

Editor:
Anna Hendri Soleliza Jones

PRACTICUM
INSTRUCTIONS
ARTIFICIAL
INTELLIGENCE

PP/018/SMS ke IV/ 3th Revision
ion
 LABORATORY

INFORMATICS ENGINEERING
INDUSTRIAL TECHNOLOGY
FACULTY
AHMAD DAHLAN UNIVERSITY

2020

Artificial intelligence – Infomatics Department – UAD - 2020

1

PREFACE

Alhamdulillah, the author of the presence of Allah SWT who has provided health and opportunities

to the author, so that this 3rd Edition of Artificial Intelligence Practices Manual can be completed.

Quite a lot of changes were made in revising this Artificial Intelligence Practicum Manual based on the

input given by the Lecturers in the Informatics Engineering Study Program when reviewing material in

the curriculum. Based on this input, the Artificial Intelligence Practicum Handbook was summarized

with expectations in accordance with the course material provided. Changes to the material are very

much found in this revised edition, especially the use of tools that as appropriate use Python software.

This is aimed so that students can get to know programming languages that intersect with other

subjects, such as machine learning. Once again, the authors would like to thank my colleagues in

Informatics Engineering who have indirectly contributed ideas / thoughts to support the formation of

this Artificial Intelligence Practices Manual. Hopefully this practical guide can be useful in accordance

with the expectations of the author.

Yogyakarta, 16 January 2020
Author

Author

Artificial intelligence – Infomatics Department – UAD - 2020

2

Authors

Anna Hendri Soleliza Jones, S.Kom., M.Cs.

Artificial intelligence – Infomatics Department – UAD - 2020

3

REVISION PAGE

The undersigned below:

Name : ………………………………

NIK/NIY : ………………………………

Position : ………………………………

Hereby declare the implementation of the Practicum Revision ……………………….. for the Informatics

Engineering Study Program has been carried out with the following explanation:

Num Revision Details Information (Per Meeting) Revision Date Module Number

1
Changes to the material compiled according to the
RPS, and the cases provided. The software used is
matlab, turbo prologue and GUI

2014

2

Changes to the material, namely the addition of
software agent material and hierarchy planning using
the matlab application. Thus the tools used in addition
to the Turbo Prologh also use MATLAB

2016

3

• Software changes in material 1 - 6, and 8 using

Python

• Addition of material 9 Custom Python Package

Creation

• Material 10 uses GUI software

2019

4 Changes to module templates 2020

 Yogyakarta, 16 January 2020
Author

Author

Artificial intelligence – Infomatics Department – UAD - 2020

4

HALAMAN PERNYATAAN

Yang bertanda tangan di bawah ini:

Nama : ………………………………

NIK/NIY : ………………………………

Jabatan : ………………………………

Menerangkan dengan sesungguhnya bahwa Petunjuk Praktikum ini telah direview dan akan

digunakan untuk pelaksanaan praktikum di Semester …………………. Tahun Akademik ………………………..

di Laboratorium ……………………………………………….., Program Studi Teknik Informatika, Fakultas

Teknologi Industri, Universitas Ahmad Dahlan.

Mengetahui,
Ketua Kelompok Keilmuan ………………

……………………………………………………….
NIK/NIY. …………………………………………

Yogyakarta, Tanggal Bulan Tahun

Kepala Laboratorium …………………….

……………………………………………………….
NIK/NIY. …………………………………………

Artificial intelligence – Infomatics Department – UAD - 2020

5

VISION AND MISSION OF INFORMATICS ENGINEERING

VISION

To become an internationally recognized and superior Information Studies Program in the field of

Informatics and based on Islamic values.

MISSION

1. Carry out education in accordance with competencies in the field of Informatics that are

recognized nationally and internationally

2. Increasing the research of lecturers and students in the field of Informatics that is creative,

innovative and effective.

3. Increasing the quantity and quality of national and international scientific publications

4. Carry out and improve community service activities by lecturers and students in the field of

Informatics.

5. Organizing activities that support the development of study programs by involving lecturers and

students.

6. Carry out cooperation with national and international level institutions.

7. Creating Islamic life in the study program environment.

Artificial intelligence – Infomatics Department – UAD - 2020

6

REGULATION OF INFORMATICS ENGINEERING LABORATORY

LECTURER / COORDINATOR OF PRACTICUM
1. The lecturer must be present at the practicum for at least 15 minutes at the beginning of the

practicum and sign the presence of practicum.

2. The lecturer prepares the practicum module, about the selection of assistant, pre-test, post-test,

and response by coordinating with the assistant and practicum expert.

3. The lecturer coordinates with the practicum assistant coordinator for the practicum evaluation

every week.

4. The lecturer signs the practicum assistant contract letter and the practicum assistant coordinator.

5. Lecturers who are not present in certain practicum slots without notification for 2 consecutive

weeks receive a reprimand from the Head of the Laboratory, if it continues for the next 2 weeks

then the Head of Laboratory has the right to change the practicum coordinator in that slot.

STUDENT
1. Students must be present 15 minutes before the practicum activities begin, and dispensation is 15

minutes late for a clear reason (unless the assistant determines otherwise and the standard hours

are hours in the Laboratory, being late more than 15 minutes may not enter the practicum & are

considered Inhal).

2. Students who do not take the practicum for any reason, must take INHAL, a maximum of 4 times

the practicum and if more than 4 times the practicum is considered FAIL.

3. Students must dress neatly in accordance with the provisions of the University, as follows:

a. Must not wear T-shirts, including if they are covered by Almamater Jackets / Jackets (Men /

Women) and Hats must be removed.

b. It is not allowed to wear tight clothes, minimal headscarves and hair must be completely

covered with headscarves, should not be seen on the forehead or on the back (especially for

women).

c. Must not wear minimal clothes, even when sitting, the waist must be tightly closed (Male /

Female).

d. Men shouldn't wear bracelets, earrings or women's accessories.

4. Students must not eat and drink during practicum activities, must maintain cleanliness, safety and

order while attending practical activities or while in the laboratory (may not litter the paper, pieces

of paper, candy wrappers on the carpet floor or on in CPU space).

5. Students are prohibited from leaving the practicum without permission from the Assistant or

Laboratory Assistant.

6. Students must put shoes and bags on the shelves / lockers that have been provided.

7. During the practicum, NGENET / NGE-GAME is prohibited, except for practicum eyes that require

or use Internet facilities.

8. Students are prohibited from removing network cables or practicum power cables without the

knowledge of the laboratory assistant

9. Students must have FILE Practicum instructions and be used during the practicum and must be

prepared before the practicum takes place.

10. Students are prohibited from cheating such as cheating or copying other students' work when

practicum is taking place or post-test which is a practicum assignment.

Artificial intelligence – Infomatics Department – UAD - 2020

7

11. Students are prohibited from changing computer software / hardware settings to either add or

subtract without the request of an assistant or laboratory assistant and do something that can

harm the laboratory or other practicum.

12. Assistant, Practicum Coordinator, Head of Laboratory and Laboratory Assistant have the right to

reprimand, warn and even ask students to leave the practicum room if it is felt that you are

disturbing other students or not carrying out practicum activities as appropriate and or do not

comply with applicable laboratory rules.

13. Violation of one or more of the rules above, the practicum value at the meeting is considered 0

(ZERO) with INHAL status.

LAB ASSISTANT
1. Assistant must be present 15 minutes before the practicum begins (confirmation to the

coordinator if there is a delay or unable to attend).

2. Assistant who cannot attend MUST find a replacement, and report to the Assistant

Coordinator.

3. Assistants must dress neatly in accordance with the provisions of the University, as follows:

a. Must not wear T-shirts, including if they are covered by Almamater Jackets / Jackets

(Men / Women) and Hats must be removed.

b. It is not allowed to wear tight clothes, minimal headscarves and hair must be completely

covered with headscarves, should not be seen on the forehead or on the back (especially

for women).

c. Must not wear minimal clothes, even when sitting, the waist must be tightly closed

(Male / Female).

d. Men shouldn't wear bracelets, earrings or women's accessories.

4. Assistants must maintain cleanliness, security and order while attending practicum

activities or while in the laboratory, reprimanding or reminding if there are students who

cannot maintain cleanliness, order or politeness.

5. Assistant must be able to tidy up and secure the presence of practicum, Value Card and

orderly in entering / Input values online / offline.

6. The assistant must be able to act professionally as a practicum assistant and can be an

example for students.

7. Assistants must be able to provide explanations / understanding needed by students

regarding practicum material that is assisted so that students can carry out and do

practical work well and clearly.

8. Assistants are not allowed to talk alone let alone to make noise.

9. The assistant is asked to coordinate to ask the student to turn off the computer for the last

schedule and an assessment of the student's work has been done.

10. Assistants are required to turn off the LCD Projector and computer assistant / student

when not in use.

11. Assistants are not permitted to use internet access other than for practicum activities, such

as Youtube / Game / SocMed / Streaming Movies on student computers.

OTHERS
1. At the time of response, you should use shirts for men and women for students and assistants.

2. The absence of practicums for any reason is considered INHAL.

3. The practicum permit follows the SIMERU / LECTURAL permit rules.

4. Those who have no interest in practicum are prohibited from disturbing students or making a

commotion / noise.

Artificial intelligence – Infomatics Department – UAD - 2020

8

5. The use of the lab outside the practicum hours is maximum until 21.00 by showing a permit from

the Head of the Laboratory of Informatics Engineering Study Program.

Yogyakarta, 15 February 2019

Head of the Informatics Engineering Practicum Laboratory

…………………………………….………

NIK/NIY. ………………………….....

Artificial intelligence – Infomatics Department – UAD - 2020

9

TABLE OF CONTENTS

PREFACE ...1

Authors ...2

REVISION PAGE ...3

HALAMAN PERNYATAAN ..4

VISION AND MISSION OF INFORMATICS ENGINEERING ..5

REGULATION OF INFORMATICS ENGINEERING LABORATORY ...6

TABLE OF CONTENTS ..9

LIST OF PICTURE .. 10

LIST OF TABLES .. 11

PRACTICUM 1 TRACKING CONCEPT WITH PYTHON .. 12

PRACTICUM 2 TRACKING, ROOMS AND PROBLEMS ... 18

PRACTICUM 3: HEURISTIC SEARCH ... 22

PRACTICUM 4 REPRESENTATION OF KNOWLEDGE... 27

PRACTICUM 5 REPRESENTATION OF KNOWLEDGE WITH THE TREE MODEL 32

PRACTICUM 6 HIERARCY PLANNING ... 36

PRACTICUM 7 THEORY OF PROBABILISTICS IN UNCERTAINITY .. 39

PRACTICUM 8 MULTI AGENT .. 43

PRACTICUM 9 MAKING CUSTOM PACKAGE PYTHON ... 46

PRACTICUM 10 APPLICATION IN ARTIFICIAL INTELLIGENCE (PAKAR SYSTEM, ARTIFICIAL NEURAL

NETWORK) ... 50

BIBLIOGRAPHY ... 61

Artificial intelligence – Infomatics Department – UAD - 2020

10

LIST OF PICTURE

Artificial intelligence – Infomatics Department – UAD - 2020

11

LIST OF TABLES

Tabel 1.1 Facts and Relationships ... 15

Tabel 1.2 Family Genealogy Facts ... 15

Artificial intelligence – Infomatics Department – UAD - 2020

12

PRACTICUM 1 TRACKING CONCEPT WITH PYTHON

Meeting : 1

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

• Post-Test : 40%

 OBJECTIVES AND INDICATORS OF ACHIEVEMENTS
After following this practicum, students are expected to:

1. Knowing how to use python tracking.

The achievement indicator is measured by: (adjusting to the RPS)

1. Able to apply algorithmic strategy theory, data structure, statistical inference to solve problems in

the tracking process into the programming language

 SUPPORTING THEORY

History of Python
• Python is a multipurpose programming language because it can be used for various

applications such as website development, mathematical computing, graphical interfaces, and

others.

• Developed by Guido Van Rossum since the 1980s and first released in February 1991

Difference between Python and Other AI Languages
In the field of artificial intelligence Prolog and Lisp are popular languages, especially among

academics. Prolog is popular in Europe, while in America researchers develop a similar programming

language, namely LISP. Lately Python has emerged as a very popular programming language in the field

of artificial intelligence.

Unlike Prolog which uses the concept of logic programming, Python can support several

programming concepts, such as object-oriented programming, imperative programming, functional

programming, procedural programming. The amount of support for this type of programming is

because the syntax of the Python programming language is very simple and flexible with a very

comprehensive package support. The very large and active open-source community produces a large

number of packages that can be used to solve problems in the field of artificial intelligence. For

example TensorFlow developed by the Google Brain team, Scikit-learn is widely used for machine

learning, Hard for the development of neural networks, NLTK for natural language processing, and

many more.

Artificial intelligence – Infomatics Department – UAD - 2020

13

 PRACTICUM STEPS

Package in Python
One of the strengths of Python is the very diverse and broad package support. Therefore,

applications developed using Python can adjust their complexity by utilizing packages available in

Python. Package installation can be done in stages depending on the needs of the application.

1.1.1.1 Package Installation
Adding packages to Python can be done via the pip install <package name> command. If the pip is

not installed, complete the following steps:

• Download get-pip.py via the following link: https://bootstrap.pypa.io/get-

pip.py.

• Run the following command for pip installation:
python get-pip.py

• If pip is installed, the Python package can be installed using the following command:
pip install <nama_package>

Packages that have been registered with PyPI (the official repository for python packages) can be

installed directly by calling the package name. For example, if you want to install the Numpy package

for numerical computing in Python, then the following command can be run:
pip install numpy

1.1.1.2 Using Modules in the Python Package
A module is a .py extension file that contains Python code and contains several functions and

classes. Modules can be put together in one package so that the collection of modules can be structured

and can be distributed easily. Module calling can be done using "dot / dot", for example if you want to

use the core module in numpy, it can be done with numpy.core

 The contents of the module can be accessed by importing. There are three ways to import a

module:

• import <nama_module>

Ex:
import numpy.core

subtract(3,2)

• from <nama_ module> import <nama_obyek>

contoh: from numpy.core import substract
subtract(3,2)

• from <nama_ module> import <nama_obyek> as <inisial>

contoh:
from numpy.core import subtract as sub

sub(3, 2)

1.1.1.3 Kanren Package (LogPy)
Basically, the standard Python package does not support logic programming like other AI languages

like Prolog. Therefore, a package or logic programming module is needed to apply the concept of

tracking in Python. One of the packages used is Kanren (formerly called LogPy). By using Kanren, we

can express relationships, facts and query to find the desired value. Kanren stores data in the form of

facts that explain the relationship between terms.

Kanren installation can be done using pip:
pip install kanren

Once installed, the Kanren package can be used in the program by importing the program.

https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/get-pip.py

Artificial intelligence – Infomatics Department – UAD - 2020

14

1.1.1.4 Logic Module in Kanren Package
Logic Variable

Logical variables are variables that can contain any value, but only one value at a time. How to use

logical variables using Kanren is to declare variables using var. For example x = var () where x is a logical

variable.

Constraint dan Goal

Constraint is an expression that limits the value of a logical variable.

Ex 1:

After declaring x = var (), the variable x can hold any value. If you want to limit or give constraints

that the value of variable x is equal to 5, then the constraint variable x can be written as eq (x, 5).

Goal states the final results to be achieved.

Ex 2:

For example the variable y is declared as a variable using the same method as example 1, y = var

(). The goal to be achieved is equation (x, y) = (y, 3). In this equation the goal can be written using the

eq syntax, which states that both expressions are equal. The goal can be written as follows eq ((x, y),

(y, 3)).

Logic Expression

Logical expression consists of a collection of logic variables and a collection of constraints to the

value of the logical variable. If x is a variable, then each logical expression contains a constraint that

limits the value of the x variable.

Based on example 1, logical expressions can be poured into the program as follows:
1

2

3

4

from kanren.core import var, eq, run

x = var()

output = run(1, x, eq(5, x))

print(output)

Listing 0.1 Program Code for example 1

First, import the syntax from the Kanren package that will be used in the program, namely var, eq,

and run as in the first line. Furthermore, the declaration of the logic x variable as written in line 2. Then

the logic expression that is run using the run syntax on line 3, shows that the program asks for 1 value,

namely variable x, with the constraint x = 5. The results of the program are displayed on line 4 so The

output of the program is as follows: Example 2 can be written into the program as follows:
1

2

3

4

5

from kanren.core import var, eq, run

x = var()

y = var()

output = run(1, x, eq((x, y), (y, 3)))

print(output)

Listing 0.2 Program code for example 2

The variable declaration and import package are almost the same as the program in example 1.

The difference is that now there are two declared variables, x and y. Furthermore, the syntax in line 4

shows that the program asks for 1 value, namely variable x, with goal eq ((x, y), (y, 3)). In other words,

look for the value of variable x that satisfies the constraint y == 3 and meets the requirements (x, y) =

(y, 3) so that when run the program will display the following output:

Facts and Relationships

The declaration of facts and relations using Kanren is similar to the declaration using the language

Prolog. Examples of the use of facts and relations using Kanren can be seen in table 1.

Artificial intelligence – Infomatics Department – UAD - 2020

15

Facts in sentences Relation Fact

Abe is the father of Homer " father fact(father(“Abe”,“Homer”))

California is a coastal coastal fact(coastal(“California”))

California is adjacent to Arizona adjacent fact(adjacent(“California, “Arizona”))

Tabel 0.1 Facts and Relationships

Examples of family genealogical cases like in Figure 1.1 can be used to clarify the use of facts and

relations in Python programs using Kanren. Facts and relationships can be made using the references

as in Table 1.1.

Relations and facts are imported from the Kanren package on line 1 along with var and run which

are used to hold relations, facts, logical variables, and execute logical expressions sequentially. The

relation used in this example is father. A list of facts in the example of family tree using the father

relation can be seen in Tabel 0.2 below:

Facts in sentences Fact

Homer is the father of Bart fact(father(“Homer”, “Bart”))

Homer is the father of Lisa fact(father(“Homer”, “Lisa”))

Abe is the father of Homer fact(father(“Abe”, “Homer”))

Tabel 0.2 Family Genealogy Facts

The declaration of the father's relation is written on line 3. Because of the facts on Tabel 0.2 using

the same relation that is father, then the collection of facts can be written into one using facts as

written on line 4.
1

2

3

4

5

6

7

from kanren.facts import Relation, facts

from kanren.core import var, run

father = Relation()

facts(father, ("Homer", "Bart"),

 ("Homer", "Lisa"),

 ("Abe", "Homer"))

x = var()

output = run(1, x, father(x, "Bart"))

print("\nNama ayah Bart : ", output[0])

Listing 0.3 Program Code for Family Genealogy in Figure 1.1

 Lines 5 are logic variables and line 6 shows the execution of logical expressions to find father from

Bart. If run, the program will produce the following output:

New relations can be declared in two ways, namely:

By making a declaration of a new relation using Relationships

Use existing relationships to form other relations without creating a new relation

Gambar 0.1 Examples of Family Genealogy

Artificial intelligence – Infomatics Department – UAD - 2020

16

Implementation of the first method can be seen in lines 13-19 in the program below. Sibling

relations are declared using Relationships and then need to be defined new facts based on these

relations. This method is ineffective because there is data redundancy and if you have a large number

of brothers, you must add facts one by one according to the number of facts. For cases like this we can

use existing relations to detect new relations. In this case the Parent relation can be used to detect

relatives without making a new relationship. The implementation of using Parent relations to detect

your name can be seen in the get_sibling function in lines 2-4. The function call and output display can

be seen in lines 20-24.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

from kanren.facts import Relation, facts

from kanren.core import var, run, conde

def get_sibling(x, y):

 temp = var()

 return conde((parent(temp, x), parent(temp, y)))

if __name__=='__main__':

 parent = Relation()

 facts(parent, ("Homer", "Bart"),

 ("Homer", "Lisa"),

 ("Abe", "Homer"))

 x = var()

 output = run(1, x, parent(x, "Bart"))

 print("\nNama ayah Bart : ", output[0])

 # contoh definisi saudara (sibling) menggunakan relasi baru

 sibling = Relation()

 facts(sibling, ("Bart", "Lisa"),

 ("Lisa", "Bart"))

 brother = run(0, x, sibling(x, "Lisa"))

 print("\nNama saudara laki-laki Lisa : ", brother[0])

 sister = run(0, x, sibling(x, "Bart"))

 print("\nNama saudara perempuan Bart : ", sister[0])

 '''

 contoh definisi saudara (sibling)

 menggunakan relasi yang sudah ada (parent)

 '''

 siblings = run(0, x, get_sibling(x, "Bart"))

 siblings = [x for x in siblings if x != "Bart"]

 print("\nNama saudara Bart : ")

 for item in siblings:

 print(item)

Listing 0.4 Program Code for Family Genealogy Using New Relationships

If the program is run, it will output something like this:

Artificial intelligence – Infomatics Department – UAD - 2020

17

 PRACTICUM ASSIGNMENTS

Figure 1.2 Example of Family Genealogy

Example Program: Family Genealogy Case in Figure 1.2
from kanren.facts import Relation, facts

from kanren.core import var, run

parent = Relation()

facts(parent, ("Slamet", "Amin"),

 ("Slamet", "Anang"),

 ("Amin", "Badu"),

 ("Amin", "Budi"),

 ("Anang", "Didi"),

 ("Anang", "Dadi"))

x = var()

child = "Amin"

ayah = run(1, x, parent(x, child))

print("\nNama ayah " + child + ": ")

for item in ayah:

 print(item)

Listing 0.5 Example of a Family Genealogy Program Using the Kanren Package

1. (Value 40) Try typing the above program in Python. How:

• Open the editor window as desired

• To write the writing program syntax in the editor window

• Type all the programs above (listing 1.5)

• Run the program using the console

• Watch what happens

Task: Try multiple queries (minimum 3 queries). Record the results

(Value 60) Based on listing 1.5, try to develop the program, if you add the facts of

grandfather, child or uncle in two ways:

• Making new relationships, grandfathers, children, and uncle

• Without creating new relations (only use parent relations to form other relations. Hint:

Look at the example in Listing 1.4 again)

Artificial intelligence – Infomatics Department – UAD - 2020

18

PRACTICUM 2 TRACKING, ROOMS AND PROBLEMS

Meeting : 2

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

• Post-Test : 40%

 OBJECTIVES AND INDICATORS OF ACHIEVEMENTS
After following this practicum, students are expected to:

1. Can do tracking in programming.

The achievement indicator is measured by: (adjusting to the RPS)

1. Able to apply algorithmic strategy theory, data structure, statistical inference to solve problems

in the tracking process into the programming language

 SUPPORTING THEORY

Problem Representation
As is well known on systems that use artificial intelligence will try to provide output in the form of

a solution to a problem based on a collection of existing knowledge. This is represented in Error!

Reference source not found..

Figure 2.1 Artificial Intelligence System

Based on Error! Reference source not found., input provided on systems that use artificial

intelligence in the form of problems. In the system must be equipped with a set of knowledge that is

on a knowledge base (knowlage base). The system must have an inference engine so that the system

is able to draw conclusions based on facts or knowledge. The output given is a solution to the problem

as a result of interference.

In general, to build a money system capable of solving problems, it is necessary to consider 4

things:

1. Define the problem correctly. This definition includes the specification of a cash advance

regarding the initial state (initial state) and the expected solution.

2. Analyze the problem and look for several points to solve the problem of money accordingly.

3. Represent the knowledge needed to solve the problem.

4. Choose the best money solving techniques.

Artificial intelligence – Infomatics Department – UAD - 2020

19

Troubleshooting in AI
In solving problems with AI techniques involving several steps, namely:

• Problem analysis

• Representation of Problems and Knowledge

• Inference

• Use of AI Language

1.1.1.5 Problem analysis
Problem analysis is the first step in AI in AI. This step analyzes the problem of money being faced

and expresses the problem in a symbol system. The system can be diagrams, schemes, graphs, or other

symbols. This symbol system must be translated into the AI programming language. This system must

be able to express precisely the initial state (initial state). The final state or the intended target (Goal

State). For example, traders visited 10 cities. The initial state is the existing travel route and can be

described as follows:

R(K1, K2,, KN)

R(KJ1, KJ2,, KJN)

With city distance K1 to city KJ1 is dij.

Where KJ1, KJ2 are cities in the list of traders.

The target situation is one of the travel routes that has a minimum number of d ij.

In general, defining the problem as a state space includes 3 things, i.e:

• Initial State

• Rule

• Goal

Example

For example the problem faced is "Chess Game", then it must be determined:

1. The initial position on the chessboard

The starting position of each chess game is always the same, i.e. all the pieces are placed on the

chessboard on two sides, namely the white and black camps.

2. Rules for making illegal movements (Rule)

The rules (rules) are useful for determining the movement of a piece, which is moving from one

state to another. For example, to make it easier to show the position of the pieces, each box is

shown in letters (a, b, c, d, e, f, g, h) in the horizontal direction and numbers (1, 2, 3, 4, 5, 6, 7, 8)

in the vertical direction. A rule for moving a piece from position (e, 2) to (e, 4) can be indicated by

the rule:

 IF white piece on box (e, 2),

AND Box (e, 3) Empty,

AND Box (e, 4) Empty,

THEN Move pieces from (e, 2) to (e, 4)

1. Goal

The goal to be achieved is the position on the chessboard that shows a person's victory against

his opponent. This victory is marked by the position of KING, the money has moved again.

Artificial intelligence – Infomatics Department – UAD - 2020

20

 PRACTICUM ASSIGNMENTS
1. (Value 50) Try typing the following Python program:

Program 1:

Program aktivitas 1

from kanren.facts import Relation, facts, fact

from kanren.core import var, run

from kanren.goals import membero

suka = Relation()

facts(suka, ("ellen", "tenis"),

 ("john", "football"),

 ("john", "tenis"),

 ("mary", "renang"),

 ("tom", "tenis"),

 ("tom", "basket"),

 ("eric", "renang"),

 ("mary", "tenis"))

x = var()

tom_hobbies = run(0, x, suka("tom", x))

print("Tom: ", tom_hobbies)

for hobby in tom_hobbies:

 fact(suka, ("bill"), hobby)

bill_hobbies = run(0, x, suka("bill", x))

print("Bill: ", bill_hobbies)

mary_hobbies = run(0, x, suka("mary", x))

print("Mary: ", mary_hobbies)

for hobby in mary_hobbies:

 fact(suka, ("ann"), hobby)

ann_hobbies = run(0, x, suka("ann", x))

print("Ann: ", ann_hobbies)

Listing 0.1 Hobby Program

 Program 2 :
Program aktivitas 2

from kanren.facts import Relation, facts, fact

from kanren.core import var, run

from kanren.goals import membero

suka = Relation()

facts(suka, ("ellen", "tenis"),

 ("john", "football"),

 ("mary", "renang"),

 ("tom", "tenis"),

 ("eric", "renang"))

x = var()

tom_hobbies = run(0, x, suka("tom", x))

print("Tom: ", tom_hobbies)

for hobby in tom_hobbies:

 fact(suka, ("bill"), hobby)

bill_hobbies = run(0, x, suka("bill", x))

print("Bill: ", bill_hobbies)

mary_hobbies = run(0, x, suka("mary", x))

Artificial intelligence – Infomatics Department – UAD - 2020

21

print("Mary: ", mary_hobbies)

for hobby in mary_hobbies:

 fact(suka, ("ann"), hobby)

ann_hobbies = run(0, x, suka("ann", x))

print("Ann: ", ann_hobbies)

Listing 0.2 Hobby Program 2

a. For the programs in Listing 2.1 and 2.2 what are the results?

b. Try creating both programs by providing the goals below for both programs. How is the result?

(hint: use membero)
Query 1 : suka("ellen",X),suka("tom",X)

Query 2 : suka("mary",X),suka("ann",X)

c. Try to give new facts for development.

Try the program in Listing 2.3 below and watch the results
from kanren.facts import Relation, facts, fact

from kanren.core import var, run

from kanren.goals import membero

from kanren import vars

ukuran = Relation()

warna = Relation()

gelap = Relation()

facts(ukuran, ("beruang", "besar"),

 ("gajah", "besar"),

 ("kucing", "kecil"))

facts(warna, ("beruang", "cokelat"),

 ("kucing", "hitam"),

 ("gajah", "kelabu"))

fact(gelap, "hitam")

fact(gelap, "cokelat")

x = var()

kecil = run(0, z, ukuran(z, "kecil"))

print("hewan berukuran kecil: ", kecil)

Listing 0.3 Contoh program Python

2. (Value 15) Run the program by adding the following goals:

ukuran(z, "besar"). Write into the program and display the program output

warna(z, "cokelat"). Write into the program and display the program output

Add code to the program to display the sized animals besar and colored cokelat

3. (Value 15) Add code to the program to display animals that:

colored gelap

sized besar and colored gelap

4. (Value 20) After trying the query, try adding new facts and relations to the program. Add relation

types and facts jenis("beruang", "karnivora") and jenis("kucing",

"karnivora"). Add codes to the program to display carnivorous animals

Artificial intelligence – Infomatics Department – UAD - 2020

22

PRACTICUM 3: HEURISTIC SEARCH

Meeting : 3

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

• Post-Test : 40%

 OBJECTIVES AND INDICATORS OF ACHIEVEMENTS
After following this practicum, students are expected to:

1. Able to do heuristic search percentages with a programming language.

Achievement indicators are measured by:

1. Able to apply algorithmic strategy theory, data structure, statistical inference to solve problems

in the tracking process into the programming language

 SUPPORTING THEORY

Custom Python Package for Searching

For this practicum material and so on will be used a custom package that defines the data structure

and basic functions contained in the practicum module material. The custom package is packaged in

the form of Python wheels, which is the standard Python package distribution.

Installation

To do the installation, simply download the package wheels with the .whl extension and execute

the command like the package installation from the Python server

pip install <nama_file_whl>

Module Search Structure in Package

The custom package that will be used for the lab is called ai_pkg. Within this module there are

several modules, one of which is the search module. In this module there are three classes that define

the data structures used for the search method.

ai_pkg/

 …

 search.py

 Graph <class>

 Node <class>

 Problem <class>

 utils.py

Artificial intelligence – Infomatics Department – UAD - 2020

23

 …

Hill Climbing

This method is a type of heuristic tracking, because in searching for a solution always consider the

node that has the best value or with a gradual model.

• Is a tracking method that combines Generate and Test tracking with Backtracking.

• For the initial step of tracking by selecting the node that has the best / largest value (heuristic

function)

This method is almost the same as the Generate and Test method, it's just that the testing process

is done by using the heuristic function. The test value is a certain range. Pay attention to Error!

Reference source not found..

Figure 3.1 Searching for Hill Climbing

The search starts from A as the initial state. At the first level, C has a better value (in this case the

highest heuristic function in one level). Thus C is chosen as the next node. At the second level, G has

the best value, so G is chosen as the next node. And so on.

Algorithm:

1. Starting from the initial state, do the test: if it is a solution, then stop; and if not, continue with

the active region as the initial state.

2. Work through the following steps until a solution is found, or until no new operators will be

applied to the active region:

a) If it is a goal, then the process is successful and exits

b) If it is not a destination, but it is better than the current state, then set the point as an

active state.

c) If it is worse than the current situation, then repeat step - 2.

 PRACTICUM STEPS

Following is an example of tracking application using the Hill Climbing method to answer the

Traveling Salesman Problem (TSP) problem. The problem is if given several cities and the distance

between each city is known, then the solution is the shortest route that can reach all cities and return

to the city of origin.

Artificial intelligence – Infomatics Department – UAD - 2020

24

Figure 3.2 City Map

Example of a TSP problem:
There are 4 cities namely Zerind, Oradea, Sibiu, and Arad and the distance between cities can be

seen in Figure 3.1. Assuming the distance between cities is symmetrical so the distance from Zerind to

Oradea and vice versa is the same that is 38.

The TSP case can be modeled as a weighted and undirected weighted graph. Each city is

represented as a "node" (vertex or node) and each path between cities is represented as a "edge".
city_map = Graph(dict(

 Oradea=dict(Oradea=0, Sibiu=24, Arad=59, Zerind=38),

 Sibiu=dict(Oradea=24, Sibiu=0, Arad=51, Zerind=56),

 Arad=dict(Oradea=59, Sibiu=51, Arad=0, Zerind=47),

 Zerind=dict(Oradea=38, Sibiu=56, Arad=47, Zerind=0)),

 directed=False)

Listing 3.1 Code for City Graph Representation in Figure 3.1

First, Graph is formed with parameters in the form of dict and directed. The city name and the

distance of each city can be defined directly using dict. In the case of TSP used undirected graphs the

directed parameter is set to False. By creating a new Graph object, the graph node will be formed

automatically using the existing Node class in the search module. The city graph representation in

Figure 3.1 can be written as in Listing 3.1.

distances = {}

class TSP_problem(Problem):

 def generate_neighbour(self, state):

 neighbour_state = state[:]

 left = random.randint(0, len(neighbour_state) - 1)

 right = random.randint(0, len(neighbour_state) - 1)

 if left > right:

 left, right = right, left

 neighbour_state[left: right + 1] = reversed(neighbour_state[left: right +

1])

 return neighbour_state

 def actions(self, state):

 return [self.generate_neighbour]

 def result(self, state, action):

 return action(state)

 def path_cost(self, state):

 cost = 0

 for i in range(len(state) - 1):

 current_city = state[i]

 next_city = state[i + 1]

 cost += distances[current_city][next_city]

 cost += distances[state[0]][state[-1]]

 return cost

Artificial intelligence – Infomatics Department – UAD - 2020

25

 def value(self, state):

 return -1 * self.path_cost(state)

Listing 3.2 Code for the Definition of the TSP Problem

Next we create a TSP problem by creating a class named TSP_problem which implements the

abstract class Problem in the package used. There are four basic functions, namely: actions, result,

path_cost, and value. These four basic functions must be implemented because they are used in TSP

execution in the Node class.

The code for the Hill Climbing method can be seen in Listing 3.3.

def hill_climbing(problem):

 def find_neighbors(state, number_of_neighbors=100):

 neighbors = []

 for i in range(number_of_neighbors):

 new_state = problem.generate_neighbour(state)

 neighbors.append(Node(new_state))

 state = new_state

 return neighbors

 current = Node(problem.initial)

 while True:

 neighbors = find_neighbors(current.state)

 if not neighbors:

 break

 neighbor = argmax_random_tie(neighbors, key=lambda node:

problem.value(node.state))

 if problem.value(neighbor.state) <= problem.value(current.state):

 break

 current.state = neighbor.state

 return current.state

Listing 3.3 Code for the Hill Climbing Method

Artificial intelligence – Infomatics Department – UAD - 2020

26

 PRACTICUM ASSIGNMENTS
1. (Value 40) Run the Traveling Salesman Problem program in a way:

a. Download the custom package via the URL provided by the assistant and install the

package and import the modules that are in the package to use it in the program

b. Write down the program in the example case in Figure 3.1 and add the following listing to

run the program

if __name__=='__main__':

 all_cities = []

 cities_graph = city_map.graph_dict

 for city_1 in cities_graph.keys():

 distances[city_1] = {}

 if(city_1 not in all_cities):

 all_cities.append(city_1)

 for city_2 in cities_graph.keys():

 if(cities_graph.get(city_1).get(city_2) is not None):

 distances[city_1][city_2] = cities_graph.get(city_1).get(city_2)

Listing 3.4 Code for Defining City Distance

c. The TSP program can be run by creating a new TSP_problem object with the all_cities

parameter. Next, call the hill_climbing function with the parameters of the object you just

created.

d. Run the program and display the results

(Value 60) Create a TSP program using city data as shown below and record the results:

Figure 3.3 City Map

Artificial intelligence – Infomatics Department – UAD - 2020

27

PRACTICUM 4 REPRESENTATION OF KNOWLEDGE

Meeting : 4

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

• Post-Test : 40%

 OBJECTIVES AND INDICATORS OF ACHIEVEMENTS
After following this practicum, students are expected to:

1. Able to represent knowledge to present knowledge.

Achievement indicators are measured by:

1. Can explain the representation model to present knowledge.

 SUPPORTING THEORY
Knowledge:

• General definition: fact or condition of something or condition that arises from an experience.

• The branch of philosophy, namely Epistemology, with regard to the nature, structure and

authenticity of knowledge.

Knowledge Representation Techniques:

1) Production Rules

2) Semantic Networks

3) Graph

4) Frame and Scemata

5) Proposition Logic

6) List

7) Decision table

Language of representation must be able to make a programmer able to express knowledge to get

the solution of a problem.

In brief, Mylopoulos and Levesque classify the composition or pattern of representation into four

categories:

1) Logic Representation - This representation uses expressions in formal logic to represent the

knowledge base.

2) Procedural Representation - Describes knowledge as a set of instructions for solving a problem.

In a rule-based system, if-then rules can be interpreted as a procedure to achieve the goal of

problem solving.

3) Network Representation - Capturing knowledge as a graph in which vertices represent objects or

concepts in the problem at hand, while the arches describe relationships or associations between

them. An example is semantic networks.

Artificial intelligence – Infomatics Department – UAD - 2020

28

4) Structured Representation - Expanding the network by making each node into a complex data

structure that contains places named slots with certain values. These values can be simple

numeric or symbolic data, pointers to other frames, or even procedures to perform certain tasks.

Example: scripts (frames), frames (frames) and objects (objects).

In mathematics, not all sentences relate to logic. Only sentences that are true or false are used in

reasoning. The sentence is called a proposition (preposition).

Propositions are declarative sentences that are true or false, but they cannot be both at the same

time. The truth or error of a sentence is called the truth value.

The following three examples can illustrate which sentences are propositions and which are not.

The following statements,

(a) 6 is an even number.

(b) Sukarno was the first President of Indonesia.

(c) 2 + 2 = 4.

(d) The capital of West Java Province is Semarang.

(e) 12 ³ 19.

(f) Yesterday was a rainy day.

(g) The temperature at sea level is 21 degrees Celsius.

(h) Youth is tall.

(i) Life only exists on planet Earth.

everything is a proposition. Propositions a, b, and c are true, but proposition d is false because the

capital of West Java should be Bandung and proposition e is false because it should be 12 pounds. -

these propositions cannot be right or wrong at once. We can determine the value of the proposition

is true or false. For example, we can assume that the proposition f is true (yesterday was indeed

raining) or false (yesterday was not raining). The same goes for propositions g and h. Proposition i can

be right or wrong, because until now there has been no scientist who can confirm the truth.

Symbolically, propositions are usually denoted by lowercase letters such as p, q, r, ... For example,

p: 6 is an even number.

To define p as the proposition "6 is an even number". Likewise for q: Soekarno was the first

President of Indonesia.

r : 2 + 2 = 4.

etc. We can form new propositions by combining one or more propositions. The operators used to

combine propositions are called logical operators. The basic logical operators used are and (and), or

(or), and not (not). The first two operators are called binary operators because they operate two

propositions, while the third operator is called uner operators because it only requires one proposition.

The new proposition obtained from the combination is called a compound proposition (compound

proposition). Propositions that are not a combination of other propositions are called atomic

propositions. In other words, compound propositions are composed of atomic propositions. The

method of combining propositions was discussed by an English mathematician named George Boole

in 1854 in his famous book, The Laws of Thought. There are three kinds of compound propositions,

namely conjunctions, disjunctions, and denials. The three are defined as follows:

Suppose p and q are propositions. The conjunction (conjunction) p and q, expressed by the p∧q

notation, are propositions p and q. Disjunction (disjunction) p and q, expressed by the notation p ∨ q,

is the proposition p or q. The denial or (negation) of p, expressed by ~ p notation, is a proposition not

p.

Note:

1. Note1. Some literature uses the notation "Øp", "p", or "not p" to express a denial.

2. The word "no" can be written in the middle of the statement. If the word "no" is given at the

beginning of the statement then it is usually connected with the word "true" to "incorrect".

Artificial intelligence – Infomatics Department – UAD - 2020

29

The word "no" can also be replaced by "no" depending on the sense of language that is

appropriate for the statement

Example :

The following propositions are known:

p : Today is raining

q : Students are dismissed from school

then

 𝑝 ∧ 𝑞 : Today it is raining and students are suspended from school

𝑝 ∨ 𝑞 : Today it is raining or students are dismissed from school

~p : It is not true today it rains (or in another more usual sentence: Today it doesn't rain)

Artificial intelligence – Infomatics Department – UAD - 2020

30

 PRACTICUM ASSIGNMENTS
Type the coding program logic proposition in listing 4.1.

from ai_pkg.utils import Expr

def is_prop_symbol(s):

 return isinstance(s, str) and s[:1].isalpha() and s[0].isupper()

def is_true(exp, model={}):

 if exp in (True, False):

 return exp

 op, args = exp.op, exp.args

 if is_prop_symbol(op):

 return model.get(exp)

 elif op == '~':

 p = is_true(args[0], model)

 if p is None:

 return None

 else:

 return not p

 elif op == '|':

 result = False

 for arg in args:

 p = is_true(arg, model)

 if p is True:

 return True

 if p is None:

 result = None

 return result

 elif op == '&':

 result = True

 for arg in args:

 p = is_true(arg, model)

 if p is False:

 return False

 if p is None:

 result = None

 return result

 p, q = args

 if op == '==>':

 return is_true(~p | q, model)

 elif op == '<==':

 return is_true(p | ~q, model)

 pt = is_true(p, model)

 if pt is None:

 return None

 qt = is_true(q, model)

 if qt is None:

 return None

 if op == '<=>':

 return pt == qt

 elif op == '^':

 return pt != qt

 else:

 raise ValueError("illegal operator" + str(exp))

if __name__=='__main__':

 A, B = map(Expr, 'AB')

 model = {A: False, B: True}

 query = (A & B)

 print(query , ' : ' , is_true(query, model))

Listing 4.1 Proposition Logic Code

Artificial intelligence – Infomatics Department – UAD - 2020

31

Operator Simbol

not ~

and &

or |

implication ==>

if and only if <=>

Figure 4.1 List of operators and symbols in the logic program proposition

1. (Value 40) Add some of the queries below to the program in Listing 4.1 to prove the logical

expression of the proposition. Record the results.

• Query 1: not (A and B)

• Query 2: not (A and B) or not (A or B)

• Query 3: not (A or B) and not (A and B)

2. (Value 60) By using the program in listing 4.1:

a. Add Expr C and give False then give the following query to the program:

Query 1 : (A or B) and (C or D)

Query 2 : (A and B) and (C or D)

b. Add Expr D and give the value True then run the query again in point 2.a and compare

the results

Artificial intelligence – Infomatics Department – UAD - 2020

32

PRACTICUM 5 REPRESENTATION OF KNOWLEDGE WITH THE TREE
MODEL

Meeting : 5

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

• Post-Test : 40%

 OBJECTIVES AND INDICATORS OF ACHIEVEMENTS
After following this practicum, students are expected to:

1. Can represent knowledge with a tree model.

Achievement indicators are measured by:

1. Can explain the Tree model as a form of knowledge representation.

 SUPPORTING THEORY
In this practicum will use the example of a tree model to present knowledge

In this practicum, only a few will be discussed as a sample application of tracking in artificial

intelligence.

Breadth First Search (BFS)
BFS is a search that starts from the root node and continues to the next level from left to right,

then moves to the next level. The case example in Figure 5.1 shows a city with a directed graph type.

Figure 5.1 City Map

If the home city is New York and the destination city is Los Angeles, the tracking flow using the BFS

method is shown in Figure 5.2:

Artificial intelligence – Infomatics Department – UAD - 2020

33

Figure 5.2 Tracking Trees Using BFS

The solution of the above case can be seen in Figure 5.3 below

Figure 5.3 BFS Problem Solution

New York

Chicago Toronto Denver

Denver Los Angeles Chicago Calgary Los Angeles

Los Angeles Houston Urbana

 Los Angeles

Artificial intelligence – Infomatics Department – UAD - 2020

34

 PRACTICUM ASSIGNMENTS
Write the code below

city_map = Graph(dict(

 NewYork=dict(Chicago=1000, Toronto=800, Denver=1900),

 Chicago=dict(Denver=1000),

 Denver=dict(LosAngeles=1000, Houston=1500, Urbana=1000),

 Houston=dict(LosAngeles=1500),

 Toronto=dict(LosAngeles=1800, Chicago=500, Calgary=1500)), directed=True)

class CityProblem(Problem):

 def __init__(self, initial, goal, graph):

 Problem.__init__(self, initial, goal)

 self.graph = graph

 def actions(self, A):

 return list(self.graph.get(A).keys())

 def result(self, state, action):

 return action

 def path_cost(self, cost, A, action, B):

 return cost + (self.graph.get(A, B) or infinity)

def breadth_first_search(problem):

 global track_path

 frontier = deque([Node(problem.initial)])

 explored = set()

 track_path = [problem.initial]

 while frontier:

 node = frontier.popleft()

 if problem.goal_test(node.state):

 return node

 explored.add(node.state)

 expanded = node.expand(problem)

 for child in expanded:

 track_path.append(child.state)

 if child.state not in explored and child not in frontier:

 if problem.goal_test(child.state):

 return child

 frontier.append(child)

 return None

if __name__=='__main__':

 track_path = []

 romania_problem = CityProblem(start, goal , city_map)

 node = breadth_first_search(romania_problem)

 if node is not None:

 final_path = node.solution()

 final_path.insert(0, start)

 print('TRACKING PATH: ', ' -> '.join(track_path))

 print('SOLUTION PATH: ', ' -> '.join(final_path))

Listing 5.1 Tracking Program Code Using BFS

1. (Value 30) Run the BFS program in a way:

a. Download the custom package via the URL provided by the assistant and install the package

and import the modules that are in the package to use it in the program

b. Write the code in listing 5.1 and add the hometown of "New York" and the destination city

of "Los Angeles". Run the program and show the results

c. Try using another destination and show the results

2. (Value 70) After you run and try to interact with the system, try to make a program developed

from Listing 5.1 above with reference to the following tracking tree:

Artificial intelligence – Infomatics Department – UAD - 2020

35

Origin : Kota_A

Dest : Kota_T

Figure 5.4 Tracking tree for the 2nd case of BFS

Kota_A

Kota_B Kota_C Kota_D

Kota_E Kota_F Kota_T Kota_H Kota_I Kota_T

Kota_T Kota_G Kota_T

Artificial intelligence – Infomatics Department – UAD - 2020

36

PRACTICUM 6 HIERARCY PLANNING

Meeting : 6

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

• Post-Test : 40%

 OBJECTIVES AND INDICATORS OF ACHIEVEMENTS
After following this practicum, students are expected to:

1. Able to do hierarchy planning to build efficient plans.

Achievement indicators are measured by:

1. Able to explain hierarchy planning using HLA.

 SUPPORTING THEORY
Hierarchical planning is used to build efficient plans because it can divide problems into abstract

levels before proceeding to more detailed steps. By using a hierarchical structure, each level in the

hierarchy can be divided into smaller steps.

High-Level Action (HLA)
Each HLA can have one or more refinements in the form of a more detailed set of actions. For

example: the action "Go to the airport" can be represented in HLA Go (Home, Airport). To be able to

go to the airport can be done in two ways, namely by driving your own car or taking a taxi. If the option

of driving a car is selected, the action can be further divided into smaller steps, namely driving from

the house to the airport car park, then taking the shuttle bus from the airport car park to the terminal

at the airport. So, HLA Go (Home, Airport) has two refinements, i.e.:

• Drive(Home, AirportParking) and Shuttle(AirportParking, Airport)

• Taxi(Home, Airport)

Planning Problem
To solve Hierarchical Planning problems, you can use the planning module in the custom

package. Input from planning algorithm are Problem and hierarchy. hierarchy is a collection of all
actions (actions) and the sequence of these actions.

As explained in the example case of going to the airport, to go to the airport can be done in two
ways, namely driving yourself to the airport or using a taxi. Both of these actions have several initial
conditions (preconditions) and effects (effects). When we use a taxi, the initial conditions we have to
have cash, while if we want to drive our own meals we must have a car. hierarchy of actions that can
be done can be written as follows:

library = {

 'HLA': ['Go(Home,Airport)',

 'Go(Home,Airport)',

Artificial intelligence – Infomatics Department – UAD - 2020

37

 'Drive(Home, AirportParking)',

 'Shuttle(AirportParking, Airport)',

 'Taxi(Home, Airport)'],

 'steps':[['Drive(Home,AirportParking)','Shuttle(AirportParking,

Airport)'],

 ['Taxi(Home, Airport)'],

 [],

 [],

 []],

 'precond': [['At(Home) & Have(Car)'],

 ['At(Home)'],

 ['At(Home) & Have(Car)'],

 ['At(AirportParking)'],

 ['At(Home)']],

 'effect': [['At(Airport) & ~At(Home)'],

 ['At(Airport) & ~At(Home) & ~Have(Cash)'],

 ['At(AirportParking) & ~At(Home)'],

 ['At(Airport) & ~At(LongTermParking)'],

 ['At(Airport) & ~At(Home) & ~Have(Cash)']] }

Listing 0.1 Kode Hirarki untuk Kasus Pergi ke Airport

Action with the highest level that can be done is to go to the airport (goto_airport). Action

goto_airport can be written as in Listing 6.2.

goto_airport = HLA('Go(Home, Airport)', precond='At(Home)', effect='At(Airport)

& ~At(Home)'

Listing 6.2 Action Code goto_airport

After defining the hierarchy and action, the next step is to create a new problem. Problems can

be formed as in Listing 6.3. When creating a new Problem, the parameters required are initial

conditions, final conditions, and actions taken. In this case the initial condition is being at 'At (Home)'

house and having Have (Cash) money. The expected final condition (goal) is at the At (Airport) airport

and still have cash (cash).

PlanProblem('At(Home) & Have(Cash) & Have(Car) ', 'At(Airport) & Have(Cash)',

 [goto_airport])
Listing 6.3 Problem Codes goto_airport

The action that can be done is goto_airport so that the output of the problem above is the
following actions: Drive (Home, AirportParking) and Shuttle (AirportParking, Airport). This means that
in order to reach the destination at the airport and have money ('At (Airport) & Have (Cash)') fulfilled,
the solution is to drive your own car. Driving a car can be divided into two detailed actions namely
driving from the house to the airport parking lot then taking the shuttle bus from the airport parking
lot to the airport gate. Details of each action can be seen in Figure 6.1:

Figure 6.1 Program Output in the Form of Detail from the goto_airport Action

Artificial intelligence – Infomatics Department – UAD - 2020

38

 PRACTICUM ASSIGNMENTS
from ai_pkg.planning import (HLA, Problem as PlanProblem)

solution = PlanProblem.hierarchical_search(problem, library)

for i in range(0, len(solution)):

 print('precondition: ', solution[i].precond)

 print('action: ' , solution[i].name, solution[i].args)

 print('effect : ', solution[i].effect)

Listing 6.4 Code of the Hierarchical Planning Program for Cases Going to the Airport

1. (Value 40) Run the program for the case of going to the airport by the way:

• Write the code in Listing 6.4

• Add the hierarch to Listing 6.1, the goto_airport action to Listing 6.2, and the PlanProblem

to Listing 6.3 before calling the hierarchical_search function.

• Run the program and compare the output with Figure 6.1

2. (Value 60) Change the program above so that the results that come out are to go by taxi as the

output in Figure 6.2 follows:

Figure 6.2 Program Outcome in the Form of Action Going Using a Taxi

Artificial intelligence – Infomatics Department – UAD - 2020

39

PRACTICUM 7 THEORY OF PROBABILISTICS IN UNCERTAINITY

Meeting : 7

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

• Post-Test : 40%

 OBJECTIVES AND INDICATORS OF ACHIEVEMENTS
After following this practicum, students are expected to:

1. Able to use probabilistic theories to overcome uncertainty in the implementation of tracking

solutions in a programming language.

Achievement indicators are measured by:

1. Able to use probabilistic theory to overcome uncertainty in the implementation of tracking

solutions in a programming language.

 SUPPORTING THEORY

PROBABILITY
Probability indicates whether something will happen or not.

For example from 10 scholars, 3 people master cisco, so the opportunity to choose a bachelor who

master cisco is: p (cisco) = 3/10 = 0.3

The method of certainty with the Bayes Theorem

with:

p(Hi | E) = the probability of the Hi hypothesis is true if given evidence (fact) E

p(E | Hi) = probability of the emergence of evidence (fact) E if known hypothesis Hi is true

p(Hi) = probability of Hi hypothesis (according to previous results) regardless of any

evidence

n = number of possible hypotheses

Example :

Asih has symptoms of freckles on her face. The doctor suspected that Asih had smallpox:

• the probability of appearance of spots on the face, if Asih is exposed to smallpox →

p(bintik2|cacar) = 0,8

• Asih's probability of getting smallpox regardless of any symptoms → p(cacar) = 0,4

• the probability of appearance of spots on the face, if Asih is allergic → p(bintik2|alergi) = 0,3

Artificial intelligence – Infomatics Department – UAD - 2020

40

• Asih's probability of being allergic regardless of any symptoms → p(alergi) = 0,7

• probability of appearance of spots on the face, if Asih is spotty → p(bintik2|jerawatan) = 0,9

• • Asih spotty probabilities regardless of any symptoms → p(jerawatan) = 0,5

then :

• Asih's probability of getting smallpox because there are spots on his face:

• The probability of Asih being allergic because there are spots on his face:

• Asih spotty probability because there are spots on his face:

If after testing the hypothesis one or more evidence (facts) or new observations appear then:

with:

e = old evidence

E = evidence or new observations

p(H|E,e) = the probability of the H hypothesis is true if new E evidence emerges from the old

evidence

p(H|E) = the probability of the H hypothesis is true if given evidence E.

p(e|E,H) = the link between e and E if the hypothesis is true

P(e|E) = the link between e and E regardless of any hypothesis.

Artificial intelligence – Infomatics Department – UAD - 2020

41

 PRACTICUM ASSIGNMENTS
Post Test 1

It is known that data from the Department of Health has data on the number of patients staying

at hospitals in the Jogjakarta area in VIP, class I, class II, class III and VVIP. The data is shown in Table

8.1

Table 8.1 Data on the number of hospitalized patients in the Jogjakarta area

Halte VVIP VIP CLS I CLS II CLS III class

Hospital A 40 45 44 33 20 high

Hospital B 21 33 43 50 42 medium

Hospital C 46 30 16 36 22 high

Hospital D 53 26 26 39 21 high

Hospital E 33 37 39 32 18 high

Hospital F 21 27 35 42 39 low

Hospital G 37 47 38 32 18 high

Hospital H 39 38 33 38 25 medium

By using weka calculate probability using the Bayes theorem Certainty method.

Practicum steps using WEKA

1. Type the data in table 8.1 in excel and save it as .CSV

2. Open the WEKA program where it looks like in Figure 8.1

Figure 7.1 Initial Display of WEKA

3. 3. Open the file and select where to place the file. What needs to be noted is that files from

Excel are stored in CSV so they can be read by the WEKA program.

Figure 8.2 Open .CSV file

Artificial intelligence – Infomatics Department – UAD - 2020

42

4. 4. In the top Tabulation select classification -> Select Bayes -> star

Figure 8.3 Selection of the BAYES method

5. 5. Analyze the results of the WEKA program, the results of the BAYES calculation process using

WEKA

Post Test 2

From the table below, do it like in Task Postest 1. And make an analysis.

Table 8.2 Old Data Writing Student thesis

Students

Writing period

for Chapter 1

and data

collection (mth)

Writing time

for chapter 2

(mo)

Writing period

for chapter 3

(mo)

Writing times

for chapters 4

& 5 (mo)

Duration of

thesis

completion

period

1 3.5 3.60 3.0 1 Fast

2 4 3.25 2.5 2.5 Fast

3 4 3.10 3.5 2.7 Slow

4 5 2.98 4.2 1.5 Normal

5 4.5 3.00 2.1 2.0 Normal

6 6 3.20 3.2 3.0 Slow

7 4 2.75 2.1 1 Slow

8 4.5 2.90 3;0 0.7 Slow

9 6 3.35 3.1 1.2 Normal

10 4 3.10 4.3 2 Fast

Artificial intelligence – Infomatics Department – UAD - 2020

43

PRACTICUM 8 MULTI AGENT

Meeting : 8

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

• Post-Test : 40%

 PURPOSE AND ACHIEVEMENTS
After following this practicum, students are expected to:

1. Able to solve multi agent problems.

Achievement indicators are measured by:

1. Able to make multi agent system designs based on agent system design and analysis methods, as

well as implementing multi agent simulations

 SUPPORTING THEORY

Multiagent Planning Problem
In Handout 6, it has been explained about planning for a single agent. In fact, some problems

require several agents working together. Each agent faces a multiagent planning problem where each

agent tries to achieve his goals with the help and obstruction of other agents.

When there is only one agent doing planning, then there is only one goal achieved by that agent.

But when there are two or more agents planning, each agent shares the same goal. For example, in

the problem of a double tennis game where both players in a team have the same goal of being able

to return the ball passed by the opposing team. In multiagents there is a problem that is if the existing

agents have different goals. In the case of double tennis, goals on the opposite team are the opposite.

Planning with multiple simultaneous actions
The purpose of this section is to find a plan of action that is compatible with multiagent issues. The

plan is called true or appropriate, ie if the action is carried out by agents, then the goal can be achieved.

The problem of double tennis is one example of a simple case of multiagents. In this case two

tennis players A and B play in one team and can be in four positions: back left (LeftBaseLine), right back

(RightBaseLine), front left (LeftNet), and front right (RightNet). The ball can be returned if the player is

in the same place as the ball position.

The conditions for this problem are:

• Approaching(Ball, loc) : Ball passed to position loc

• Returned(Ball) : one of the players hits and returns the ball from the correct position which

causes the ball to return to the opposing team's area.

• At(player, loc) : the player is in the loc position

• ~At(player, loc) : the player is not in the loc position

Artificial intelligence – Infomatics Department – UAD - 2020

44

If in the initial condition the position of Player A is in the back left and player B is in the front right

position, the ball is hit by the opponent towards the right back, then the initial conditions can be

written as follows:
(A,LeftBaseLine) & At(B,RightNet) & Approaching(Ball,RightBaseLine) & Team(A,B)

& Team(B,A)

Some actions that can be taken to achieve goals include:

• Hit(player, Ball, loc) : the action returns Ball if a player is in a loc position. The complete

action can be written as follows:

Action('Hit(player, Ball, loc)',

precond='Approaching(Ball, loc) & At(player, loc)',

effect='Returned(Ball)')

• Go(player, to, loc) : player moves from loc position to position to. The complete action

can be written as follows:

Action('Go(player, to, loc)',

precond='At(player, loc)',

effect='At(player, to) & ~At(player, loc)')

The goal of this game is:

Returned(Ball) & At(a, RightNet) & At(a, LeftNet)

In the goal above there is a new variable, namely a. This can happen in a multiagent case because

we don't care which players end up in the RightNet or LeftNet position. SeSlow is still a player in one

of these positions so the goal can still be achieved.

Artificial intelligence – Infomatics Department – UAD - 2020

45

 PRACTICUM ASSIGNMENTS
Examples of cases in the double tennis game can be written as in listing 8.1 below:

from ai_pkg.planning import PlanningProblem, Action, goal_test

from ai_pkg.utils import expr

def double_tennis_problem():

 initial = 'At(A, LeftBaseLine) & At(B, RightNet) & Approaching(Ball,

RightBaseLine) & Team(A, B) & Team(B, A)'

 goal = 'Returned(Ball) & At(a, RightNet) & At(a, LeftNet)'

 action = [Action('Hit(player, Ball, loc)',

 precond='Approaching(Ball, loc) & At(player, loc)',

 effect='Returned(Ball)'),

 Action('Go(player, to, loc)',

 precond='At(player, loc)',

 effect='At(player, to)')]

 return PlanningProblem(init=initial,

 goals=goal,

 actions=action)

if __name__==’__main__’:

 p = double_tennis_problem()

 print(goal_test(p.goals, p.init))

 solution = [expr(“Go(A, RightBaseLine, LeftBaseLine)”),

 expr(“Hit(A, Ball, RightBaseLine)”),

 expr(“Go(A, LeftNet, RightBaseLine)”)]

 for action in solution:

 p.act(action)

 print(goal_test(p.goals, p.init))

Listing 8.1 Code Program of the Double Tennis Game

1. (Value 40) Run the multiagent Python double tennis game program in a way:

• Write down all program code in listing 8.1.

• Run the program using the console

• Record the results

• Change or add some actions to the solution to prove that the solution mentioned in Listing

8.1 has reached the goal

2. (Value 60) In the case of the double tennis game there are other solutions, namely:

3. Player A: go from the back left (LeftBaseLine) to the front left (LeftNet) and do nothing (NoOp)

4. Player B: go from front right (RightNet) to back right (RightBaseLine) and return the ball (Hit)

• Write the solution above into the program by:

• Add a NoOp (player) action to the action in PlanningProblem with preconds and effects

blank (no action whatsoever so the conditions before and after the action don't change)

• Replace the solution in the solution with the solution mentioned above

Artificial intelligence – Infomatics Department – UAD - 2020

46

PRACTICUM 9 MAKING CUSTOM PACKAGE PYTHON

Meeting : 9

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

• Post-Test : 40%

 PURPOSE AND ACHIEVEMENTS
After following this practicum, students are expected to:

1. Able to complete and distribute custom packages in python.

Achievement indicators are measured by:

2. Able to create and distribute custom packages for applications using Python

 SUPPORTING THEORY

Package Structure in Python
To create a custom package we need to create a Python project with the initial arrangement as

follows:

/ai_pkg

 /ai_pkg

 __init__.py

ai_pkg is the name of the package to be created. Therefore, declaring the package name needs

to be done in the file __init__.py. Add the following code to the file __init__.py.

name = "ai_pkg"

Creating Files in Package
Next we create other files that will be integrated into this project and distributed as a custom

package. Add file setup.py, LICENSE, and README.md in the project directory.

/ai_pkg

 /ai_pkg

 __init__.py

 setup.py

 LICENSE

 README.md

Create setup.py

setup.py is a script to form packages using setuptools. This file defines all things about the

package, such as name, version, description, author, and other information.

Artificial intelligence – Infomatics Department – UAD - 2020

47

import setuptools

with open("README.md", "r") as fh:

 long_description = fh.read()

setuptools.setup(

 name="ai_pkg",

 version="0.0.1",

 author="Example Author",

 author_email="author@example.com",

 description="A small example package",

 long_description=long_description,

 long_description_content_type="text/markdown",

 url="https://github.com/pypa/sampleproject",

 packages=setuptools.find_packages(),

 classifiers=[

 "Programming Language :: Python :: 3",

 "License :: OSI Approved :: MIT License",

 "Operating System :: OS Independent",

],

)

Create README.md

This file contains the package description. Can be filled with any information from package usage,

usage examples, etc.

Example Package

This is a simple example package. You can use

[Github-flavored Markdown](https://guides.github.com/features/mastering-

markdown/)

to write your content.

Create LICENSE

The creation of this file is important if the package that we created is uploaded and distributed

Copyright (c) 2018 The Python Packaging Authority

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

Artificial intelligence – Infomatics Department – UAD - 2020

48

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

Creating Package Distribution Using Python Wheel

The next step is to create a package distribution in the form of an archive that can be installed

using pip. To create a package distribution, setuptools and wheel installation is required.

pip install --user --upgrade setuptools wheel

After setuptools and wheels are installed, run the following command in the directory containing

the setup.py file.

python setup.py sdist bdist_wheel

This command will produce two files in the dist folder, .tar.gz is the code archive and .whl is the

distribution file. The pip command will install the package using a distribution (.whl) file but an archive

file (.tar.gz) can be used if the distribution file is not available.

dist/

 ai_pkg-0.0.1-py3-none-any.whl

 ai_pkg-0.0.1.tar.gz

Artificial intelligence – Infomatics Department – UAD - 2020

49

 PRACTICUM ASSIGNMENTS
Create ai_pkg version 0.0.2 custom package in a way:

• Download all module files in the custom package ai_pkg from the URL provided by the

assistant.

• Add codes that are worked on practicum material 3, 4, 5, 6, and 8 into the module

• Change version to version 0.0.2

• Add the required files according to instructions in handout 9 and create the custome

package file.

• Collect .whl and .tar.gz files in the dist folder

Artificial intelligence – Infomatics Department – UAD - 2020

50

PRACTICUM 10 APPLICATION IN ARTIFICIAL INTELLIGENCE (PAKAR
SYSTEM, ARTIFICIAL NEURAL NETWORK)

Meeting : 10

Total Time Allocation : 90 minutes

• Pre-Test : 15 minutes

• Practicum : 60 minutes

• Post-Test : 15 minutes

Total Rating Score : 100%

• Pre-Test : 25%

• Practicum : 35%

Post-Test : 40%

 PURPOSE AND ACHIEVEMENTS
After following this practicum, students are expected to:

1. Able to use AI applications and can create system interface designs using the GUI.Python

application.

Achievement indicators are measured by:

1. Students understand various applications in AI and can create system interface designs using the

GUI.Python application.

 PRACTICUM STEPS
Steps to use GUI Design Studio

a. Open the GUI Design Studio then the main form can be seen in Figure 10.1.

Figure 10.1 Display of the Design Studio GUI Main Form

b. After the main form opens, select New Project and give the name of your project and don't

forget to choose the location of the drive where you will save it. If you want to add a link

to the library, it is checked. Like Figure 10.2.

Artificial intelligence – Infomatics Department – UAD - 2020

51

Figure 10.2 Form for selecting the New Project repository

c. Once saved with a new project, you are ready to design the design you want. You can use

various components on the left side of the screen. There are Project, Element, Icon and

others. Like Figure 10.3.

Figure 10.3 Components for building interfaces

d. To start the design, first please create a design form, by clicking New Design on the project

or using Crtl + N. After the new dialog window exits, please add a component. Drag and

drop the selected components according to the design theme. Like Figure 10.4.

Artificial intelligence – Infomatics Department – UAD - 2020

52

Figure 10.4 Display of the worksheet on which to create interface design

e. To arrange each component or element can be done by double clicking the component to

be modified. And to move an element, you can use the up-down and left-right arrow keys

on the keyboard, to minimize and freeze element size, you can use the combination of the

Shift key and the 4-way key mentioned earlier..

Interface Design

a. Main Menu

Figure 10.5 The main menu design

On the main menu there are several menus, namely the file menu, data entry, user and help. The

file menu has a login, change password and exit sub menu. Data entry has a sub menu of diseases,

causes, solutions, symptoms and rule base. Users have sub menus of user data and diagnostics, and

help has sub menus about, instructions for use and programmers. To create a task bar as below:

Gambar 0.1 Image Task Bar

SISTEM PAKAR UNTUK MENDIAGNOSA PENYAKIT TULANG

PADA MANUSIA

Artificial intelligence – Infomatics Department – UAD - 2020

53

• Select Elements → Toolbars dan Menus

• Drag the Menu Bar image, if you want to make changes double click on the Menu Bar

image, then do the settings in the Menu Bar properties as shown below.

Figure 10.7 Display of the Properties Bar Menu

For giving the title on the main menu:

Figure 10.8 Title Design in the Main Menu

• Select Elements → Text and Edit Boxes

• Then do the settings in the Text Properties

To connect one interface to another interface, a link can be made from the Data Entry Menu to

the Popup Menu by selecting the icon

SISTEM PAKAR UNTUK MENDIAGNOSA

PENYAKIT TULANG PADA MANUSIA

Artificial intelligence – Infomatics Department – UAD - 2020

54

Figure 10.9 Main Menu Design with Popup Menu

For making Popup Menus can be done in a way:

- Select Elements → Toolbars dan Menu

- Drag the Popup image, if you want to make changes double click on the image popup

menu then do the settings in the popup menu properties.

Figure 10.10 Display Popup Menu Properties

b. Login Menu

Figure 10.11 The design of the login menu

To make a button:

• Select Elements → Buttons

• • Then select the desired button, for example on this button

SISTEM PAKAR UNTUK MENDIAGNOSA PENYAKIT

TULANG PADA MANUSIA

Artificial intelligence – Infomatics Department – UAD - 2020

55

Figure 10.12 Image Button

• If you want to make changes double click on the button then make adjustments to the

Text Button Properties as below:

Figure 10.13 Display Text Button Properties

c. Disease Data Menu

Figure 10.14 Disease data menu design

This menu is used to input disease data to be stored in the system. It is possible to add new types

of diseases, or to remove one type of disease.

To make edit text:

• Select Elements → Text and Edit Boxes

• Select image

Figure 10.15 Image Edit Box

Then do the settings in the Edit Box Proporties like the image below by double clicking.

Artificial intelligence – Infomatics Department – UAD - 2020

56

Figure 10.19. Display Edit Box Properties

d. Symptoms Data Menu

Figure 10.16 Symptoms data menu design

This menu is used to input symptoms and probability data for each disease. It's possible to add a

new symptom, or to delete one of the symptoms.

e. Data Menu Cause

Figure 10.17 Design of the causal data menu

This menu is used to input disease-causing data. Possible to add new causes, or to remove one of

the causes of the disease.

Artificial intelligence – Infomatics Department – UAD - 2020

57

f. Data Solutions Menu

Figure 10.18 The design of the solution data menu

This menu is used to input data solutions. It is possible to add a new solution, or to remove one

solution from each disease.

g. Patient Data Menu

Figure 10.19 Patient data menu design

This menu is used to input patient data. It is possible to add new patients who will use this system

to consult, or to delete one patient.

Artificial intelligence – Infomatics Department – UAD - 2020

58

h. Rules menu

Figure 10.20 Rules menu design

This menu is used to display the rules of the rules used to search for diseases and solutions

according to the disease based on symptoms.

i. Diagnosis Menu

Figure 10.21 Consultation menu design

This menu is used for users who want to do a consultation. Later the user will choose the symptoms

that are felt.

Artificial intelligence – Infomatics Department – UAD - 2020

59

j. Record Form

Figure 10.22 Record menu design

This menu is continued from the consultation menu. If on the consultation menu the user chooses

to record, the symptoms that have been selected on the consultation menu will be displayed on this

form.

k. Advanced Menu Design

Figure 10.23 Advanced menu design

This menu is continued from the record form. In this form, the system will display a disease solution

that has been stored in a database whose symptoms are similar to the new symptoms entered by the

user.

Artificial intelligence – Infomatics Department – UAD - 2020

60

l. Print Results

Figure 10.24 Draft print menu design

This menu is continued from the advanced form. If in the advanced form the user chooses to print,

the results of the consultation can be printed.

m. Help menu

Figure 10.25 Design help menu

This menu will display about options that contain about the program, instructions for using the

program and the programmer's identity.

Artificial intelligence – Infomatics Department – UAD - 2020

61

BIBLIOGRAPHY

Kusumadewim S. 2003. Artificial Intelligence (Teknik dan Aplikasinya). Graha Ilmu,

Yogyakarta.

Hermawan, A. 2006. Jaringan Syaraf Tiruan. ANDI OFFSET, Yogyakarta

Prateek, Joshi, Artificial Intelligence with Python, 2017.

Russel, Stuart, Artificial Intelligence a Modern Aproach, 2016

https://github.com/logpy/logpy

https://packaging.python.org/tutorials/packaging-projects/

http://mbp.sourceforge.net/index.html, tanggal akses 9 Agustus 2014, jam 13.10 WIB.

Winiarti.S, Buku Praktikum Kuliah Sistem Informasi, 2014.

Modul praktikum Statistika Informatika UAD 2016

https://github.com/logpy/logpy
https://packaging.python.org/tutorials/packaging-projects/
http://mbp.sourceforge.net/index.html

Artificial intelligence – Infomatics Department – UAD - 2020

62

