
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 6, No. 2, July 2020, pp. 185-196 185

 https://doi.org/10.26555/ijain.v6i2.496 http://ijain.org ijain@uad.ac.id

Resource allocation model for grid computing
environment

Ardi Pujiyanta a,b,1,*, Lukito Edi Nugroho a,2, Widyawan a,3

a Department of Electrical Engineering and Information Technology, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
b Department of Informatics, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
1 ardi.pujiyanta@mail.ugm.ac.id; 2 lukito@ugm.ac.id; 3 widyawan@ugm.ac.id

* corresponding author

1. Introduction

Grid computing involves the application of resources in a network to solve one problem at the same
time. We are rather used to solving scientific or technical issues, such as high-energy physics, earth
observation, and biological applications, all of which require many cycles of computer processing or
access to large amounts of data. Grid computing can be considered to be a form of large-scale distributed
cluster computing and a type of distributed parallel network processing [1]. The two most important
issues in managing user work are resource allocation and scheduling of work based on the support
required. When a user’s job is submitted, the situation will be handled by a resource broker, who must
find and allocate the correct resources for the job. After the resource allocation phase, jobs must be
scheduled on existing resources and according to user requirements.

In general, when a user sends a job, they request several processors, memory, and provide the
maximum time limit required to run the job. Then, the scheduler gives priority to work, according to

ARTICL E INFO

ABSTRACT

Article history

Received April 13, 2020

Revised June 18, 2020

Accepted June 27, 2020

Available online July 12, 2020

 Grid computing is a collection of heterogeneous resources that is highly
dynamic and unpredictable. It is typically used for solving scientific or
technical problems that require a large number of computer processing
cycles or access to substantial amounts of data. Various resource allocation
strategies have been used to make resource use more productive, with
subsequent distributed environmental performance increases. The user
sends a job by providing a predetermined time limit for running that job.
Then, the scheduler gives priority to work according to the request and
scheduling policy and places it in the waiting queue. When the resource is
released, the scheduler selects the job from the waiting queue with a specific
algorithm. Requests will be rejected if the required resources are not
available. The user can re-submit a new request by modifying the parameter
until available resources can be found. Eventually, there is a decrease in idle
resources between work and resource utilization, and the waiting time will
increase. An effective scheduling policy is required to improve resource use
and reduce waiting times. In this paper, the FCFS-LRH method is
proposed, where jobs received will be sorted by arrival time, execution time,
and the number of resources needed. After the sorting process, the work
will be placed in a logical view, and the job will be sent to the actual
resource when it executes. The experimental results show that the proposed
model can increase resource utilization by 1.34% and reduce waiting time
by 20.47% when compared to existing approaches. This finding could be
beneficially implemented in cloud systems resource allocation management.

This is an open access article under the CC–BY-SA license.

Keywords

FCFS-LRH

Grid computing

Resource allocation

Resource utilization

Waiting time

http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:ardi.pujiyanta@mail.ugm.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v6i2.496&domain=pdf

186 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 2, July 2020, pp. 185-196

 Pujiyanta et al. (Resource allocation model for grid computing environment)

the scheduling requests and policies, and places it in the waiting queue. When the resource is released,
the scheduler selects the job from the waiting queue with a specific algorithm. In rigid scheduling such
as first come first serve (FCFS), three parameters are used to request resources, namely start time,
execution time, and the number of resources used [2]. The scheduler will look for the availability of
resources requested by users within the specified time interval. Requests will be rejected if the required
resources are not available [3]–[5].

Inelastic reservations are used for the user request parameter as a soft constraint. The reservation
system instead rejects the request but provides an alternative that can be chosen by the user. This
approach gives users the flexibility to select the best choice according to the needs of quality of Service
(QoS) [6]–[8]. Relax advance reservation uses overlapping timeslots due to a tendency of the application
to exaggerate the reservation deadline to ensure its completion. User jobs are scheduled, even if booking
violations occur because of overlapping jobs [9]–[13]. Shukla et al. [14] proposed an algorithm with the
primary objective being that if there is more than one resource chosen by a job, then the job that has
the least workload will be executed first to reduce the average waiting time of the job queue. The
algorithm will check the availability of resources that have the least load. In this rigid scheduling, work
must wait in a queue to be scheduled.

In a flexible reservation, the work user has a flexible start time and can vary within a certain time
interval [15][16]. Moaddeli et al. [17] have examined the impact of the backfilling algorithm on flexible
job ordering. In his research, both aggressive and conservative backfilling are compared. The result is
that aggressive backfilling is more beneficial. Gomes and Dantas [18] propose checking free slots on
available resources; if free slots are available, reservations are scheduled, but if such slots are not available
during reservation requests, then the next available free slots will be reserved. The impact of the
backfilling algorithm in flexible reservations has been analyzed in references [19]–[22]. Backfilling was
proposed to increase the utilization of the grid system. The advantage of this strategy is that it makes
shift reservations early to make room for new reservations to be allocated. The disadvantage of backfilling
is that the next job must wait in line until it has finished execution; hence, there is no certainty regarding
when the job will complete.

Netto et al. [23] conducted a study by rescheduling the allocated work. The experimental results
show that the system’s utilization will be better if the user waits for up to 75% of the waiting time.
Barzegar et al. [24] introducing a reservation scheduling algorithm referred to as GELSAR in the grid
system. GELSAR will reschedule all new arrivals to find the best solution. New reservations will be
rejected if there is no solution. The results of GELSAR outperform other genetic algorithms.
Grandinetti et al. [25] have researched a local scheduler, where a group of independent jobs has been
scheduled, with processing time restrictions provided by the user. It is assumed that all processing nodes
are identical. Umar et al. [26] introduced first come first serve-ejecting based dynamic scheduling
(FCFS-EDS). The results of the FCFS-EDS experiments compared to FCFS without reservations are
better in terms of resource utilization [17][23][24]. The advantage of FCFS-EDS is the provision of a
one-time notification if a reservation is received because FCFS-EDS works in a logical manner. In
another approach, information is processed whenever there is a revision made in the planning [23][24].
In the FCFS-EDS strategy, incoming reservations will find an empty timeslot. If no timeslot is found,
the job will move to the upper limit of the execution, or if the old job has used the timeslot, then that
old job will be shifted so that the new job can be allocated. The impact of shifting the job to the right
is a reduction in resource utilization and increased waiting time.

In this research, the main focus is to overcome the problem of resource allocation on local scheduling
in grid computing. The performance matrix used is resource utilization and job waiting time. The main
contributions of this paper are (1) increasing resource utilization in grid computing scheduling, and (2)
reducing work waiting times with a comparison workload sent by users.

Section 2 contains the methods and algorithms proposed to solve the problem of resource allocation
and waiting time. Section 3 describes the results and analyses comparing FCFS-EDS with FCFS-LRH.
The last section provides conclusions.

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 187
 Vol. 6, No. 2, July 2020, pp. 185-196

Pujiyanta et al. (Resource allocation model for grid computing environment)

2. Method

2.1. Proposed advanced reservation strategy

In this study, a proposed reservation strategy model termed first come first served left-right hole
scheduling (FCFS-LRH) is shown in Fig 1. Job requests are sent based on (𝑛𝑢𝑚𝐶, 𝑡𝑒𝑠𝑟, 𝑡𝑙𝑠𝑟, 𝑡𝑒).
Incoming user requests will be sorted by the priority of start time of execution, time of execution, and
the number of resources required. Jobs will be sorted at each timeslot before being allocated to the
virtual view. Work is scheduled at the virtual computing node with a first-fit strategy. If an empty
timeslot is obtained between the start time (𝑡𝑒𝑠𝑟) and the upper limit to begin the job execution (last
start time) 𝑡𝑙𝑠𝑟, the user is notified that the work has been received. If there is no empty slot between
𝑡𝑒𝑠𝑟 and 𝑡𝑙𝑠𝑟, the job is rejected, and the user is notified. The parameter 𝑡0 is the current time. The
parameter 𝑡𝑛 is the time of initial flexibility of work. The parameters 𝑡𝑟1 and 𝑡𝑟2 indicate that there are
empty timeslots on the left and right. 𝑡𝑒𝑙 shows the lower time limit for the last execution of the job.
Work executed until the deadline (𝑡𝑒𝑠𝑙). The function of the 𝑡𝑓 is to provide time flexibility on the job.

Jobs that are placed in a logical view are still fragmented. Recombination is achieved when a job is
executed at the actual computing node [27][28].

Fig. 1. Flexible reservation scheduling

2.2. Performance matrix of FCFS-LRH method

The metrics considered for measuring the FCFS-LRH algorithm are resource utilization and waiting
time. Average resource utilization is calculated using (1). This formula refers to the comparison of the
number of 𝑅j resources executed against the total amount of available resources. In the formula, s

indicates the number of slots used by the resource. 𝑡𝑠𝑖 refers to the start time when jobs are executed
on 𝑅j resources, and 𝑡𝑒𝑖 refers to the final time that a task completed on 𝑅j resources. The 𝑇 parameter

is defined as the execution time of all jobs.

𝑅𝑈𝑗 =
∑ (𝑡𝑒𝑖−𝑡𝑠𝑖)𝑠

𝑖=1

𝑇
  

Waiting time (𝑊𝑇) of the reservation is calculated. Occasionally, resources are not available at the
time of reservation. However, resources can be used at different times. In this case, the difference
between expected (𝑠𝑡𝑎𝑟𝑡𝑅) and actual (𝑠𝑡𝑎𝑟𝑡𝑁) start times is the waiting time.

𝑊𝑇 = 𝑆𝑡𝑎𝑟𝑡𝑅 – 𝑆𝑡𝑎𝑟𝑡𝑁  

Total Wait Time (𝑇𝑊𝑇) is calculated as the sum of all waiting times at a particular timeslot.

𝑇𝑊𝑇 = ∑ 𝑊𝑇𝑠𝑖𝑧𝑒
𝑖=0   

tesr t0 tsr tlsr tedl tcl tesl

tf

tr2 tr1
te

tn

188 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 2, July 2020, pp. 185-196

 Pujiyanta et al. (Resource allocation model for grid computing environment)

Where size refers to the length of the reservation at a certain point in time. Then, the average waiting
time (𝐴𝑊𝑇) is

𝐴𝑊𝑇 =
𝑇𝑊𝑇

𝑁𝑜 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
  

2.3. Proposed FCFS-LRH algorithm

The proposed algorithm is shown in Fig. 2. The user needs to send a reservation, with parameters
qReserv (𝑡𝑒𝑠𝑟, 𝑡𝑙𝑠𝑟, 𝑡𝑒, 𝑛𝑢𝑚𝐶), to order resources. New reservation requests are explained in the FCFS-
LRH algorithm below, and sort jobs are based on both arrival (𝑡𝑒𝑠𝑟) and execution (𝑡𝑒) times and the
number of resources required (line 1 to 3).

Algorithm: Resource Allocation Algorithm

Input: Job (jobId, 𝑡𝑒𝑠𝑟 ,𝑡𝑙𝑠𝑟,𝑡𝑒, 𝑛𝑢𝑚𝐶)
Output: RU, AWT
1. For j=0:jumJob
2. sort arrival jobs based on priority 𝑡𝑒𝑠𝑟, 𝑡𝑒, 𝑛𝑢𝑚𝐶
3. Endfor
4. For i=0:jumJob // jumjob is the amount of job/timeslot
5. calculate the value of d2=𝑡𝑒𝑠𝑟+𝑡𝑒-1
6. Search timeslot free with First fit strategy
7. IF (timeslot==empty) then insert Jobid value
8. IF (timeslot!=empty) then execution procedure movejob().
9. Endfor

10. Procedure moveJob();
11. Initialization; finish=0,suc=false, start=𝑡𝑒𝑠𝑟, finish=𝑡𝑒𝑠𝑟+𝑡𝑒-1.
12. relax=start–𝑡𝑒𝑠𝑟, 𝑡𝑟=𝑡𝑙𝑠𝑟–𝑡𝑒𝑠𝑟,CNs=0.
13. while (!suc and relax <=𝑡𝑟)
14. For cek=start:finish
15. set the variable CNs=0
16. For s=0:atrans.size()
17. IF atrans.get(s,cek)!=0 then
18. variable CNs increases by 1
19. Endif
20. Endfor
21. calculate the variable sel=maxC-CNs // maxC is the number of physical nodes
22. IF (sel>=CN) then
23. calculate the variable t=start, suc=true
24. Else
25. calculate the variable t=cek, finish=start+𝑡𝑒-1, relax=start-𝑡𝑒𝑠𝑟, suc=true
26. IF (start>=𝑡𝑙𝑠𝑟) then continuous to line 4
27. Endif
28. Endfor
29. Endwhile
30. IF (suc==true) then
31. calculate the variable start=t+1, finish=start+𝑡𝑒-1, relax=start-𝑡𝑒𝑠𝑟
32. insert JobID with the first fit strategy
33. calculate waiting time(AWT)
34. Endif
35. For y=0:sList.size()
36. IF (sList.get(y)!=0) then
37. calculate resource utilization(RU)
38. Endif
39. Endfor

Fig. 2. Resource Allocation Algorithm

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 189
 Vol. 6, No. 2, July 2020, pp. 185-196

Pujiyanta et al. (Resource allocation model for grid computing environment)

Line 4 is a looping to read the jobs that arrive in each timeslot and place them in a virtual view if
there are empty timeslots. Line 5 calculate the value of d2, line 6 is the process of finding an empty slot
with a first fit strategy starting from CN=0 to CN, and a timeslot starting from 𝑡𝑒𝑠𝑟 to the upper limit
(d2). Insert job (Line 7) occurs if an empty slot is found. Line 8, if no empty slots are found, works on
the moveJob() procedure, and line 9 is the end of the loop.

The moveJob() procedure is used to move jobs if an empty timeslot is not found, until the upper
limit of the start time of execution (𝑡𝑙𝑠𝑟). Line 11 and Line 12 are variable initialization. Line 13 to 29
are search loop that begins from the left to the timeslot, with relax=0 to 𝑡𝑟(flexibility value (𝑡𝑙𝑠𝑟 - 𝑡𝑒𝑠𝑟)).
If an empty timeslot is found between the lower limit (𝑡𝑒𝑠𝑟) to the value of the finished variable, indicated
by line 30 to 34 (suc == true), jobId is inserted in the timeslot with the first fit strategy, and the number
of jobsID received in the sList dynamic array is saved, and the waiting time is calculated. Line 35 to 38
are used to calculate time slot utilization, where sList is a dynamic array used to hold the number of job

IDs used at a certain timeslot.

2.3.1. Illustration of FCFS-LRH

An example will be provided to explain FCFS-LRH. If the model knows that the actual compute
node 𝑚𝑎𝑥𝐶=6 (c0-c5) is a physical node, then the number of virtual nodes will have the same number
of 6 (v0–v5). The order of arrival of the reservation is illustrated in Table 1, where 𝑛𝑢𝑚𝐶≤ 𝑚𝑎𝑥𝐶 and
numJob are the numbers of jobs sent by the user. For example, the parameters are given by userID=6 as
in Table 1 as follows: userID6 orders 3 time slots starting from timeslot 1 to 6, and it takes 2 computing
nodes for 1 independent work, which can be shifted (𝑡𝑒𝑠𝑟=1, 𝑡𝑙𝑠𝑟=6, 𝑡𝑒=3, 𝑛𝑢𝑚𝐶=2, 𝑛𝑢𝑚𝐽𝑜𝑏=1).

Table 1. Reservation from the user

userID 𝒕𝒆𝒔𝒓 𝒕𝒍𝒔𝒓 𝒕𝒆 numC numJob

1 0 0 2 2 1

2 0 3 3 2 1

3 0 1 4 1 1

4 0 0 4 1 1

5 1 5 5 1 1

6 1 6 3 2 1

7 1 6 3 1 1

8 2 9 5 2 1

9 2 9 3 1 1

10 3 8 3 2 1

11 2 8 4 2 1

12 2 8 3 1 1

Table 2 shows the userID jobs that have been sorted by 𝑡𝑒𝑠𝑟, 𝑡𝑒, and 𝑛𝑢𝑚𝐶. Fig. 3 shows the logical
view of the results of FCFS-LRH from Table 2, the x-axis shows the time slot, and the y-axis displays
the virtual computing node. There are six of these nodes, which are displayed on the y-axis; 11 user
reservations are allocated from timeslots 0 to 11.

 Consider userID6 from Table 2 and Fig. 3. The virtual node given to this user is in timeslot 3 with
compute nodes v4 and v5, timeslot 4 with compute nodes v2 and v3, and timeslot 5 with compute nodes
v1 and v2. Two computing nodes will do one job at a specific time slot sent by the user. For example,
userID12 wants to order three timeslots starting from timeslots 2 to 8, requiring one computational
node for one independent job and with the ability to shift from start time to timeslot 8 (𝑡𝑒𝑠𝑟=2, 𝑡𝑙𝑠𝑟=8,
𝑡𝑒=2, numC=2, jumJob=1); in Fig. 3, userID12 begins the execution time from timeslot 4 to timeslot
6.

190 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 2, July 2020, pp. 185-196

 Pujiyanta et al. (Resource allocation model for grid computing environment)

Table 2. Results of the arrival time of the userId

userID 𝒕𝒆𝒔𝒓 𝒕𝒍𝒔𝒓 𝒕𝒆 numC numJob

1 0 0 2 2 1

4 0 0 4 1 1
3 0 1 4 1 1

2 0 3 3 2 1

7 1 6 3 1 1

5 1 5 5 1 1
6 1 6 3 2 1

12 2 8 3 1 1

9 2 9 3 1 1

11 2 8 8 2 1
8 2 9 5 2 1

10 3 8 3 2 1

v5 2.0 2.0 5.0 6.0 9.0 10.0 10.0 10.0

v4 2.0 2.0 7.0 6.0 12.0 9.0 11.0 10.0 10.0 10.0

v3 3.0 3.0 2.0 5.0 6.0 12.0 11.0 8.0 8.0 8.0

v2 4.0 4.0 2.0 7.0 6.0 6.0 9.0 8.0 8.0 8.0

v1 1.0 1.0 3.0 3.0 5.0 6.0 12.0 11.0 11.0 11.0 8.0 8.0

v0 1.0 1.0 4.0 4.0 7.0 5.0 5.0 11.0 11.0 11.0 8.0 8.0

 0 1 2 3 4 5 6 7 8 9 10 11 12

 Time slot

Fig. 3. Job placement in a logical view with FCFS-LRH method

In Fig. 3, userID12 will be rejected if a reservation is made using a rigid reservation. 𝑡𝑒𝑠𝑟 parameters
in rigid reservations cannot shift. The userID12 job is placed on timeslot 4 through timeslot 6, on
different virtual computing nodes. Notifications will be only sent to users if the reservation is successful
(FCFS-LRH works in the virtual view) [27].

2.3.2. Mapping from virtual nodes to actual computing nodes

Fig. 3 shows the job placement (logical view) from the results of Table 2. In contrast, Fig. 4 is the
result of the recombination of logical views, which are mapped to the physical view for all userIDs in
Table 2, an approach that guarantees that all jobs can execute on the actual node.

c5 4.0 4.0 4.0 4.0 12.0 12.0 12.0 10.0 10.0 10.0

c4 3.0 3.0 3.0 3.0 9.0 9.0 9.0 10.0 10.0 10.0

c3 2.0 2.0 2.0 6.0 6.0 6.0 8.0 8.0 8.0 8.0 8.0

c2 2.0 2.0 2.0 6.0 6.0 6.0 11.0 11.0 11.0 11.0

c1 1.0 1.0 7.0 7.0 7.0 11.0 11.0 11.0 11.0

c0 1.0 1.0 5.0 5.0 5.0 5.0 5.0 8.0 8.0 8.0 8.0 8.0

 0 1 2 3 4 5 6 7 8 9 10 11 12

 Time slot

Fig. 4. Job placement in physical view with FCFS-LRH method

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 191
 Vol. 6, No. 2, July 2020, pp. 185-196

Pujiyanta et al. (Resource allocation model for grid computing environment)

2.3.3. Job workload

Each grid model requires a different workload composition [29]. The characteristics of the workload
to be used as simulation input in this experiment are as follows [26][30]–[32].
 The level of reservation requests (µ) is assumed to follow a Poisson distribution.
 Reservation requests are distributed uniformly, which is defined as the execution time (𝑡𝑒).
 Reservation requests are between 0 and 24 hours, uniformly distributed, and they are set as the earliest

start time (𝑡𝑒𝑠𝑟).
 Percentage of flexible user reservations randomly selected.
 The flexibility time (𝑡𝑓) for reservation requests is between 1 and 12 hours and is uniformly

distributed.

The flexibility time (𝑡𝑓) for reservation requests is between 1 and 12 hours and is evenly distributed.

The percentage of resource utilization is calculated in a sliding window of 12 timeslots (1 hour), and the
results of the proposed FCFS-LRH method are compared with FCFS-EDS. The utilization factor of
the two strategies is measured using the input characteristics above. The total number of computational
nodes is 20; the reservation demand levels are µ=2 and µ=3, and the number of jobs used is between 300
and 800.

3. Results and Discussion

for Java Developers, Windows 8 operating system, Intel (R) Pentium (R) CPU B940 @ 2.00 GHz,
and 6.00 GB RAM configuration. The FCFS-EDS approach is used as a comparison because it has the
advantage of working in a logical view environment, and a notification is provided for users only once
jobs can allocate to logical views. On the other hand, FCFS-EDS has the disadvantage that tasks received
or assigned to logical views are not based on the priority of the start time of execution, the time of
performance, and the number of resources required. Thus, it is possible that the use of resources is not
efficient, and the job may be waiting for a substantial period of time. The resource utilization matrix and
job waiting time are used as a comparison of performance, and the use of resources becomes more
efficient.

In this research, a work allocation model for resources is proposed to increase resource utilization and
reduce the average waiting time. The order of job placement is based on the time of initial execution,
the time of the smallest work execution, and the number of lowest resource requirements prioritized so
that the utilization of resources will increase, and the waiting time of the work can be reduced. The
parameters used in the experiment and for testing the performance are provided in Table 3.

Table 3. Parameters used by the experiment

Parameter Range

Number of Jobs 300-800

Number of Resources 1-20

Rate reservation request 2-3

Percentage of flexibility 25-100

The FCFS-EDS and FCFS-LRH methods included in the flexible advance reservation dynamic
scheduling, as in the sample in Table 1, will be used to make it easier to compare resource utilization
and an average job waiting time. The results of job placement illustrated in Table 1 in a logical view
using FCFS-EDS are shown in Fig. 5, where the x-axis shows timeslot, the y-axis shows virtual nodes,
and the results of job placement in the physical view are provided in Fig. 6. Table 4 indicates that the
average waiting time for FCFS-EDS is 0.83, and for FCFS-LRH, it is 0.72.

192 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 2, July 2020, pp. 185-196

 Pujiyanta et al. (Resource allocation model for grid computing environment)

v5 4.0 4.0 7.0 7.0 9.0 10.0 5.0 11.0

v4 3.0 3.0 6.0 12.0 10.0 10.0 11.0

v3 2.0 2.0 4.0 6.0 7.0 12.0 9.0 10.0 10.0 8.0 8.0 8.0

v2 2.0 2.0 3.0 5.0 6.0 6.0 9.0 10.0 8.0 8.0 8.0

v1 1.0 1.0 2.0 4.0 6.0 6.0 12.0 8.0 8.0 11.0 11.0 11.0

v0 1.0 1.0 2.0 3.0 5.0 5.0 5.0 8.0 8.0 11.0 11.0 11.0

 0 1 2 3 4 5 6 7 8 9 10 11 12

 Time slot

Fig. 5. Job placement in a logical view with FCFS-EDS method

c5 4.0 4.0 4.0 4.0 8.0 8.0 8.0 8.0 8.0

c4 3.0 3.0 3.0 3.0 12.0 12.0 12.0 8.0 8.0 8.0 8.0 8.0

c3 2.0 2.0 2.0 6.0 6.0 6.0 10.0 10.0 10.0

c2 2.0 2.0 2.0 6.0 6.0 6.0 10.0 10.0 10.0

c1 1.0 1.0 5.0 5.0 5.0 5.0 5.0 11.0 11.0 11.0 11.0

c1 1.0 1.0 7.0 7.0 7.0 9.0 9.0 9.0 11.0 11.0 11.0 11.0

 0 1 2 3 4 5 6 7 8 9 10 11 12

 Time slot

Fig. 6. Job placement in a physical view with FCFS-EDS method

The job waiting time for FCFS-LRH is less than for FCFS-EDS because the start time of the
situation can advance at an earlier timeslot; hence, the difference in waiting time (start- 𝑡𝑒𝑠𝑟) is smaller.
There are 3 FCFS-LRH userIDs for which the advance start time is advanced, namely userID5 advanced
1 timeslot earlier, userID9 earlier 1 timeslot, and userID11 earlier 2 timeslots. Therefore, the total
number of timeslots that can use earlier is 4. In contrast, for FCFS-EDS, only 1 userID can advance its
execution time more first, namely userID10 of 1 timeslot. Thus, the difference between the timeslot
FCFS-LRH with FCFS-EDS that can be improved earlier when the execution is used is 3 timeslots
(see Table 4), where the total waiting time (numWT) of FCFS-LRH is 21, and for FCFS-EDS it is 24.

Table 4. Comparison of FCFS-LRH and FCFS-EDS waiting times

FCFS-EDS FCFS-LRH

user
ID

start 𝒕𝒆𝒔𝒓 𝒕𝒆
Num

𝒕𝒆
wt

num
WT

AWT
userI

D
start 𝒕𝒆𝒔𝒓 𝒕𝒆

Num
𝒕𝒆

wt
Num
WT

AWT

7 2 1 3 3 1 1 0.33 5 2 1 5 5 1 1 0.20

5 3 1 5 8 2 3 0.38 7 2 1 3 8 1 2 0.25

6 3 1 3 11 2 5 0.45 6 3 1 3 11 2 4 0.36

12 4 2 3 14 2 7 0.50 9 4 2 3 14 2 6 0.43

9 5 2 3 17 3 10 0.59 12 4 2 3 17 2 8 0.47

10 6 3 3 20 3 13 0.65 11 6 2 4 21 4 12 0.57

8 7 2 5 25 5 18 0.72 8 7 2 5 26 5 17 0.65

11 8 2 4 29 6 24 0.83 10 7 3 3 29 4 21 0.72

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 193
 Vol. 6, No. 2, July 2020, pp. 185-196

Pujiyanta et al. (Resource allocation model for grid computing environment)

The impact of the start time is that it can be placed in an earlier slot. Then, the job waiting time can
be reduced. The use of timeslot FCFS-LRH is higher than FCFS-EDS; this difference is due to the use
of the timeslot earlier in its execution time (see Fig. 4 and compare with Fig. 6). The userID5 is allocated
to timeslot 2, userID9 is allocated to timeslot 4, and userID11 is allocated to timeslot 6 using the FCFS-
LRH method. The utilization of the FCFS-LRH timeslot is higher than FCFS-EDS starting from
timeslot 2 in the resource (see Table 5); at timeslot 2, the level of FCFS-LRH usage is 100%. In
comparison, FCFS-EDS timeslot utilization is 98%, until the end of the timeslot used for the execution
time used by userID.

Table 5. Resource utilization

Method
Timeslot

0 1 2 3 4 5 6 7 8 9 10 11 12

FCFS-LRH 100 100 100 99.5 98.9 98.38 98.1 98 97.2 96.3 94.9

FCFS-EDS 100 100 98 97.25 96.4 95.5 94.7 94 94 93.6 93 92.4 91.38

Two experiments were carried out using the parameters in Table 3. First, the FCFS-LRH waiting
time was compared with FCFS-EDS (backfilling, aggressive backfilling, without reservation). The
second experiment compared the resource use between the FCFS-EDS and FCFS-LRH methods. The
first experiment involved measuring FCFS-EDS, FCFS-LRH waiting times (backfilling and aggressive
backfilling without reservation), the results of which are shown in Table 6. This table demonstrates that
job waiting times for FCFS-LRH are shorter than for FCFS-EDS, backfilling, and aggressive backfilling
without reservation. This finding is due to the time flexibility affecting the actual start time, which can
be close to the expected time when the user submits a job. The waiting time (backfilling and aggressive
backfilling without reservation) is high because the next task must wait in a queue until the job before
it has finished executing. Thus, the FCFS-LRH provides a better allocation policy because time
flexibility(𝑡𝑓) is used to reduce reservation waiting time. The impact of a good allocation policy is that

the waiting time value of FCFS-LRH can be reduced compared to FCFS-EDS (backfilling and
aggressive backfilling without reservation) for all conditions. The waiting time value is based on the level
of reservation arrivals and the number of jobs submitted by users (Table 6). For µ=2 and µ=3, the average
reduction in waiting time is 20.47%, whereas the average decrease of waiting time with a level of
reservation requests (µ=2) was 36.8%, and for the level of reservation requests (µ=3), waiting time
reduction was 9.7% (Table 7).

Table 6. Comparison of FCFS-LRH and FCFS-EDS waiting times.

Method
Number of jobs

µ=2 µ=3

383 402 421 601 618 673

FCFS-LRH 0.55 0.78 0.49 1.05 0.94 0.78

FCFS-EDS 0.78 1.03 0.69 1.09 1.07 0.88

Aggressive backfilling 2.97 1.11 1.84 1.77 4.22 3.33
Backfilling 3.25 1.42 2.45 2.27 4.91 3.6

Table 7. Average waiting time based on the average level of reservation request.

Method
Rate reservation request

µ=2 µ=3

FCFS-LRH 0.61 0.92
FCFS-EDS 0.83 1.01

Aggressive backfilling 1.97 3.10

Backfilling 2.37 3.59

The results of the second experiment are shown in Table 8. It can be observed that the average value
of timeslot utilization has increased by 1.34% (Table 8), whereas the average resource utilization is 1.17%

194 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 2, July 2020, pp. 185-196

 Pujiyanta et al. (Resource allocation model for grid computing environment)

for μ= 2 and 1.5% for μ=3 (Table 9). This increase in utilization was due to previous work placement
starting from the left-hand side of the timeslot so that the use of the timeslot increased. Jobs will be
allocated first on the left-hand side.

Table 8. Percentage of utilization results.

Method

Number of jobs

µ=2 µ=3

383 402 421 601 618 673

FCFS-EDS 89.96 94.94 92.60 93.40 93.92 93.83

FCFS-LRH 90.91 96.60 93.51 94.68 95.60 95.68

Table 9. The average level of reservation requests.

Method
Rate reservation request

µ=2 µ=3

FCFS-EDS 92.50 93.72

FCFS-LRH 93.67 95.22

4. Conclusion

Various resource allocation strategies have been used to make resource use more productive. Hence,
distributed environmental performance was found to increase. An effective scheduling policy is required
to increase resource use and reduce waiting times. In this work, a reservation scheduling strategy referred
to as FCFS-LRH is proposed. Jobs that come in this strategy are sorted by priority first, and then jobs
will be placed on virtual nodes. Jobs allocated to such nodes will be mapped to physical nodes when they
are executed. Work that has been allocated on a virtual node will be guaranteed to be executed on
physical resources. Experimentally, the FCFS-LRH method was compared with FCFS-EDS, backfilling,
and aggressive backfilling without reservation. FCFS-LRH performance was found to increase in terms
of resource utilization, and its use can reduce job waiting times. The results of this study can only be
used in local scheduling in grid computing. The next research is to apply the FCFS-LRH method on
cloud systems. The algorithm developed for the job on the global scheduler.

Acknowledgment

The authors thank the Ministry of Research, Technology, and Higher Education (Ristekdikti) of the
Republic of Indonesia through BPPDN doctoral scholarship within the 2015 to 2020 fiscal year with
registration number 150529056601.

Declarations

Author contribution. All authors contributed equally as the main contributor to this paper. All authors
read and approved the final paper.
Funding statement. This research received a grant of the BPPDN doctoral program scholarship (2015-
2020) from the Ministry of Research, Technology, and Higher Education (Ristekdikti) of the Republic
of Indonesia with registration number 150529056601.
Conflict of interest. The authors declare no conflict of interest.
Additional information. No additional information is available for this paper.

References

[1] M. Caramia, S. Giordani, and A. Iovanella, “Grid scheduling by on-line rectangle packing,” Networks, 2004,
doi: 10.1002/net.20021.

[2] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced reservations,” in Proceedings 14th
International Parallel and Distributed Processing Symposium. IPDPS 2000, pp. 127–132, doi:
10.1109/IPDPS.2000.845974.

https://doi.org/10.1002/net.20021
https://doi.org/10.1109/IPDPS.2000.845974

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 195
 Vol. 6, No. 2, July 2020, pp. 185-196

Pujiyanta et al. (Resource allocation model for grid computing environment)

[3] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy, “A distributed resource management
architecture that supports advance reservations and co-allocation,” in IEEE International Workshop on
Quality of Service, IWQoS, 1999, doi: 10.1109/IWQOS.1999.766475.

[4] I. Foster and C. Kesselman, The grid 2: Blueprint for a new computing infrastructure, 2004, doi: citeulike-
article-id:340626.

[5] K. Czajkowski et al., “A resource management architecture for metacomputing systems,” 1998, pp. 62–82,
doi: 10.1007/BFb0053981.

[6] R. Buyya and M. Murshed, “GridSim: a toolkit for the modeling and simulation of distributed resource
management and scheduling for Grid computing,” Concurr. Comput. Pract. Exp., vol. 14, no. 13–15, pp.
1175–1220, Nov. 2002, doi: 10.1002/cpe.710.

[7] A. Sulistio, Kyong Hoon Kim, and R. Buyya, “On incorporating an on-line strip packing algorithm into
elastic Grid reservation-based systems,” in 2007 International Conference on Parallel and Distributed Systems,
2007, pp. 1–8, doi: 10.1109/ICPADS.2007.4447738.

[8] J. Shi, J. Luo, F. Dong, J. Zhang, and J. Zhang, “Elastic resource provisioning for scientific workflow
scheduling in cloud under budget and deadline constraints,” Cluster Comput., vol. 19, no. 1, pp. 167–182,
Mar. 2016, doi: 10.1007/s10586-015-0530-0.

[9] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and user runtime estimates in
scheduling the IBM SP2 with backfilling,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 6, pp. 529–543,
Jun. 2001, doi: 10.1109/71.932708.

[10] C. Castillo, G. N. Rouskas, and K. Harfoush, “On the Design of Online Scheduling Algorithms for Advance
Reservations and QoS in Grids,” in 2007 IEEE International Parallel and Distributed Processing Symposium,
2007, pp. 1–10, doi: 10.1109/IPDPS.2007.370226.

[11] P. Xiao, Z. Hu, X. Li, and L. Yang, “A Novel Statistic-based Relaxed Grid Resource Reservation Strategy,”
in 2008 The 9th International Conference for Young Computer Scientists, 2008, pp. 703–707, doi:
10.1109/ICYCS.2008.117.

[12] B. S. S. Rani, R. Venkatesan, and R. Ramalakshmi, “Resource reservation in grid computing environments:
Design issues,” in 2011 3rd International Conference on Electronics Computer Technology, 2011, pp. 66–70,
doi: 10.1109/ICECTECH.2011.5941858.

[13] P. Xiao and Z. Hu, “Relaxed resource advance reservation policy in grid computing,” J. China Univ. Posts
Telecommun., vol. 16, no. 2, pp. 108–113, Apr. 2009, doi: 10.1016/S1005-8885(08)60213-7.

[14] A. Shukla, S. Kumar, and H. Singh, “An Improved Resource Allocation Model for Grid Computing
Environment,” Int. J. Intell. Eng. Syst., vol. 12, no. 1, pp. 104–113, Feb. 2019, doi:
10.22266/ijies2019.0228.11.

[15] M. Barshan, H. Moens, B. Volckaert, and F. De Turck, “A comparative analysis of flexible and fixed size
timeslots for advance bandwidth reservations in media production networks,” in 2016 7th International
Conference on the Network of the Future (NOF), 2016, pp. 1–6, doi: 10.1109/NOF.2016.7810118.

[16] M. Barshan, H. Moens, J. Famaey, and F. De Turck, “Deadline-aware advance reservation scheduling
algorithms for media production networks,” Comput. Commun., vol. 77, pp. 26–40, Mar. 2016, doi:
10.1016/j.comcom.2015.10.016.

[17] H. R. Moaddeli, G. Dastghaibyfard, and M. R. Moosavi, “Flexible Advance Reservation Impact on
Backfilling Scheduling Strategies,” in 2008 Seventh International Conference on Grid and Cooperative
Computing, 2008, pp. 151–159, doi: 10.1109/GCC.2008.85.

[18] E. Gomes and M. A. R. Dantas, “Towards a Resource Reservation Approach for an Opportunistic
Computing Environment,” J. Phys. Conf. Ser., vol. 540, p. 012002, Oct. 2014, doi: 10.1088/1742-
6596/540/1/012002.

[19] A. Mishra, “An enhanced and effective preemption based scheduling for grid computing enabling backfilling
technique,” in 2015 International Conference on Advances in Computer Engineering and Applications, 2015, pp.
1015–1018, doi: 10.1109/ICACEA.2015.7164855.

https://doi.org/10.1109/IWQOS.1999.766475
https://doi.org/citeulike-article-id:340626
https://doi.org/citeulike-article-id:340626
https://doi.org/10.1007/BFb0053981
https://doi.org/10.1002/cpe.710
https://doi.org/10.1109/ICPADS.2007.4447738
https://doi.org/10.1007/s10586-015-0530-0
https://doi.org/10.1109/71.932708
https://doi.org/10.1109/IPDPS.2007.370226
https://doi.org/10.1109/ICYCS.2008.117
https://doi.org/10.1109/ICECTECH.2011.5941858
https://doi.org/10.1016/S1005-8885(08)60213-7
https://doi.org/10.22266/ijies2019.0228.11
https://doi.org/10.1109/NOF.2016.7810118
https://doi.org/10.1016/j.comcom.2015.10.016
https://doi.org/10.1109/GCC.2008.85
https://doi.org/10.1088/1742-6596/540/1/012002
https://doi.org/10.1088/1742-6596/540/1/012002
https://doi.org/10.1109/ICACEA.2015.7164855

196 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 2, July 2020, pp. 185-196

 Pujiyanta et al. (Resource allocation model for grid computing environment)

[20] O. Dakkak, S. Awang Nor, and S. Arif, “Scheduling through backfilling technique for HPC applications in
grid computing environment,” in 2016 IEEE Conference on Open Systems (ICOS), 2016, pp. 30–35, doi:
10.1109/ICOS.2016.7881984.

[21] S. Leonenkov and S. Zhumatiy, “Introducing New Backfill-based Scheduler for SLURM Resource
Manager,” Procedia Comput. Sci., vol. 66, pp. 661–669, 2015, doi: 10.1016/j.procs.2015.11.075.

[22] R. Istrate, A. Poenaru, and F. Pop, “Advance Reservation System for Datacenters,” in 2016 IEEE 30th
International Conference on Advanced Information Networking and Applications (AINA), 2016, pp. 637–644,
doi: 10.1109/AINA.2016.106.

[23] M. A. S. Netto, K. Bubendorfer, and R. Buyya, “SLA-Based Advance Reservations with Flexible and
Adaptive Time QoS Parameters,” 2007, pp. 119–131, doi: 10.1007/978-3-540-74974-5_10.

[24] B. Barzegar, A. M. Rahmani, K. Zamanifar, and A. Divsalar, “Gravitational Emulation Local Search
Algorithm for Advanced Reservation and Scheduling in Grid Computing Systems,” in 2009 Fourth
International Conference on Computer Sciences and Convergence Information Technology, 2009, pp. 1240–1245,
doi: 10.1109/ICCIT.2009.319.

[25] L. Grandinetti, F. Guerriero, L. Di Puglia Pugliese, and M. Sheikhalishahi, “Heuristics for the local grid
scheduling problem with processing time constraints,” J. Heuristics, vol. 21, no. 4, pp. 523–547, Aug. 2015,
doi: 10.1007/s10732-015-9287-0.

[26] R. Umar, A. Agarwal, and C. R. Rao, “Advance Planning and Reservation in a Grid System,” 2012, pp. 161–
173, doi: 10.1007/978-3-642-30507-8_15.

[27] A. Pujiyanta, L. E. Nugroho, and Widyawan, “Planning and Scheduling Jobs on Grid Computing,” in 2018
International Symposium on Advanced Intelligent Informatics (SAIN), 2018, pp. 162–166, doi:
10.1109/SAIN.2018.8673372.

[28] A. Pujiyanta, L. E. Nugroho, and Widyawan, “Advance Reservation for Parametric Job on Grid Computing,”
in 2019 Fourth International Conference on Informatics and Computing (ICIC), 2019, pp. 1–5, doi:
10.1109/ICIC47613.2019.8985978.

[29] R. V. Lopes and D. Menasce, “A Taxonomy of Job Scheduling on Distributed Computing Systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 12, pp. 3412–3428, Dec. 2016, doi: 10.1109/TPDS.2016.2537821.

[30] M. Carvalho and F. Brasileiro, “A User-Based Model of Grid Computing Workloads,” in 2012 ACM/IEEE
13th International Conference on Grid Computing, 2012, pp. 40–48, doi: 10.1109/Grid.2012.13.

[31] U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: modeling the characteristics of
rigid jobs,” J. Parallel Distrib. Comput., vol. 63, no. 11, pp. 1105–1122, Nov. 2003, doi: 10.1016/S0743-
7315(03)00108-4.

[32] A. Iosup, D. H. J. Epema, J. Maassen, and R. van Nieuwpoort, “Synthetic Grid Workloads with Ibis, Koala,
and Grenchmark,” 2007, pp. 271–283, doi: 10.1007/978-0-387-47658-2_20.

https://doi.org/10.1109/ICOS.2016.7881984
https://doi.org/10.1016/j.procs.2015.11.075
https://doi.org/10.1109/AINA.2016.106
https://doi.org/10.1007/978-3-540-74974-5_10
https://doi.org/10.1109/ICCIT.2009.319
https://doi.org/10.1007/s10732-015-9287-0
https://doi.org/10.1007/978-3-642-30507-8_15
https://doi.org/10.1109/ICIC47613.2019.8985978
https://doi.org/10.1109/TPDS.2016.2537821
https://doi.org/10.1109/Grid.2012.13
https://doi.org/10.1016/S0743-7315(03)00108-4
https://doi.org/10.1016/S0743-7315(03)00108-4
https://doi.org/10.1007/978-0-387-47658-2_20

