 4.0 4.0 4.0 4.0 12.0 12.0 12.0 10.0 10.0 10.0      

c4 3.0 3.0 3.0 3.0 9.0 9.0 9.0 10.0 10.0 10.0      

c3 2.0 2.0 2.0 6.0 6.0 6.0   8.0 8.0 8.0 8.0 8.0  

c2 2.0 2.0 2.0 6.0 6.0 6.0 11.0 11.0 11.0 11.0      

c1 1.0 1.0 7.0 7.0 7.0   11.0 11.0 11.0 11.0      

c0 1.0 1.0 5.0 5.0 5.0 5.0 5.0 8.0 8.0 8.0 8.0 8.0   

  0 1 2 3 4 5 6 7 8 9 10 11 12 

 Time slot 

Fig. 4.  Job placement in physical view with FCFS-LRH method 
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2.3.3. Job workload 

Each grid model requires a different workload composition [29]. The characteristics of the workload 
to be used as simulation input in this experiment are as follows [26][30]–[32].  
 The level of reservation requests (µ) is assumed to follow a Poisson distribution. 
 Reservation requests are distributed uniformly, which is defined as the execution time (𝑡𝑒). 
 Reservation requests are between 0 and 24 hours, uniformly distributed, and they are set as the earliest 

start time (𝑡𝑒𝑠𝑟). 
 Percentage of flexible user reservations randomly selected. 
 The flexibility time (𝑡𝑓) for reservation requests is between 1 and 12 hours and is uniformly 

distributed. 

The flexibility time (𝑡𝑓) for reservation requests is between 1 and 12 hours and is evenly distributed. 

The percentage of resource utilization is calculated in a sliding window of 12 timeslots (1 hour), and the 
results of the proposed FCFS-LRH method are compared with FCFS-EDS. The utilization factor of 
the two strategies is measured using the input characteristics above. The total number of computational 
nodes is 20; the reservation demand levels are µ=2 and µ=3, and the number of jobs used is between 300 
and 800. 

3. Results and Discussion 

for Java Developers, Windows 8 operating system, Intel (R) Pentium (R) CPU B940 @ 2.00 GHz, 
and 6.00 GB RAM configuration. The FCFS-EDS approach is used as a comparison because it has the 
advantage of working in a logical view environment, and a notification is provided for users only once 
jobs can allocate to logical views. On the other hand, FCFS-EDS has the disadvantage that tasks received 
or assigned to logical views are not based on the priority of the start time of execution, the time of 
performance, and the number of resources required. Thus, it is possible that the use of resources is not 
efficient, and the job may be waiting for a substantial period of time. The resource utilization matrix and 
job waiting time are used as a comparison of performance, and the use of resources becomes more 
efficient. 

In this research, a work allocation model for resources is proposed to increase resource utilization and 
reduce the average waiting time. The order of job placement is based on the time of initial execution, 
the time of the smallest work execution, and the number of lowest resource requirements prioritized so 
that the utilization of resources will increase, and the waiting time of the work can be reduced. The 
parameters used in the experiment and for testing the performance are provided in Table 3. 

Table 3.  Parameters used by the experiment 

Parameter Range 

Number of Jobs 300-800 

Number of Resources 1-20 

Rate reservation request 2-3 

Percentage of flexibility 25-100 

 

The FCFS-EDS and FCFS-LRH methods included in the flexible advance reservation dynamic 
scheduling, as in the sample in Table 1, will be used to make it easier to compare resource utilization 
and an average job waiting time. The results of job placement illustrated in Table 1 in a logical view 
using FCFS-EDS are shown in Fig. 5, where the x-axis shows timeslot, the y-axis shows virtual nodes, 
and the results of job placement in the physical view are provided in Fig. 6. Table 4 indicates that the 
average waiting time for FCFS-EDS is 0.83, and for FCFS-LRH, it is 0.72. 
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v5 4.0 4.0 7.0 7.0   9.0 10.0 5.0 11.0        

v4 3.0 3.0   6.0 12.0   10.0 10.0 11.0        

v3 2.0 2.0 4.0 6.0 7.0 12.0 9.0 10.0 10.0 8.0 8.0 8.0  

v2 2.0 2.0 3.0 5.0 6.0 6.0   9.0 10.0 8.0 8.0 8.0  

v1 1.0 1.0 2.0 4.0 6.0 6.0 12.0 8.0 8.0 11.0 11.0 11.0  

v0 1.0 1.0 2.0 3.0 5.0 5.0 5.0 8.0 8.0 11.0 11.0 11.0   

  0 1 2 3 4 5 6 7 8 9 10 11 12 

 Time slot 

Fig. 5.  Job placement in a logical view with FCFS-EDS method 

               

c5 4.0 4.0 4.0 4.0       8.0 8.0 8.0 8.0 8.0  

c4 3.0 3.0 3.0 3.0 12.0 12.0 12.0 8.0 8.0 8.0 8.0 8.0  

c3 2.0 2.0 2.0 6.0 6.0 6.0 10.0 10.0 10.0        

c2 2.0 2.0 2.0 6.0 6.0 6.0 10.0 10.0 10.0        

c1 1.0 1.0   5.0 5.0 5.0 5.0 5.0 11.0 11.0 11.0 11.0  

c1 1.0 1.0 7.0 7.0 7.0 9.0 9.0 9.0 11.0 11.0 11.0 11.0   

  0 1 2 3 4 5 6 7 8 9 10 11 12 

 Time slot 

Fig. 6.  Job placement in a physical view with FCFS-EDS method 

The job waiting time for FCFS-LRH is less than for FCFS-EDS because the start time of the 
situation can advance at an earlier timeslot; hence, the difference in waiting time (start- 𝑡𝑒𝑠𝑟) is smaller. 
There are 3 FCFS-LRH userIDs for which the advance start time is advanced, namely userID5 advanced 
1 timeslot earlier, userID9 earlier 1 timeslot, and userID11 earlier 2 timeslots. Therefore, the total 
number of timeslots that can use earlier is 4. In contrast, for FCFS-EDS, only 1 userID can advance its 
execution time more first, namely userID10 of 1 timeslot. Thus, the difference between the timeslot 
FCFS-LRH with FCFS-EDS that can be improved earlier when the execution is used is 3 timeslots 
(see Table 4), where the total waiting time (numWT) of FCFS-LRH is 21, and for FCFS-EDS it is 24. 

Table 4.  Comparison of FCFS-LRH and FCFS-EDS waiting times 

FCFS-EDS FCFS-LRH 

user
ID 

start 𝒕𝒆𝒔𝒓 𝒕𝒆 
Num  

𝒕𝒆 
wt 

num
WT 

AWT 
userI

D 
start 𝒕𝒆𝒔𝒓 𝒕𝒆 

Num 
𝒕𝒆 

wt 
Num 
WT 

AWT 

7 2 1 3 3 1 1 0.33 5 2 1 5 5 1 1 0.20 

5 3 1 5 8 2 3 0.38 7 2 1 3 8 1 2 0.25 

6 3 1 3 11 2 5 0.45 6 3 1 3 11 2 4 0.36 

12 4 2 3 14 2 7 0.50 9 4 2 3 14 2 6 0.43 

9 5 2 3 17 3 10 0.59 12 4 2 3 17 2 8 0.47 

10 6 3 3 20 3 13 0.65 11 6 2 4 21 4 12 0.57 

8 7 2 5 25 5 18 0.72 8 7 2 5 26 5 17 0.65 

11 8 2 4 29 6 24 0.83 10 7 3 3 29 4 21 0.72 
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The impact of the start time is that it can be placed in an earlier slot. Then, the job waiting time can 
be reduced. The use of timeslot FCFS-LRH is higher than FCFS-EDS; this difference is due to the use 
of the timeslot earlier in its execution time (see Fig. 4 and compare with Fig. 6). The userID5 is allocated 
to timeslot 2, userID9 is allocated to timeslot 4, and userID11 is allocated to timeslot 6 using the FCFS-
LRH method. The utilization of the FCFS-LRH timeslot is higher than FCFS-EDS starting from 
timeslot 2 in the resource (see Table 5); at timeslot 2, the level of FCFS-LRH usage is 100%. In 
comparison, FCFS-EDS timeslot utilization is 98%, until the end of the timeslot used for the execution 
time used by userID. 

Table 5.  Resource utilization 

Method 
Timeslot 

0 1 2 3 4 5 6 7 8 9 10 11 12 

FCFS-LRH 100 100 100 99.5 98.9 98.38 98.1 98 97.2 96.3 94.9   

FCFS-EDS 100 100 98 97.25 96.4 95.5 94.7 94 94 93.6 93 92.4 91.38 
 

Two experiments were carried out using the parameters in Table 3. First, the FCFS-LRH waiting 
time was compared with FCFS-EDS (backfilling, aggressive backfilling, without reservation). The 
second experiment compared the resource use between the FCFS-EDS and FCFS-LRH methods. The 
first experiment involved measuring FCFS-EDS, FCFS-LRH waiting times (backfilling and aggressive 
backfilling without reservation), the results of which are shown in Table 6. This table demonstrates that 
job waiting times for FCFS-LRH are shorter than for FCFS-EDS, backfilling, and aggressive backfilling 
without reservation. This finding is due to the time flexibility affecting the actual start time, which can 
be close to the expected time when the user submits a job. The waiting time (backfilling and aggressive 
backfilling without reservation) is high because the next task must wait in a queue until the job before 
it has finished executing. Thus, the FCFS-LRH provides a better allocation policy because time 
flexibility(𝑡𝑓) is used to reduce reservation waiting time. The impact of a good allocation policy is that 

the waiting time value of FCFS-LRH can be reduced compared to FCFS-EDS (backfilling and 
aggressive backfilling without reservation) for all conditions. The waiting time value is based on the level 
of reservation arrivals and the number of jobs submitted by users (Table 6). For µ=2 and µ=3, the average 
reduction in waiting time is 20.47%, whereas the average decrease of waiting time with a level of 
reservation requests (µ=2) was 36.8%, and for the level of reservation requests (µ=3), waiting time 
reduction was 9.7% (Table 7). 

Table 6.  Comparison of FCFS-LRH and FCFS-EDS waiting times. 

Method 
Number of jobs 

µ=2 µ=3 

383 402 421 601 618 673 

FCFS-LRH 0.55 0.78 0.49 1.05 0.94 0.78 

FCFS-EDS 0.78 1.03 0.69 1.09 1.07 0.88 

Aggressive backfilling 2.97 1.11 1.84 1.77 4.22 3.33 
Backfilling 3.25 1.42 2.45 2.27 4.91 3.6 

Table 7.  Average waiting time based on the average level of reservation request. 

Method 
Rate reservation request 

µ=2 µ=3 

FCFS-LRH 0.61 0.92 
FCFS-EDS 0.83 1.01 

Aggressive backfilling 1.97 3.10 

Backfilling 2.37 3.59 

 

The results of the second experiment are shown in Table 8. It can be observed that the average value 
of timeslot utilization has increased by 1.34% (Table 8), whereas the average resource utilization is 1.17% 
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for μ= 2 and 1.5% for μ=3 (Table 9). This increase in utilization was due to previous work placement 
starting from the left-hand side of the timeslot so that the use of the timeslot increased. Jobs will be 
allocated first on the left-hand side. 

Table 8.  Percentage of utilization results. 

Method 

Number of jobs 

µ=2 µ=3 

383 402 421 601 618 673 

FCFS-EDS 89.96 94.94 92.60 93.40 93.92 93.83 

FCFS-LRH 90.91 96.60 93.51 94.68 95.60 95.68 

Table 9.  The average level of reservation requests. 

Method 
Rate reservation request 

µ=2 µ=3 

FCFS-EDS 92.50 93.72 

FCFS-LRH 93.67 95.22 

4. Conclusion 

Various resource allocation strategies have been used to make resource use more productive. Hence, 
distributed environmental performance was found to increase. An effective scheduling policy is required 
to increase resource use and reduce waiting times. In this work, a reservation scheduling strategy referred 
to as FCFS-LRH is proposed. Jobs that come in this strategy are sorted by priority first, and then jobs 
will be placed on virtual nodes. Jobs allocated to such nodes will be mapped to physical nodes when they 
are executed. Work that has been allocated on a virtual node will be guaranteed to be executed on 
physical resources. Experimentally, the FCFS-LRH method was compared with FCFS-EDS, backfilling, 
and aggressive backfilling without reservation. FCFS-LRH performance was found to increase in terms 
of resource utilization, and its use can reduce job waiting times. The results of this study can only be 
used in local scheduling in grid computing. The next research is to apply the FCFS-LRH method on 
cloud systems. The algorithm developed for the job on the global scheduler. 
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