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PREFACE

We thank to Allah Subhanahu wa Ta’ala, because for His blessings,
mercy, and grace, the compilation of the book Elementary Number The-
ory can be completed. This book is prepared as teaching material in the
learning activities of the Number Theory Course. This book can be used
for both pure mathematics and education students. In this book, a sum-
mary of Number Theory learning materials is presented in a simple,
effective, and easy to understand manner. This book is also equipped
with competitive questions.

Our gratitude goes to all those who helped to complete this book
so that it can be presented. However, this book is certainly not free from
shortcomings. Therefore, we hope that various kinds of improvements,
including suggestions and criticisms from readers, for the perfection of
this book.

Yogyakarta, October 13, 2020

Authors

v



CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

BAB 1 BASIC CONCEPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Number System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Principle of Mathematical Induction . . . . . . . . . . . . . . . . 3
1.3 Binomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Binomial Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Approximations Using the Binomial Theorem . . . . . . . . 20
1.3.3 Problems where the Power is Unknown. . . . . . . . . . . . . . 21

Homework Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

BAB 2 DIVISIBILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1 Divisibility Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Greatest Common Divisor (GCD). . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Least Common Multiple (LCM) . . . . . . . . . . . . . . . . . . . . . . . . . 42

BAB 3 INTEGERS BASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1 Integers Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

BAB 4 INTEGER FACTORIZATION . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Prime Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Unique Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

BAB 5 CONGRUENCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Concept and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Application of Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



BAB 6 DIOPHANTINE EQUATION. . . . . . . . . . . . . . . . . . . . . . . . 78
6.1 Linear Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Linear Diophantine Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 System of Linear Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . 85

BAB 7 FERMAT AND WILSON THEOREM . . . . . . . . . . . . . . . . 99
7.1 Fermat Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Wilson Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Biography First Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Biography Second Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Biography Third Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Biography Fourth Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



CHAPTERS 1

BASIC CONCEPT

1.1 Number System

Number theory is one of the oldest branch of Mathematics. Based
on the constructivism thinking of the human being, the numbers 1, 2, 3, ...

were believed as the human’s first mathematical creation in history. Hu-
man invented this mathematical creation to represent the number of
things. Now days, we call the numbers 1, 2, 3, ... as the set of positive
integers. This mathematical creation helped the human at that time to
count. Hence, the numbers 1, 2, 3, ... are also called the counting num-
bers. On the other hand, some historical objects showed that the an-
cient human culture had used the zero to express ”there is nothing”.
We start from Ancient Near East, Ancient Egyptian numerals were of
base 10.[14] They used hieroglyphs for the digits and were not posi-
tional. By 1770 BC, the Egyptians had a symbol for zero in accounting
texts. The symbol nfr, meaning beautiful, was also used to indicate the
base level in drawings of tombs and pyramids, and distances were mea-
sured relative to the base line as being above or below this line. By the
middle of the 2nd millennium BC, the Babylonian mathematics had a
sophisticated sexagesimal positional numeral system. The lack of a po-
sitional value (or zero) was indicated by a space between sexagesimal
numerals. By 300 BC, a punctuation symbol (two slanted wedges) was
co-opted as a placeholder in the same Babylonian system. In a tablet
unearthed at Kish (dating from about 700 BC), the scribe Błl-bn-aplu
wrote his zeros with three hooks, rather than two slanted wedges. The
Babylonian placeholder was not a true zero because it was not used
alone, nor was it used at the end of a number. Thus numbers like 2 and
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120 (2×60), 3 and 180(3×60), 4 and 240(4×60) looked the same, be-
cause the larger numbers lacked a final sexagesimal placeholder. Only
context could differentiate them. Furthermore, the symbol expressing
zero were also found in the historical objects from the ancient Greek,
China, Pre-Columbian Americas, and India. This condition motivated
the existence of the symbol 0 to express zero as the universal language.
Finally, human life has a new set of numbers, we recently call it, the set
N = {0, 1, 2, ...} of all natural numbers.

We believe that mathematics is built for human life. In the devel-
opment of the using of the set N of all natural numbers, human needs
a negatives as the opposites of the set of {1, 2, 3, ...} positive number
since the ancient human may had used the subtraction in their calcula-
tion. This condition motivated the existence of the set of all integers.
The set of integers is often denoted by a boldface letter ′Z ′(”Z”) or
blackboard bold Z standing for the German word Zahlen which means
”numbers”. Furthermore, we will use the letter Z to express the set of
all integers Z = {...,−2,−1, 0, 1, 2, ...}.

1.2 Mathematical Induction

In the early part of this chapter, we will learn how to prove the cor-
rectness of a formula using mathematical induction. We will start this
chapter by recalling the history of mathematical induction. In 370 BC,
Plato’s Parmenides might have an early example of an implicit induc-
tive proof. The earliest implicit traces of mathematical induction can be
found in Euclid’s proof stating the number of primes is infinite and in
Bhaskara’s ”cyclic method”. An opposite iterated technique, counting
down rather than up, is found in the Sorites paradox, where it was ar-
gued that if 1,000,000 grains of sand formed a heap and removing one
grain from a heap left it a heap, then a single grain of sand (or even no
grains) forms a heap.

An implicit proof by mathematical induction for arithmetic se-
quences was introduced in al-Fakhri written by al-Karaji around 1000
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AD, who used it to prove the binomial theorem and properties of Pascal′s
triangle. None of these ancient mathematicians, however, explicitly stated
the induction hypothesis. Another similar case (contrary to what Vacca
has written, as Freudenthal carefully showed) was that of Francesco
Maurolico in his Arithmeticorum libri duo (1575), who used the tech-
nique to prove that the sum of the first n odd integers is n2. The first
explicit formula of the principle of induction was given by Pascal in
his Traite du triangle arithmetique (1665). Another Frenchman, Fer-
mat, made ample use of a related principle, indirect proof by infinite
descent. The induction hypothesis was also employed by the Jakob
Bernoulli, and from then on it became more or less well known. The
modern rigorous and systematic treatment of the principle came only
in the 19th century, with George Boole, Augustus de Morgan, Charles
Sanders Peirce, Giuseppe Peano, and Richard Dedekind.

Mathematical induction is a way of establishing the correctness
of formulas involving integer variables. It also applies to inequalities,
algorithms and other assertions involving integer variables. Moreover,
it applies to algorithms and assertions involving string variables. Let’s
see how it works first in the case of a formula.

You have a formula that involves an integer variable n and want to
prove that it is true for all positive integers n. In order to do this, you do
the following two things.

1.2.1 Principle of Mathematical Induction

Let S(n) be a statement. The mathematical induction steps are:

• Prove that the statement S(1) is true.

• Suppose that the statement S(k) is true for all positive integers
k ≥ 1. This is called the induction hypothesis step.

• Prove that statement S(k + 1) is true for all positive integers k ≥
1.
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In conclusion, the statement is true for all positive integers n.

Example 1.1 Use mathematical induction to prove that

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

for all integers n ≥ 1, and then find 2 + 4 + 6 + · · ·+ 500 .

Solution. For every positive integer n ≥ 1, we have

S(n) : 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

Step 1. S(1) : 1 = 1(1+1)
2

is true.

Step 2. (Inductive step) Suppose that

S(k) : 1 + 2 + 3 + · · ·+ k =
k(k + 1)

2

is true for all positive integers k.

Step 3. We want to prove

S(k + 1) : 1 + 2 + 3 + · · ·+ k + (k + 1)

=
(k + 1)((k + 1 + 1))

2
.

We have

[1 + 2 + 3 + k] + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

=
(k + 1)((k + 1) + 1)

2
.
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Thus, the statement S(k + 1) : 1 + 2 + 3 + · · · + k + (k + 1) =
(k+1)((k+1+1))

2
is true. By the principle of mathematical induction, this

implies the statement

S(n) : 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

is true for every positive integer n.As an example when n = 5,we have

1 + 2 + 3 + 4 + 5 =
5× (5 + 1)

2
= 15.

For the second question, we have

2 + 4 + 6 + · · ·+ 500 =2(1 + 2 + 3 + · · ·+ 250)

=2× (250× (250 + 1))

2

=62750

Example 1.2 Use mathematical induction to prove that for every posi-
tive integer n,

n∑
i=1

(2i− 1) = 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Solution. For every positive integer n, we set

S(n) : 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Step 1. S(1) : 1 = 12. Thus S(1) is true.

Step 2. (Inductive step) Suppose that

S(k) : 1 + 3 + 5 + · · ·+ (2k − 1) = k2

is true for every positive integer k.

Step 3. We want to prove

S(k + 1) : 1 + 3 + 5 + · · ·+ (2k − 1) + (2(k + 1)− 1) = (k + 1)2.
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We have

1 + 3 + 5 + · · ·+ (2k − 1) + (2(k + 1)− 1) =k2 + (2(k + 1)− 1)

=k2 + 2k + 2− 1

=k2 + 2k + 1

=(k + 1)2.

Thus, the statement

S(k + 1) : 1 + 3 + 5 + · · ·+ (2k − 1) + (2(k + 1)− 1) = (k + 1)2

is true. By the principle of mathematical induction, this implies for ev-
ery positive integer n,

S(n) : 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

As an example, when n = 5 we have

1 + 3 + 5 + 7 + 9 = 52 = 25.

Example 1.3 Use mathematical induction to prove that for every posi-
tive integer n,

n∑
i=1

i2 = 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Solution. For every positive integer n, we set

S(n) : 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Step 1. S(1) : 12 = 1×2×(1+1)
6

= 1. Thus S(1) is true.

Step 2. (Inductive step) Suppose that

S(k) : 12 + 22 + 32 + · · ·+ k2 =
k(k + 1)(2k + 1)

6

is true for every positive integer k.
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Step 3. We want to prove

S(k + 1) : 12 + 22 + 32 + · · ·

+k2 + (k + 1)2 =
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

We have

12 + 22 + 32 + · · ·+ k2 + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)[k(2k + 1) + 6(k + 1)]

6

=
(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

Thus, the statement

S(k + 1) : 12 + 22 + 32 + · · ·

+k2 + (k + 1)2 =
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

is true. By the principle of mathematical induction, this implies for ev-
ery positive integer n,

S(n) : 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

As an example, when n = 5 we have

12 + 22 + 32 + 42 + 52 =
5× (5 + 1)(10 + 1)

6
= 55.
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Example 1.4 Use mathematical induction to prove that for every posi-
tive integer n, 22n − 1 is divisible by 3 denoted by 3 | (22n − 1).

Solution. For every positive integer n, we set

S(n) : 3 | (22n − 1).

Step 1. We have 22 − 1 = 3. Thus S(1) : 3 | 2(2)−1 is true.

Step 2. (Inductive step) Suppose that

S(k) : 3 | (22k − 1)

is true for every positive integer k. This means there exist an integer x
such that 22k − 1 = 3x.

Step 3. We want to prove

S(k + 1) : 3 | (22(k+1) − 1).

We have

22(k+1) − 1 =22k+2 − 1

=4× 22k − 1

=(3 + 1)22k − 1

=3× 22k + (22k − 1)

=3× 22k + 3x

=3× (22k + x).

Thus, the statement

S(k + 1) : 3 | (22(k+1) − 1)

is true. By the principle of mathematical induction, this implies for ev-
ery positive integer n,

S(n) : 3 | (22n − 1).
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Let S(n) be a statement. In general, the mathematical induction
steps can be formulated as:

1. Prove that the statement S(a) is true for a starting integer a.

2. Suppose that the statement S(k) is true for every integer k ≥ a.

This is called the induction hypothesis step.

3. Prove that the statement S(k + 1) is true for every integer k ≥ a.

4. We can conclude that the statement S(n) is true for every integer
n ≥ a.

Example 1.5 Use mathematical induction to prove that for every posi-
tive integer n ≥ 3, 2n+ 1 < 2n.

Solution. For every positive integer n ≥ 3, we set

S(n) : 2n+ 1 < 2n.

Step 1. We have 2× 3 + 1 = 7 < 8 = 23. Thus S(3) is true.

Step 2. (Inductive step) Suppose that

S(k) : 2k + 1 < 2k

is true for every positive integer k ≥ 3.

Step 3. We want to prove

S(k + 1) : 2(k + 1) + 1 < 2k+1.

We have

2(k + 1) + 1 =2k + 2 + 1

=2k + 1 + 2

<2k + 1, since S(k) is true

<2k + 2k, since k ≥ 3 = 2k+1.
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Thus, the statement

S(k + 1) : 2(k + 1) + 1 < 2k+1

is true. By the principle of mathematical induction, this implies for ev-
ery positive integer n ≥ 3,

S(n) : 2n+ 1 < 2n.

Example 1.6 Use mathematical induction to prove that for every posi-
tive integer n ≥ 1,

n∑
i=1

i(i+ 1) = 2 + 6 + 12 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.

Solution. For every positive integer n ≥ 1, we set

S(n) :

n∑
i=1

i(i+ 1) = 2 + 6 + 12 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.

Step 1. S(1) : 1× (1 + 1) = 2 = 1×(1+1)×(1+2)
3

. Thus S(3) is true.

Step 2. (Inductive step) Suppose that

S(k) :

k∑
i=1

i(i+ 1) = 2 + 6 + 12 + · · ·+ k(k + 1) =
k(k + 1)(k + 2)

3

is true for every positive integer k ≥ 1.

Step 3. We want to prove

S(k + 1) :

k+1∑
i=1

i(i+ 1) =2 + 6 + 12 + · · ·

+ k(k + 1) + (k + 1)((k + 1) + 1)

=
(k + 1)((k + 1) + 1)((k + 1) + 2)

3

=
(k + 1)(k + 2)(k + 3)

3
.
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We have

k∑
i=1

i(i+ 1) =[2 + 6 + 12 + · · ·+ k(k + 1)] + (k + 1)((k + 1) + 1)

=
k(k + 1)(k + 2)

3
+ (k + 1)(k + 2)

=
k(k + 1)(k + 2) + 3(k + 1)(k + 2)

3

=
(k + 1)(k + 2)(k + 3)

3
.

Thus, the statement

S(k + 1) :

k+1∑
i=1

i(i+ 1) = 2 + 6 + 12 + · · ·

+ k(k + 1) + (k + 1)((k + 1) + 1)

=
(k + 1)(k + 2)(k + 3)

3

is true. By the principle of mathematical induction, this implies for ev-
ery positive integer n ≥ 1,

S(n) :

n∑
i=1

i(i+ 1) = 2 + 6 + 12 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
.

As an example, when n = 5 we have 2 + 6 + 12 + 20 + 30 =
5×6×7

3
= 70.

Example 1.7 Use mathematical induction to prove that for every posi-
tive integer n ≥ 4, 2n < n! .

Solution. For every positive integer n ≥ 4, we set

S(n) : 2n < n!.

Step 1. S(4) : 24 = 16 < 24 = 4!. Thus S(4) is true.

11



Step 2. (Inductive step) Suppose that

S(k) : 2k < k!

is true for every positive integer k ≥ 4.

Step 3. We want to prove

S(k + 1) : 2k+1 < (k + 1)!.

We have

2k+1 =2× 2k

=2× (k!), since S(k) is true

=(k + 1)× (k!), since k ≥ 4, 2 < (k + 1)

=(k + 1)!.

Thus, the statement

S(k + 1) : 2k+1 < (k + 1)!

is true. By the principle of mathematical induction, this implies for ev-
ery positive integer n ≥ 4,

S(n) : 2n < n!.

As an example, when n = 5 we have 25 = 32 < 120.

Example 1.8 Use mathematical induction to prove that for every non-
negative integer n,

n∑
i=0

ri = 1 + r + r2 + r3 + · · ·+ rn

=
rn+1 − 1

r − 1
, r 6= 1.
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Solution. For every nonnegative integer n, we set

S(n) :

n∑
i=0

ri = 1 + r + r2 + r3 + · · ·+ rn =
rn+1 − 1

r − 1
, r 6= 1.

Step 1. S(0) :

0∑
i=0

ri = 1 =
r0+1 − 1

r − 1
. Thus S(0) is true.

Step 2. (Inductive step) Suppose that

S(k) :

k∑
i=0

ri = 1 + r + r2 + r3 + · · ·+ rk =
rk+1 − 1

r − 1
, r 6= 1.

is true for every nonnegative integer k.

Step 3. We want to prove

S(k + 1) :

k+1∑
i=0

ri = 1 + r + r2 + r3 + · · ·+ rk + rk+1

=
r(k+1)+1 − 1

r − 1

=
rk+2 − 1

r − 1
, r 6= 1.

We have

1 + r + r2 + r3 + · · ·+ rk + rk+1 =
rk+1 − 1

r − 1
+ rk+1

=
(rk+1 − 1) + rk+1(r − 1)

r − 1

=
rk+1 − 1 + rk+2 − rk+1

r − 1

=
rk+2 − 1

r − 1
.

Thus, the statement

S(k + 1) :

k+1∑
i=0

ri = 1 + r + r2 + r3 + · · ·+ rk + rk+1 =
rk+2 − 1

r − 1
, r 6= 1,
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is true. By the principle of mathematical induction, this implies for ev-
ery nonnegative integer n,

S(n) :

n∑
i=0

ri = 1 + r + r2 + r3 + · · ·+ rn =
rn+1 − 1

r − 1
, r 6= 1.

Example 1.9 Use mathematical induction to prove that for every posi-
tive integer n,

dn

dxn
(x−1) = (−1)nn!x−(n+1).

Solution. For every nonnegative integer n, we set

S(n) :
dn

dxn
(x−1) = (−1)nn!x−(n+1).

Step 1. S(1) :
d

dx
(x−1) = (−1)× 1!× x−(1+1) = −x−2 Thus S(1) is

true.

Step 2. (Inductive step) Suppose that

S(k) :
dk

dxk
(x−1) = (−1)kk!x−(k+1)

is true for every positive integer k.

Step 3. We want to prove

S(k + 1) :
dk+1

dxk+1
(x−1) = (−1)k+1(k + 1)!x−((k+1)+1).

We have

dk+1

dxk+1
(x−1) =

d
dx

[
dk

dxk
(x−1)

]
=

d
dx

(−1)kk!x−(k+1)

=(−1)kk!(−(k + 1))x−(k+2)

=(−1)k+1(k + 1)!x−(k+2).
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Thus, the statement

S(k + 1) :
dk+1

dxk+1
(x−1) = (−1)k+1(k + 1)!x−((k+1)+1)

is true. By the principle of mathematical induction, this implies for ev-
ery nonnegative integer n,

S(n) :
dn

dxn
(x−1) = (−1)nn!x−(n+1).

We give the following problems related to mathematical induction.
Learn and solve them.

Use mathematical induction to prove:

1.
n∑
i=1

i3 = 13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
, for every inte-

ger n ≥ 1.

2.
n∑
i=1

1

i(i+ 1)
=

n

n(n+ 1)
, for every integer n ≥ 1.

3.
n∑
i=1

2i2 = 2× 12 + 2× 22 + 2× 32 + · · ·+ 2× n2 = n3 + n, for

every integer n ≥ 1.

4.
n∑
i=1

(2i− 1)2 = 12 + 32 + 52 + · · ·+ (2n− 1), for every integer

n ≥ 1.

5. 7n − 1 is divisible by 6, denoted by 6 | (7n−1), for every integer
n ≥ 1.

6. n3 − n is divisible by 3 for every integer n ≥ 1.

7. 7n − 2n is divisible by 5 for every integer n ≥ 1.

8. 3n − 1 is divisible by 2 for every integer n ≥ 1.
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9.
n∑
i=1

2i+ 3 = 5 + 7 + 9 + · · ·+ (2n+ 3) = n(n+ 4), for every in-

teger n ≥ 1.

1.3 Binomial Theorem

1.3.1 Binomial Expansion

A binomial is an expression of the form (a + b)n. In general, the
expansion of these binomials for various values of n can be obtained by
multiplying (a+ b) for n times. We have

(a+ b)n = (a+ b)× · · · × (a+ b)︸ ︷︷ ︸
n times

We note that every term in the expansion of (a+ b)n appears as an−ibi,
for some 0 ≤ i ≤ n. The coefficient of an−ibi comes from the multipli-
cation of n− i times of a and i times of b. This equals to the number of
choosing n − i of a from n number of a or equivalently the number of
choosing i of b from n number of b. Thus, the coefficient of an−ibi is

(
n

n− i

)
=

(
n

i

)

where (
n

r

)
=

n!

(n− r)!r!
, 0 ≤ r ≤ n.

Furthermore, we have the following table in the next page.
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Table 1.1 Binomial Expansion

Term Expansion Coefficients

(a+ b)0 1

(
0
0

)
(a+ b)1 a+ b

(
1
0

)
,
(

1
1

)
(a+ b)2 a2 + 2ab+ b2

(
2
0

)
,
(

2
1

)
,
(

2
2

)
(a+ b)3 a3 + 3a2b+ 3ab2 + b3

(
3
0

)
,
(

3
1

)
,
(

3
2

)
,
(

3
3

)

In general, we have the binomial theorem

(a+ b)n =

(
n

0

)
an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + ...+

+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn

We note that the triangle of numbers in the third column in Table
1.1 is related to Pascal’s triangle. In Pascal’s triangle, the sum of each
pair of adjacent numbers gives the number underneath the pair. In other
words, the numbers in Pascal’s triangle correspond to the coefficients
in the binomial expansions. We will prove the Binomial Theorem for
a = 1 and b = x in the further subsection.

Example 1.10 Use Pascal’s triangle to expand (2 + 3x)5.

Solution. The coefficients in the next row in Table 1.1 are 1, 5, 10, 10, 5, 1.
We have the following expansion:

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5.
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By substituting a = 2 and b = 3x, we obtain

(2 + 3x)5 = 25 + 5× 24 × (3x) + 10× 23 × (3x)2

+ 10× 22 × (3x)3 + 5× 2× (3x)4 + (3x)5

= 32 + 240x+ 720x2 + 1080x3 + 910x4 + 243x5.

Example 1.11 Use Pascal’s triangle to expand (5x− 1
x
)4.

Solution. From the fifth row in Table 1.1, we have

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4.

By substituting a = 5x and b = − 1
x
, we obtain

(5x− 1

x
)4 = (5x)4 + 4× (5x)3 ×

(
−1

x

)
+ 6× (5x)2 ×

(
−1

x

)2

+ 4× (5x)×
(
−1

x

)3

+

(
−1

x

)4

= 625x4 − 500x2 + 150− 20

x2
+

1

x4
.

Example 1.12 Find the coefficient of x3 in the expansion of (7− 2x)5.

Solution. We note that in the expansion of (7 + (−2x))5, only 10 ×
(7)× (−2x)3 contributes x3. We have

10× 7× (−2x)3 = −3920x3.

We obtain the coefficient of x3 in the expansion of (7− 2x)5 is −3920.

Example 1.13 Find the coefficient of x5 in the expansion of (3x+ 1)7.

Solution. We note that in the expansion of (3x + 1)7, only

(
7

2

)
×

(3x5)× 12 contributes x5. We have(
7

2

)
× (3x5)× 12 = 5103x5.

We obtain the coefficient of x5 in the expansion of (3x+ 1)7 is 5103.
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Example 1.14 Find the constant term in the expansion of
(
5x+ 1

x2

)6
.

Solution. The solution of x6−i
(

1
x2

)i
= x0 is i = 2. This means the

required term is(
6

2

)
(5x)4

(
1

x2

)2

= 15× 625x4 × 1

x4

= 9375.

Example 1.15 Find the term in x8 the expansion of (x+
√
x)

1
2.

Solution. The solution of x12−i (
√
x)

i
= x8 is i = 8. This means the

required term is (
12

8

)
(x)4

(√
x
)8

= 495x8.

When a = 1 and b = x, we have the following special case of bino-
mial theorem

(1 + x)n = 1 +

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n− 1

)
xn−1 + xn

Example 1.16 Use the binomial theorem to expand (1 +
√
x)4 then

write (1 +
√

3)4 in the simplest form.

Solution. We have

(
1 +
√
x
)4

= 1 +

(
4

1

)
√
x+

(
4

2

)(√
x
)2

+

(
4

3

)(√
x
)3

+
(√

x
)4

= 1 + 4
√
x+ 6x+ 4x

√
x+ x2

which implies

(1 +
√

3)4 = 1 + 4
√

3 + 6× 3 + 4× 3
√

3 + 32

= 28 + 16
√

3.
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Example 1.17 Using binomial theorem, count 1.15!

Solution. We have

(1 + x)5 = 1 +

(
5

1

)
x+

(
5

2

)
x2 +

(
5

3

)
x3 +

(
5

4

)
x4 + x5

= 1 + 5x+ 10x2 + 10x3 + 5x4 + x5

which implies

1.15 = (1 + 0.1)5

= 1 + 0.5 + 0.10 + 0.010 + 0.0005 + 0.000001

= 1.61051.

1.3.2 Approximations Using the Binomial Theorem

If successive terms of a binomial expansion get smaller and smaller,
we can ignore negligible terms and hence make approximations.

Example 1.18 Expand (1+2x)5 up to x3 and find an approximation for
1.025.

Solution. We have

(1 + 2x)5 = 1 +

(
5

1

)
(2x) +

(
5

2

)
(2x)2 +

(
5

3

)
(2x)3 + . . .

= 1 + 10x+ 40x2 + 80x3 + . . .

Substituting x = 0.01, we obtain

(1.02)5 = 1 + 10× 0.01 + 40× 0.0001 + 80× 0.000001 + . . .

≈ 1.10408.

This is very close to the exact value 1.1040808031.

Example 1.19 Expand (2 − 3x)10 up to x3 and find an approximation
for 1.9710.
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Solution. We have

(2− 3x)10 = 210 +

(
10

1

)
29(−3x) +

(
10

2

)
28(−3x)2

+

(
10

3

)
27(−3x)3 + . . .

= 1024− 15360x+ 103680x2 − 414720x3 + . . .

Substituting x = 0.01 provides us

(1.97)10 = 1024− 153.60 + 10.3680− 0.414720 + . . .

≈ 880.35328.

This is very close to the exact value 1.1040808031.

1.3.3 Problems where the Power is Unknown

In some cases, the value of n in (a+ b)n is unknown. We are able to
count n when certain expansion is given.

Example 1.20 In the expansion of (1 + 3x)n, the coefficient of x2 is
105. Find the value of n.

Solution. We have (
n

2

)
(3x)2 =

n(n− 1)

2
× 9x2

= 105x2.

This gives us

n(n− 1)

2
× 9 = 105

⇔ n(n− 1) = 30

⇔ n2 − n− 30 = 0

⇔ (n− 6)(n+ 5) = 0.

Since n is nonnegative, we get n = 6.
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Example 1.21 In the expansion of (1 + px)q, the coefficients of x and
x2 are −28 and 336, respectively. Find the values of p and q.

Solution. The corresponding expansion is

(1 + px)q = 1 + q(px) +
q(q − 1)

2!
(px)2 + . . .

Equating the coefficients of both sides provides us pq = −28 and
q(q − 1)

2!
p2 = 336. Combining both equations give us

q(q − 1)

2!
×
(
−28

q

)2

= 336

⇔ 391(q − 1)

q
= 336

⇔ 392q − 336q = 392

⇔ 56q = 392

⇔ q = 7.

We get p = −28
7

= −4.

Example 1.22 In the expansion of (a + x)(1 + x)n, the first two terms
are 3 + 16x. Find the coefficients of x2 and x3.

Solution. We have

(a+ x)(1 + x)n = (a+ x)(
1 + nx+

n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·

)
= a+ (1 + an)x+

(
n+

an(n− 1)

2!

)
x2

+

(
n(n− 1)

2!
+
an(n− 1)(n− 2)

3!

)
x3 + . . .

= 3 + 16x

Equating the coefficients gives us a = 3 and 1 + an = 1 + 3n = 16.
This gives us n = 5. We get the coefficient of x2 is

5 +
3× 5× 4

2
= 5
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and the coefficent of x3 is

5× 4

2
+

3× 5× 4× 3

6
= 40.

In the next part, we will give some basic properties which are very
important in the binomial theorem section.

Theorem 1.23 If r ≤ n, then
(
n
r

)
=
(
n
n−r

)
.

Proof. Now let r ≤ n. It follows from the definition that(
n

r

)
=

n!

(n− r)!r!
=

n

(n− (n− r))!(n− r)!
=

(
n

n− r

)
.

�

The theorem which has been explain above is called the symmetric
property of the binomial coefficient. In order to make the property more
readable, we provide some examples below.

Example 1.24 The following examples explained the symmetric prop-
erty of the binomial coefficient.

1.
(
10
2

)
=
(
10
8

)
= 45

2.
(
12
10

)
=
(
12
2

)
= 66

We believe that mathematics is a tool to help the human to solve their
problem. In the following example, we will describe the motivation of
the existing property of binomial coefficient.

Example 1.25 Now we assume that there is a meeting. There are 10
persons in this meeting. Moreover, we will choose 3 persons from 10.
Hence, there are

(
10
3

)
ways to choose. In case, if the election proses

for 3 persons does not enclose one of the attendants, then we have
(
9
3

)
ways. Furthermore, if one person does not enclosed in every election
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for the 3 chosen person, then we actually only choose for 2 person from
9. Hence, we have the following conclusion.(

10

3

)
=

(
9

3

)
+

(
9

2

)
.

Please, clarify the conclusion explained above by checking the result of(
10
3

)
and

(
9
3

)
+
(
9
2

)
.

In general case, we have the following property as a generalization
of the case explain in the Example 1.25.

Theorem 1.26 If k and r are natural numbers such that k > r, the we
therefore have (

k

r − 1

)
+

(
k

r

)
=

(
k + 1

r

)
Proof. (

k

r − 1

)
+

(
k

r

)
=

k!

(k − r + 1)!(r − 1)!
+

k!

(k − r)!r!

=
k!r + k!(k − r + 1)

k + 1− r)!r!

=
k!(r + k − r + 1)

(k + 1− r)!r!

=
k!(k + 1)

(k + 1− r)!r!

=
(k + 1)!

(k + 1− r)!r!(
k

r − 1

)
+

(
k

r

)
=

(
k + 1

r

)
�

Now, we are ready to prove the another form of Binomial Theorem
as follows

24



Theorem 1.27 For every natural number n, we have

(1 + x)n =

(
n

0

)
+

(
n

1

)
x+ ...+

(
n

n− 1

)
xn−1 +

(
n

n

)
xn

Proof. We will prove the Binomial Theorem by using mathematical
induction.

1. S(1) : We have (1 +a)1 =
(
1
0

)
+
(
1
1

)
a = a+a. Thus S(1) is true.

2. Inductive step. Suppose that S(k) :

(1 + x)k =

(
k

0

)
+

(
k

1

)
x+ ...+

(
k

k − 1

)
xk−1 +

(
k

k

)
xk

is true for every integer k.

3. We want to prove Suppose that S(k + 1) :

(1+x)k =

(
k + 1

0

)
+

(
k + 1

1

)
x+...+

(
k + 1

k

)
xk+

(
k + 1

k + 1

)
xk+1

(1 + a)k+1 = (1 + a)k(1 + a)

= [

(
k

0

)
+

(
k

1

)
x+ ...+

(
k

k − 1

)
xk−1 +

(
k

k

)
xk]

(1 + a)

=

(
k

0

)
+ [

(
k

0

)
+

(
k

1

)
]a+ ...+ [

(
k

k − 1

)
+

(
k

k

)
]ak

+

(
k

k

)
ak+1

(1 + a)k+1 =

(
k + 1

0

)
+

(
k + 1

1

)
x+ ...+

(
k + 1

k

)
xk

+

(
k + 1

k + 1

)
xk+1

Hence, we may infer that

(1 + x)n =

(
n

0

)
+

(
n

1

)
x+ ...+

(
n

n− 1

)
xn−1 +

(
n

n

)
xn

25



for every integers n. �

Theorem 1.28 For every integers n, we have

2n =

(
n

0

)
+

(
n

1

)
+ ...+

(
n

n− 1

)
+

(
n

n

)
Proof. It follows from Theorem 1.27, in case x = 1, we already have

2n =

(
n

0

)
+

(
n

1

)
+ ...+

(
n

n− 1

)
+

(
n

n

)
�

We will use Theorem 1.27 and Theorem 1.28 to solve the following
problem.

Example 1.29 Prove that(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ ... =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ ... = 2n−1

Proof. Substitute x = −1 in the Theorem 1.27, we therefore have(
n

0

)
−
(
n

1

)
+

(
n

2

)
...+ (−1)k

(
n

k

)
+ ...+ (−1)n

(
n

n

)
This implies(

n

0

)
+

(
n

2

)
+

(
n

4

)
+ ... =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ ...

Applying the Theorem 1.28, we have(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ ... =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ ... =

2n

2
= 2n−1

�
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Theorem 1.30 If n,m, and k are natural numbers such that n > k >

m, then (
n

k

)(
k

m

)
=

(
n

m

)(
n−m
k −m

)
Proof. (

n

k

)(
k

m

)
=

n!

(n− k)!k!

k!

(k −m)!m!

=
n!

(n−m)!m!

(n−m)!

(n−m− k +m)!(k −m)!(
n

k

)(
k

m

)
=

(
n

m

)(
n−m
k −m

)
�

Example 1.31 In a class, there are 15 students. We will choose 5 stu-
dents from 15 and 2 student from 5 chosen students to be the main team.
We would like to determine how many ways we can use to choose these
5 students.

1. The first method. We can start to choose 5 student from 15 and
then we continue to choose 2 student from 5 who were chosen
before. Hence, we have(

15

5

)(
5

2

)
= 30.030

2. The second method, we can start to choose 2 students for the main
team from 15 students as the first step. Then, we can continue to
choose 5-2 students from 15-2. Hence, we have(

15

2

)(
13

3

)
= 30.030

The example which is explained above can be generalized in the fol-
lowing theorem
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Theorem 1.32 If n and k are natural integers such that n ≥ k, then

k

(
n

k

)
= n

(
n− 1

k − 1

)
Proof.

k

(
n

k

)
= k

n!

(n− k)!k!

= k
n(n− 1)!

(n− k)!k(k − 1)!

= n
(n− 1)!

(n− 1− (k − 1))!(k − 1)

k

(
n

k

)
= n

(
n− 1

k − 1

)
�

If the binomial coefficient is arranged recursively, we have the Pas-
cal’s triangle. In case, n ∈ {0, 1, 2, 3, 4, 5, 6}, we have the following
Pascal’s triangle.

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

The representation of Pascal’s triangle using binomial coefficient sym-
bol is shown below.
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(
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
Example 1.33 The following examples will generate another property
of binomial coefficient.

1.
(
2
0

)
+
(
3
1

)
+
(
4
2

)
+
(
5
3

)
+
(
6
4

)
=
(
7
3

)
2.
(
2
2

)
+
(
3
2

)
+
(
4
2

)
+
(
5
2

)
+
(
6
2

)
=
(
7
3

)
Finally, for the general case, we have the following property.

Theorem 1.34 If k and r are natural numbers such that k ≥ r, then

1.
(
k
0

)
+
(
k+1
1

)
+ ...+

(
k+r
r

)
=
(
k+r+1
r

)
2.
(
k
k

)
+
(
k+1
k

)
+ ...+

(
k+r
k

)
=
(
k+r+1
k+1

)
Proof.

1. (a) S(1) :
(
1
0

)
+
(
1
1

)
=
(
2
1

)
. Thus S(1) is true.

(b) Assume the statement is also valid for S(n), that is, S(n) :(
n
0

)
+
(
n+1
1

)
+
(
n+2
3

)
+ ...+

(
n+r
r

)
=
(
n+r+1

r

)
(c) We will prove the statement is true for S(n+ 1)

(
n+1
0

)
+
(
n+2
1

)
+
(
n+3
2

)
+ ...+

(
n+r
r−1

)
+
(
n+1+r

r

)
=
(
n+r+1

r

)
It follows from Theorem 1.26 that the left side can be rep-
resented as follows
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(
n

0

)
+

(
n+ 1

0

)
+

(
n+ 1

1

)
+ ...+

(
n+ r

r − 1

)
+

(
n+ r

r

)
=

(
n+ r + 1

r − 1

)
+

(
n+ r + 1

r

)
=

(
n+ r + 1

r

)
.

Hence, we can infer that the statement is also valid for n+1.
Thus S(n+ 1) is true.

2. The authors suggest the reader to prove by themselves.

�

The implementation of Theorem 1.34 in solving problem in number
theory will be explained in the following examples.

Example 1.35 Evaluate the following statements

1. 1.2.3 + 2.3.4 + 3.4.5 + ...+ (n− 2)(n− 1)n = 3!
(
n+1
4

)
2. 12 + 22 + 32 + 42 + ...+ n2 = 2

(
n+1
3

)
+
(
n+1
2

)
Proof.

1. We have the following hint to solve the example number 1.

(k − 2)(k − 1)k =
k!

(k − 3)!
=

3!k!

(k − 3)!3!
= 3!

(
k

3

)
Hence, the left side of the problem in the example number 1 can
be represented as

3!

(
3

3

)
+ 3!

(
4

3

)
+ ...+ 3!

(
n

3

)
= 3!(

(
3

3

)
+

(
4

3

)
+ ...+

(
n

3

)
)

It follows from Theorem 1.34 part (2) that

3!(

(
3

3

)
+

(
4

3

)
+ ...+

(
n

3

)
) = 3!

(
n+ 1

4

)
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2. We have the following hint to solve the example number 2.

k2 = k(k − 1) + k

Hence, the left side of the problem in the example number 2 can
be represented as

12 + 22 + ...+ n2 = (1.0 + 1) + ...+ (n(n− 1) + n)

= (2.1 + 3.2 + ...+ n(n− 1))(1 + 2 + ...+ n)

= 2

(
2

2

)
+ ...+ 2

(
n

2

)
+

(
1

1

)
+ ...+

(
n

1

)
= 2(

(
2

2

)
+ ...+

(
n

2

)
) +

(
1

1

)
+ ...+

(
n

1

)
12 + 22 + ...+ n2 = 2

(
n+ 1

3

)
+

(
n+ 1

2

)
�
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Homework Chapter 1

1. Show that 1 + 2 + 3 + ...+ n =
(
n+1
2

)
2. Prove the following statement using mathematical induction for

every positive integer n.

a 12 + 32 + 52 + · · ·+ (2n− 1)2 = 1
3
n(4n2 − 1).

b 13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2.

3. Prove that

1 + 2 + 3 + 4 + · · ·+ n =

(
n+ 1

2

)
!

4. Prove that for any n ≥ 1,

(
n

k

)
=

(
n

k + 1

)
if and only if n is an

odd number and k = 1
2
(n− 1).

5. Prove that n

(
n− 1

k

)
= (k + 1)

(
n

k + 1

)
!

6. Let k, r, n be natural numbers such that 0 ≤ k ≤ r ≤ n. Prove
that (

n

r

)(
r

k

)
=

(
n

k

)(
n− k
r − k

)
7. Prove that(

n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ ...+ n

(
n

n

)
= n2n−1

8. Determine the result of the following sums

n

(
n

1

)
+ n

(
n

3

)
+ n

(
n

5

)
+ ...+ n

(
n

n

)
where n is an even integer.
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9. Evaluate the result of the following sums

n∑
k=1

12(k − 1)k(k + 1)

10. Prove that(
k

k

)
+

(
k + 1

k

)
+ ...+

(
k + r

k

)
=

(
k + r + 1

k + 1

)
11. Prove that(

n

0

)
+ 2

(
n

1

)
+ 22

(
n

2

)
+ ...+ 2n

(
n

n

)
= 3n

12. Determine the result(
n

0

)
+ 2

(
n

1

)
+

(
n

2

)
+

(
n

4

)
+ ...

13. Prove that (
2n

n

)
+

(
2n

n− 1

)
=

1

2

(
2n+ 2

n+ 1

)
14. Calculate the following sums

a.
∑n

k=1 12(k − 1)k(k + 1)

b.
∑n

k=1(−1)kk
(
n
k

)
15. Prove that (

n

r

)
=

(
n

r + 1

)
⇐⇒ r =

1

2
(n− 1)

and n is an odd integer.
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CHAPTERS 2

DIVISIBILITY

2.1 DIVISIBILITY RELATION

In the number theory, we will be considering the set of all integers as
the largest set since we dont use the set of all real numbers and the set of
all rational numbers. The set of all integers is denoted by Z and the ele-
ment of Z is usually denoted by small letter as a, b, c, . . . ,m, n, . . . , x, y, z
We start by the following definition.

Definition 2.1 Let a, b are integers. The integer a divides the integer
b if there exists an integer k such that b = ka and this condition is
denoted by a|b. In other words, the integer a is a factor of the integer b.
Otherwise a - b.

Example 2.2 The following examples describe the divisibility of inte-
gers.

1. 6|30 since there exists 5 such that 30 = 5× 6.

2. 8 - 25 since there is no integer a satisfying 25 = a× 8.

We summarize some basic properties of divisibility in the following
proposition.

Proposition 2.3 Let a, b, and c be integers. We have the following basic
properties:

i. a | a (reflexivity property)

ii. If a | b and b | c then a | c (transitivity property)
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iii. If a|b then a|cb

iv. If a | b and b 6= 0 then |a| ≤ |b|

v. If a|b and a|c then a|αb+ βc for any integers α and β

vi. If a | b and a | b± c then a | c

vii. If a | b and b | a then |a| = |b|

viii. If a | b and b 6= 0 then b
a
| b

ix. For c 6= 0, a | b if and only if ac | bc

Proof. The proofs of the above properties are rather straightforward
from the definition. We present proofs for some of them to give the
reader some relevant examples of writing proofs.

(Proof of ii) Let a, b and c be integers such that a | b and b|c. Since
a|b, b = ka, where k is an integer and b|c implies c = lb,, where l is an
integer. Therefore c = lb = l(ka) = (lk)a. Hence a|c.
(Proof of iii) Let a|b and b = ka, for any integer k. Multiplying the both
sides of the equation b = ka by c gives us bc = cka. Thus a|bc.

�

Theorem 2.4 If a|b and a|c, then the following conditions hold.

i. a|b+ c

ii. a|b− c

iii. a|bc

Proof. Now let a|b and a|c. Then b = ka for an integer k, and c = la

for an integer l. Moreover, we have

i. b+ c = ka+ la = (k + l)a⇒ a|b+ c
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ii. b− c = ka− la = (k − l)a⇒ a|b− c

iii. bc = (ka)(la) = (kal)a⇒ a|bc

�

Theorem 2.5 If a|b and a|c, then a|mb + nc for any integers a, b, c,m
and n.

Proof. Now let a|b and a|c. Then b = ka for an integer k, and c = la

for an integer l. Furthermore, multiplying the both sides of the equation
b = ka with m, we have mb = mka and multiplying the both sides
of the equation c = la with n, we have nc = nla. Thus mb + nc =

mka+ nla = (mk + nl)a⇒ a|mb+ nc. �

Theorem 2.6 For any integers a, b andm the following conditions hold.

i. If ma|mb and m 6= 0, then a|b.

ii. 1|a and a|0.

iii. If a|b and b 6= 0,then |a| ≤ |b|.

Proof.

i. Now let ma|mb,m 6= 0. Then mb = kma for an integer k, since
m 6= 0, divide the both side of the previous equation, we have
b = ka. This implies a|b.

ii. It is clear that a = a.1. Hence 1|a for any integer a. Furthermore,
0 = 0.a for any integer a. Thus a|0.

iii. The proof is left as an exercise to the reader.

�
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2.2 Greatest Common Divisor (GCD)

We have learned to determine some factors of any integers. For ex-
ample, the integers 1, 2, 3, 5,9,15 and 45 are factors or divisors of the
integer 45. On the other hand, the factors of 60 are 1, 2, 3, 4, 5, 6, 10,
12, 15, 20 and 30. In fact, the greatest factor of 45 and 60 is 15. Now,
we are ready to define what the greatest common divisor is. We start
with the definition of a common divisor as described below.

Definition 2.7 Let a and b be integers. Then an integer d is said to be
common divisor of a and b if d|a and d|b.

Example 2.8 The integer 2 is a common divisor of 30 and 40.

Definition 2.9 Let a and b be integers. Then an integer d is said to be
greatest common divisor of a and b if

1. d|a and d|b.

2. there exists an integer e such that e|a and e|b, then a and e ≤ d.

Example 2.10 Take a look at the following examples.

1. Positive divisors of -15 are 1,3,5,15.

2. Positive divisors of 40 are 1,2,4,5,8,10,20,40.

3. The common divisors of -15 and 40 are 1,5.

4. The greatest common divisor of -15 and 40 is 5 will be denoted
by gcd(−15, 40) = 5

We use gcd(a, b) = d to denote d is the greatest common divisor of a
and b. We start form the following property.

Theorem 2.11 If gcd(a, b) = d, then

gcd(
a

d
,
b

d
) = 1.
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Proof. The number a
d

and b
d

seem to be fractions, but they are integers
since d is a divisor both of a and b. In fact, we have gcd(a, b) = d. So, it
is possible to find integers y such that d = ax+ by (we will discuss this
property later in this chapter). Upon dividing each side of this equation
by the integer d, we therefore have the expression

1 =
(a
d

)
x+

(
b

d

)
y

Since a
d

and b
d

are integers, we may conclude that a
d

and b
d

are relatively
prime. Thus

gcd(
a

d
,
b

d
) = 1.

�

Theorem 2.12 Division Algorithm Let a and b are integers such that
b > 0. If there exists a unique pair of integers q and r such that

a = bq + r, 0 ≤ r < b.

The integer q is called the quotient, and the integer r is called the re-
mainder in the division of a by b

Proof. Define a set as follows

S = {a− xb|x an integer ; a− xb ≥ 0}

We will show that the set S is nonempty by exhibiting a value of x
implying a − xb nonnegative. Since the integer b ≥ 1, we have |a|b ≥
|a|, and so

a− (−|a|)b = a+ |a|b ≥ a+ |a| ≥ 0

For the choice x = −|a|, then, a − xb belongs to S. This gives S 6= ∅.
Moreover, the set S contains a smallest integer, say r. By the definition
of S, there exists an integer q satisfying

r = a− qb 0 ≤ r

38



We claim that r < b. If this were not the case, then r ≥ b and

a− (q + 1)b = (a− qb)− b = r − b ≥ 0

The consequence is that the integer a − (q + 1)b has the proper form
to belong to the set S. However, a − (q + 1)b = r − b < r, contrary
to the choice of r as the smallest member of S. Hence, r < b. Further-
more, we will show the uniqueness of q and r. Suppose that a has two
representation as follow.

a = qb+ r = q′b+ r′

where 0 ≤ r < b, 0 ≤ r′ < b. Then r′ − r = b(q − q′). This implies

|r′ − r| = b|q − q′|

Upon adding the two inequalities −b < −r ≤ 0 and 0 ≤ r′ < b, we
obtain −b < r′ − r < b or in equivalent terms, |r′ − r| < b. Thus,
b|q − q′| < b, which gives

0 ≤ |q − q′| < 1

Since |q−q′| is a nonnegative integer, the only possible value for |q−q′|
is 0. This implies |q − q′| = 0⇒ q = q′ and r = r′. This completes the
proof. �

The following property is the consequence when the integer b < 0.

Corollary 2.13 If a and b are integers such that a 6= 0, then there exists
a unique pair of integers q and r such that a = qb+r, where 0 ≤ r < |b|.

Proof. Prove this corollary as exercise. �

Theorem 2.14 If b = aq + r, then gcd(b, a) = gcd(a, r).

Proof. Let gcd(b, a) = d and gcd(a, r) = c. We will show that c = d.
Since gcd(b, a) = d, d|b and d|a and since b = aq+ r, d|q. This implies
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d is a common divisor of both a and r. But, since gcd(a, r) = c, d ≤ c.

Furthermore, since gcd(a, r) = c, c|a and c|r and since b = aq + r, c|b.
It follows from c|a and c|b that c is a common divisor of both a and b.
However, gcd(a, b) = d, then d ≥ c. Since d ≥ c and c ≥ d, c = d. This
yields gcd(b, a) = gcd(a, r) which completes the proof. �

Theorem 2.15 If a and b are integers such that a, b 6= 0, then there exist
integers x and y such that ax+ by = gcd(a, b).

Proof. Define a set as follows

S = {a− xb|x an integer ; a− xb ≥ 0}

We will show that the set S is nonempty. For any integer a 6= 0, then the
integer |a| = au+ b.0 belongs to S where u = 1 or u = −1 depending
on the integer a is positive of negative. It is clear that the set S consists
of positive integers which leads that S contains the smallest element,
say d. It follows from the definition of S, there exists integers x and y
for which d = ax+ by. We claim that d = gcd(a, b).

It follows from Division Algorithm, we can obtain integers q and r
such that a = qd + r, where 0 ≤ r < d. Then r can be represented as
the form

r = a− qd
= a− q(ax+ by)

r = a(1− qx) + b(−qy)

Now, if r were positive integers, then the representation would imply
that r belongs to S, contrary to the fact that d is the smallest member
of S. Therefore, r = 0 and so a = qd or equivalently d|a. By using
the similar reasoning, we therefore have d|b which gives d is a common
divisor of a and b.

Furthermore, if c is an arbitrary positive common divisor of the in-
tegers a and b, then c|(ax + by), c|d. Moreover, c = |c| ≤ |d| = d, so
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that d is greater than every positive common divisor of a and b. Thus,
we may deduce that d = gcd(a, b). �

It follows from Theorem 2.15 that if gcd(a, b) = 1 then there exists
positive integers x and y such that ax + by = 1. Conversely, if there
exists positive integers x and y such that ax + by = 1, whether the
statement gcd(a, b) = 1 is true?. In the following theorem, we give a
necessary and sufficient condition for gcd(a, b) = 1.

Theorem 2.16 Let a, b 6= 0 be integers. Then the following conditions
are equivalent.

i. gcd(a, b) = 1.

ii. There exists integers x and y such that ax+ by = 1.

Proof. The first step, we will prove from (i) to (ii). Now, suppose gcd(a, b) =

1. It follows from Theorem 2.15 that there exists integers x and y such
that ax + by = gcd(a, b) = 1. Conversely, suppose ax + by = 1 for
some integers x and y and d = gcd(a, b). We will show that d = 1.
Since d = gcd(a, b), d|a and d|b. This implies d|(ax + by) or d|1. The
possible value for d is only 1 since there is no positive integer greater
than 1 which divides 1. Hence, d = 1⇒ gcd(a, b) = 1. �

Finally, we have the following consequence.

Corollary 2.17 If a|c and b|c such that gcd(a, b) = 1, then ab|c.

Proof. Suppose a|c and b|c such that gcd(a, b) = 1. It follows from
Theorem 2.16 that there exists integers x and y such that ax + by = 1.
Multiplying the both side with c, we therefore have

acx+ bxy = c

Since a|c and b|c, there exists integers r and t such that c = ar and
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c = bt, substituting these fact, we have

abtx+ abry = c

ab(tx+ ry) = c

This gives ab|c which completes the proof. �

2.3 Least Common Multiple (LCM)

A multiple of a number is the product of that number and an integer.
For example, 12 is a multiple of 6 because 6×2 = 10, so 12 is divisible
by 6 and 2. Since 12 is the smallest positive integer that is divisible by
both 6 and 2, it is the least common multiple of 6 and 2. By the same
concept, 12 is the least common multiple of 6 and 2 as well. Moreover,
we give the formal definition for a least common multiple as follows.

Definition 2.18 Let a and b be integers. An integer m is said to be com-
mon multiple of a and b if a|m and b|m. Furthermore, an integer m is
said to be least common multiple of a and b if satisfies the following
conditions:

1. a|m and b|m,

2. If there exists n such that a|n and b|n, then m|n.

We use lcm(a, b) = m to denote the least common multiple of a and b.

Theorem 2.19 If c is a common multiple of nonzero integers a and b,
then the least common multiple lcm(a, b) of a and b divides c. In other
words, lcm(a, b)|c.

Proof. Let c be a common multiple of nonzero integers a and b and let
least common multiple lcm(a, b) = m. We will show thatm|c. Suppose
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m - c. It follows from the Division Algorithm, there exist integers q and
r such that

c = qm+ r 0 < r < m

Since c is a multiple of both a and b, a|c and b|c. On the other hand,
since lcm(a, b) = m, a|m and b|m. Furthermore,

a|m⇒ a|qm⇒ a|(c− qm) and a|r

b|m⇒ b|qm⇒ b|(c− qm) and b|r

Thus, r is a multiple of both a and b such that 0 < r < m. But this is
impossible since lcm(a, b) = m. Hence, lcm(a, b) = m|c. �

Theorem 2.20 If c > 0, then lcm(ca, cb) = c× lcm(a, b).

Proof. Suppose lcm(a, b) = d. Then a|d and b|d. This implies ac|dc
and bc|dc. Hence, dc is a multiple of both ac and bc. It follows from
Theorem 2.16 that lcm(ac, bc)|dc. Since lcm(ac, bc) is a multiple of ac,
lcm(ac, bc) is a multiple of c. Suppose lcm(ac, bc) = mc, then mc|dc
which implies m|d. On the other hand, since lcm(ac, bc) = mc, ac|mc
and bc|mc which implies a|m and b|m and it follows from Theorem
2.19 that lcm(a, b)|m. This gives m|d and d|m. So we may deduce that
d = m. In other words, lcm(ca, cb) = c× lcm(a, b). �

Consider the following theorem as an illustration of Theorem 2.20.

Example 2.21 It is clear that lcm(14, 18) = 126 = 2 × 63 = 2 ×
lcm(7, 9).

Theorem 2.22 if a and b are positive integers, then gcd(a, b)×lcm(a, b) =

ab.

Proof. Let a and b be positive integers and let gcd(a, b) = d, then
gcd(a

d
, b
d
) = 1. This gives lcm(a

d
, b
d
) = ab

d2
. Multiplying the both side,
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we therefore have

d2 × lcm(
a

d
,
b

d
) = ab

d× lcm(a, b) = ab

gcd(a, b)× lcm(ab) = ab.

�
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Homework Chapter 2

1. If gcd(a, b) = d, then prove that d|(ax + by) for any integers x
and y.

2. Prove that for any integer a which is one of the form a, a + 2, or
a+ 4 is divided by 3.

3. If a and b are nonzero integers, then prove that

gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

4. Let n be a positive integer and let a be any arbitrary integer. Prove
that gcd(a, a+ n)|n.

5. If gcd(a, b) = 1, then prove that gcd(an, bk) = 1 for every posi-
tive integer n and k.

6. Let gcd(a, b) = 1 and gcd(a, c) = 1. Prove gcd(a, bc) = 1.

7. If gcd(a, b) = 1, then prove that gcd(ac, b) = gcd(c, b)

8. If a is an odd integer, prove that 24|a(a2 − 1).

9. If gcd(a, b) = 1 and c(a+b), then prove that gcd(a, c) = gcd(b, c) =

1.

10. Prove that gcd(a2, b2) = [gcd(a, b)]2.

Let a, b, c, and d be integers. Identify the following statement and
determine the truth.

11. If gcd(a, b) = gcd(a, c), then lcm(a, b) = lcm(a, c).

12. lcm(a,−b) = lcm(a, b)

13. If d|gcd(a, b), then d|lcm(a, b).

14. If c|(a, b), then c|gcd(a, b).

15. gcd(a, b)|lcm(a, b).
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CHAPTERS 3

INTEGERS BASES

3.1 INTEGERS BASES

In this chapter, we explain some bases for integers. We know that
the integer base that we use commonly is 10−base. However, there are
some bases that we have to learn.

Take a look at the following example.

Example 3.1 Recall the representation of 4.875 as follows

4.875 = 4.103 + 8.102 + 7.101 + 5.100.

Based on the Mathematical history. The ancient Babylonian used
60−base and the Mayan tribe used 20−base. Furthermore, computer
use 2−base or we also call it as a binary base.

Theorem 3.2 Let b be any integer greater than 1. Then for every posi-
tive integer n can be uniquely represented as the form

n = akb
k + ak−1b

k−1 + ...+ a1b+ a0

where k is a nonnegative integer and aj is an integer such that 0 ≤
aj ≤ b− 1 for j = 0, 1, 2, ..., k with ak 6= 0.

Proof. We will use the division algorithm for the early steps. We divide
n using b. Therefore, we have

n = bq0 + a0, 0 ≤ a0 ≤ b− 1.

If q0 6= 0, we divide q0 with b, then we have

q0 = bq1 + a1, 0 ≤ a1 ≤ b− 1.
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Analogously, we continue the division processes such that we have the
following equations

q1 = bq2 + a2, 0 ≤ a2 ≤ b− 1.

q2 = bq3 + a3, 0 ≤ a3 ≤ b− 1.

.

.

.

qk−2 = bqk−1 + ak−1, 0 ≤ ak−1 ≤ b− 1.

qk−1 = b.0 + ak, 0 ≤ ak ≤ b− 1.

By the division algorithm processes, we get the sequence of integers
q0, q1, q2, ..., 0 such that n > q0 > q1 > q2 ≥ 0. Substituting the equa-
tion q0 = bq1 + a1 in the equation n = bq0 + a0, we have

n = b2q1 + ba1 + a0

The substitution process can be continuous for q1, q2, .... Hence, we
have

n = akb
k + ak−1b

k−1 + ...+ b2a2 + ba1 + a0,

where 0 ≤ aj ≤ b − 1 for j = 0, 1, 2, ..., k and ak 6= 0, since ak =

qk−1 is the last quotient which is not equal to 0. The uniqueness of
the representation n will be describe as follows. Assume n has two
representation, that are

n = akb
k + ak−1b

k−1 + ...+ b2a2 + ba1 + a0

n = ckb
k + ck−1b

k−1 + ...+ b2c2 + bc1 + c0

Hence,

(ak−ck)bk+(ak−1−ck−1)bk−1+...+b2(a2−c2)+b(a1−c1)+(a0−c0) = 0.
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This equation holds if aj − cj = 0. Then aj = cj for every j ∈
{0, 1, 2, 3, ..., k}. So, we can conclude that the representation of n is
unique. �

It follows from Theorem 3.2 that the integer n can be represented as

n = akb
k + ak−1b

k−1 + ...+ a1b+ a0

where k is a nonnegative integer and aj is an integer such that 0 ≤ aj ≤
b − 1 for j = 0, 1, 2, ..., k with ak 6= 0. Furthermore, the integer n can
be written as n = (akak−1...a2a1)b. This representation is called the
representation of n in b−base.

Example 3.3 Let 5 be an integer base. Hence, the number which should
be appeared to represent a number are {0, 1, 2, 3, 4}. Now, suppose an
integer n = 2.434 in 10−base integer. Since in the daily life, we use
the 10−base, the index identifying 10−base is not necessarily to be
written explicitly. The integer n = 2.434 can be represented as n =

3.54 + 4.53 + 2.52 + 1.51 + 4.50. Hence, in 5−base number, the integer
n = 2.434 can be written as 34.2145.

Example 3.4 The following examples explain the conversion process
from binary base to 10−base.

i. 1101102 = 1.25 + 1.24 + 0.23 + 1.22 + 1.21 + 0.20 = 32 + 16 +

0 + 4 + 2 + 0 = 54

ii. 1001102 = 1.25 + 0.24 + 0.23 + 1.22 + 1.21 + 0.20 = 32 + 0 + 0 +

4 + 2 + 0 = 38

Example 3.5 Conversely, the following example will describe the con-
version from 10−base integer to binary base using division algorithm.
Now, consider the number 116. We will be representing the number 116

into binary base. The details of the processes are described as follow.

116 = 2.58 + 0
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58 = 2.29 + 0

29 = 2.14 + 1

14 = 2.7 + 0

7 = 2.3 + 1

3 = 2.1 + 1

1 = 2.0 + 1

Write the number from the bottom, we therefore have 11101002. Hence,
116 = 11101002.

The following table explains conversion between 10−base, binary
base, 4−base, 8−base, and 16−base.

Table 3.1 Conversion Table

10−base binary base 4−base 8−base 16−base
1 1 1 1 1
2 10 2 2 2
3 11 3 3 3
4 100 10 4 4
5 101 11 5 5
6 110 12 6 6
7 111 13 7 7
8 1000 20 10 8
9 1001 21 11 9
10 1010 22 12 A
11 1011 23 13 B
12 1100 30 14 C
13 1101 31 15 D
14 1110 32 16 E
15 1111 33 17 F
16 10000 100 20 10
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Remember that 8 = 23. Hence, in order to convert any 8−base num-
ber into binary base, every digit in 8−base number will represent 3

digits in binary base. For instance, 28 = 0102, 18 = 0012, 48 = 1002.
Moreover, every digit in 16−base number represents 4 digits in binary
base since 16 = 24.

Example 3.6 The following example shows a conversion process from
binary base number into 8−base number.

1. 10101102 = 001.010.1102 (grouped into 3 digits), we have
10101102 = 1268

2. 1100101000102 = 110.010.100.0102 = 62428
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Homework Chapter 3

1. Change the following 10−base numbers into a requested base
number.

(a). 549 = ...3

(b). 974 = ...5

(c). 2002 = ...8

(d). 2019 = ...4

2. Show that if b is a non negative integer which is less than −1,
then every nonzero integer can be represented as following form

n = akb
k + ak−1b

k−1 + ...+ a1b+ a0

where k is a non negative integer and aj is an integer such that
0 ≤ aj ≤ |b|, j = 0, 1, 2, ..., k and ak 6= 0.

3. Change the base of the following numbers.

(a). 71068 = ...2 = ...4 = ...16.

(b). 200214 = ...2 = ...8.

(c). A3FD16 = ...4 = ....2.

(d). 310039 = ...3.

(e). 21000123 = ...9.

4. Change the following 2−base and 3−base numbers into decimal
(10−base)!

(a) 1010012

(b) 120123

(c) 21001123

5. Calculate the result of the following operations!
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(a). 1011110112 + 11001110112.

(b). 1110001112 − 1000111012.

(c). 1001112 × 10112.

(d). 10001100012 : 10112.

6. Change the following decimal numbers into 2−base numbers!

(a) −6

(b) −17

(c) 71

7. Calculate the result of the following operations!

(a) 20012013 + 1002113.

(b) 21200013 − 20011223.

(c) 120213 × 20213.

(d) 1012012123 : 1223.

8. Is the integer 4478369 divisible by 3 and 8?

9. Without performing the divisions, determine whether the integers
176, 521, 221, and 149, 235, 678 are divisible by 9 or 11!

10. If the integer N is represented in the base b by

N = amb
m + ...+ a2b

2 + a1b+ a0

where 0 ≤ ak ≤ b−1 then the following condition are equivalent:

(a). b− 1|N.

(b). b− 1|(am + ...+ a2 + a1 + a0).
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CHAPTERS 4

INTEGER FACTORIZATION

One of the important concepts of the Number Theory course is the
integer factorization. In number theory, integer factorization is the de-
composition process of a composite number into a product of smaller
integers. If these factors are further restricted to prime numbers, the
process is called the prime factorization. We would like to present the
importance of integer factorization by using a brief explanation from
wikipedia.org.

When the numbers are sufficiently large, no efficient, non-quantum
integer factorization algorithm will be used for. In 2019, Fabrice Boudot,
Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thom
and Paul Zimmermann factored a 240-digit number (RSA-240) utiliz-
ing approximately 900 core-years of computing power. The researchers
estimated that a 1024-bit RSA modulus would take about 500 times as
long. However, it has not been proven that no efficient algorithm exists.
The presumed difficulty of this problem is at the heart of widely used al-
gorithms in cryptography such as RSA. Many areas of mathematics and
computer science have been brought to bear on the problem, including
elliptic curves, algebraic number theory, and quantum computing.

Not all numbers of a given length are equally hard to factor. The
hardest instances of these problems (for currently known techniques)
are semiprimes, the product of two prime numbers. When they are both
large, for instance more than two thousand bits long, randomly chosen,
and about the same size (but not too close, for example, to avoid efficient
factorization by Fermat’s factorization method), even the fastest prime
factorization algorithms on the fastest computers can take enough time
to make the search impractical; that is, as the number of digits of the

53



primes being factored increases, the number of operations required to
perform the factorization on any computer increases drastically.

Many cryptographic protocols are based on the difficulty of factor-
ing large composite integers or a related problemfor example, the RSA
problem. An algorithm that efficiently factors an arbitrary integer would
render RSA-based public-key cryptography insecure(wikipedia.org).

4.1 Prime Number

We start from the definition of a prime number.

Definition 4.1 A natural number p is called a prime number (or a
prime) if the natural number p is greater than 1 and it cannot be formed
by multiplying two smaller natural numbers. A natural number greater
than 1 that is not prime is called a composite number.

Example 4.2 Example of prime and composite numbers are given be-
low

1. 2, 3, 5 are prime numbers.

2. 6 is composite number since 6 can be formed by multiplying 2×
3 = 6

Definition 4.3 Every pair of two positive integers a and b is said to be
co-prime if the Greatest Common Divisor gcd(a, b) = 1.

Theorem 4.4 Every positive integer n > 1 has a prime factor.

Proof.
First method:

Let n be any positive integer which is greater than 1. Then n has at
least one positive factor, say n itself. Hence, n has the least positive
factor, say q. Then q should be a prime number. Now, assume that q is
not a prime number. Then q is a composite number. Therefore, q can be

54



represented as q = q1q2, where 1 < q1, q2 < q. This implies q1, q2 are
factors of n. Contrary to the statement that q is the least factor of n

Second method:

Let n be a positive number which is greater than 1. If n is a prime
number, then n|n which completes the proof. In case, n is a composite
number, then n has positive factor other than 1 and n itself, say d1.
Hence d1|n which implies that there exists a positive n1 such that

n = d1n1 where 1 < n1 < n.

If n1 is a prime number, then n1|n which states that the theorem is true.
Now, if n1 is a composite number, the n1 has positive factor other than 1
and n1 itself, say d2. Thus d2|n1. This implies that there exists a positive
integer n2 such that

n1 = d2n2 where 1 < n2 < n1.

If n2 is a prime number, then n2|n which states that the theorem is
true. Now, if n2 is a composite number, the n2 has positive factor other
than 1 and n2 itself, say d3. Thus d3|n2. This implies that there exists a
positive integer n3 such that

n2 = d3n3 where 1 < n3 < n2.

If n2 is a prime number, then n3|n which states that the theorem is
true. Now, if n3 is a composite number, the n3 has positive factor other
than 1 and n3 itself and we can continue to decompose such that we
have the following sequence

n, n1, n2, n3, ... where n > n1 > n2 > n3 > ... > 1

The decomposition described in the previous process will terminate
at a prime factor, say nk. Then we have

nk|nk−1, nk−1|nk−2, ..., n2|n1, n1|n such that nk|n.

which complete the proof. �

55



Theorem 4.5 Every positive number n > 1 can be represented as a
multiplication of prime numbers.

Proof. Let n > 1 be an integer. It follows from Theorem 4.4 that there
exists a prime numbers, say p1, such that there is an integer n2 which
satisfies

n = p1n1 where 1 ≤ n1 < n.

If n1 = 1, then n = p1. Thus n is a prime number. If n1 > 1, then it
follows from Theorem 4.4 that there exists a prime number p2 such that
p2|n1. Hence, there exists a positive integer n2 such that

n1 = p2n2 where 1 ≤ n2 < n1.

If n2 = 1, then n1 = p2. Thus n = p1p2 which completes the proof.
If n2 > 1, then it follows from Theorem 4.4 that there exists a prime
number p3 such that p3|n2. Hence, there exists a positive integer n3 such
that

n2 = p3n3 where 1 ≤ n3 < n2.

If n3 = 1, then n2 = p3. Thus n = p1p2p3 which completes the proof.
If n3 > 1, then we can continue the process and it will terminate at
nk = 1 which implies n = p1p2p3...pk. This means that n = p1p2p3...pk
can be represented as a multiplication of prime numbers. �

It follows from Theorem 4.5 that every integer can be represented as
a multiplication of prime numbers. It is possible to say that these prime
numbers can be the same prime number. As illustration, we give the
following example.

Example 4.6 1. 50 = 2.5.5 = 2.52

2. 150 = 2.3.5.5 = 2.3.52

3. 5544 = 2.2.2.3.3.7.11 = 23.32.7.11

Hence, we have the following corollary.
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Corollary 4.7 Let n be an integer. Then n can be represented as a prod-
uct of prime powers.

The existence of 4.7 motivates the existence of unique factorization
which will be described in the next section. On the other hand, the prime
representation of any integer also helps us for finding the greatest com-
mon divisor or the least common multiple of any integers easier. The
illustration will be described in the following examples.

Example 4.8 Determine the greatest common divisor and the least com-
mon multiple of the integers 216,256, and 536. We will decompose
216,256, and 536 into product of prime powers. We therefore have,

216 = 2.2.2.3.3.3 = 23.33

256 = 2.2.2.2.2.2.2.2 = 28

536 = 2.2.2.67 = 23.67

Furthermore,

gcd(216, 256, 536) = 2min{3,8,3}.3min{3,0,0}.67min{0,0,1}

= 23.30.670

gcd(216, 256, 536) = 8

lcm(216, 256, 536) = 2max{3,8,3}.3max{3,0,0}.67max{0,0,1}

= 28.33.671

lcm(216, 256, 536) = 463, 104

One of the important concept in number theory is the prime testing.
Prime testing is used to indicate whether any integer is prime. We know
that prime number is very important especially in cryptography. Sup-
pose we have to indicate whether 5,357 is a prime number or compos-
ite number. The simplest method is dividing the number 5,357 by 2,3,5,
and etc. But, this method is not efficient. Thus, we give the following
properties as the early concept of prime testing.
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Theorem 4.9 If n is a composite number, then n has k factors such that
1 < k ≤

√
n.

Proof. Since n is a composite number, there exist positive integer k and
m such that

km = n where 1 < k < n and 1 < m < n

If k and m are greater than
√
n, that is, k,m >

√
n, then

n = km >
√
n
√
n = n

which is impossible n > n. Hence, one of the number k or m should
not be greater than

√
n, say k. This gives

1 < k ≤
√
n

So, we may deduce that n has k factors where 1 < k ≤
√
n. �

The next theorem, we present more specific in determining whether
any integer is prime or composite.

Theorem 4.10 If a positive integer n has no prime factor p such that
1 < p ≤

√
n, than n is a prime number.

Proof. We suggest to the reader to prove this theorem by using indirect
proof. Assume that n is a composite number, then we have the opposite
of the antecedent of the Theorem 4.10. �

4.2 Unique Factorization

In the previous section, we have studied the property of an integer
stating that every integer which is greater than 1 can be divided by a
prime number. This condition motivates the concept of a unique factor-
ization of integer. We start this section by the following theorem.
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Theorem 4.11 If p is a prime number and p|ab, then p|a or p|b.

Proof. Since p is prime, for any integer a satisfies gcd(a, p) = 1 or
(a, p) = p. If gcd(a, p) = 1 and p|ab, then p|b. Furthermore, if (a, p) =

p, then p|a. So, we may infer that p|a or p|b. �

The Theorem 4.11 can be generalized for integers a1, a2, ..., an. The
generalization of Theorem 4.11 is given below.

Theorem 4.12 Let p be a prime number. If p|a1a2a3...an, then p|ai for
every i ∈ {1, 2, 3, ..., n}.

Proof. We will prove Theorem 4.12 by using mathematical induction.

1. S(1) : p|a1 ⇒ p|a1. Thus S(1) is true.

2. Assume that the statement holds for

S(k) : p|a1a2...ak ⇒ p|ai, i ∈ {1, 2, ..., k}

3. We want to prove that the statement also holds for S(k+ 1). Sup-
pose p|a1a2a3...akak+1. We can represent the number

a1a2a3...akak+1 = (a1a2a3...ak)ak+1.

This implies p|(a1a2a3...ak)ak+1. It follows from Theorem 4.11
that p|a1a2a3...ak and p|ak+1. Moreover, since p|a1a2a3...ak and
it follows from the assumption of S(k) that p|ai, i ∈ {1, 2, ..., k}.
So, we can infer that p|ai, i ∈ {1, 2, ..., k, k+1} which completes
the proof.

�

The unique representation using factorization of positive integer will
be explained in the following theorem.
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Theorem 4.13 Every positive integer which is greater than 1 can be
uniquely represented as a multiplication of prime numbers.

Proof. It follows Theorem 4.5 that every positive integer which is greater
than 1 can be represented as multiplication of prime numbers. Now let
n be a positive integer which is greater than 1 and suppose n has two
representation, that are:

n = p1p2...pt and n = q1q2...qr

where pi, qj are prime numbers for every i ∈ {1, 2, ..., t} and j ∈
{1, 2, ..., r} such that p1 ≥ p2 ≥ ... ≥ pt, q1 ≥ q2 ≥ ... ≥ qr and
t ≥ r.

Since
n = p1p2...pt, p1|n⇒ p1|q1q2...qr,

tt follows from Theorem 4.12 that p1 = qk for some k such that 1 ≤
k ≤ r and since q1 ≥ q2 ≥ ... ≥ qr, p1 ≤ q1.

On the other hand, since

n = q1q2...qr, q1|n⇒ q1|p1p2...pt,

it follows from Theorem 4.12 that q1 = pm for some m such that 1 ≤
m ≤ t. Since p1 ≥ p2 ≥ ... ≥ pt and q1 ≤ p1, p1 = q1. Using the same
process, we have

p1 = q1, p2 = q2, ..., pt = qr.

Hence, we can infer that n has a unique factorization. �

In number theory, the existence of prime numbers play an important
role. Some theorems in Cryptography claimed that the bigger prime
number used in the cryptosystem, the more secure the cryptosystem.
This condition motivated us to use a big prime number. This can be
happened since the number of prime numbers is infinite. Euclid had
answered this question a thousands years ago by his theorem posted in
his work, the Elements.
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Theorem 4.14 Euclid’s Theorem. The number of prime numbers is in-
finite.

Proof. Suppose p1 = 2, p2 = 3, p3 = 5, p4 = 7, ... are the order of
prime numbers and let pn be the greatest prime number. Now define an
integer

N = p1p2p3...pn + 1

ThusN can not be divided by the prime numbers p1, p2, p3, ..., pn which
implies N is a prime number or divisible by another prime greater than
pn, contrary to pn is the greatest prime number. �

Theorem 4.15 Let {pn} be a sequence of prime numbers ordered by
ascending condition, where n ∈ {1, 2, 3, ...} and p1 = 2. Then

pn ≤ 22n−1

Proof. We will use mathematical induction to prove the Theorem 4.15

1. S(1) : p1 ≤ 220 holds since p1 = 2.

2. Assume that the statement is true for S(k) : pk ≤ 22k−1

3. We will prove that the statement is true for S(k+1) : pk+1 ≤ 22k .
Furthermore, we have

pk+1 ≤ (p1p2...pk) + 1

pk+1 ≤ (2(22)(222)(223)...(22k+1

)) + 1

pk+1 ≤ 21+2+22+23+...+2k+1

+ 1

Since 1 + 2 + 22 + 23 + ...+ 2k+1 = 2k − 1, we therefore have

pk+1 ≤ 22k+1

+ 1

Since 22k+1
+ 1 > 1 for every natural number k, we have

pk+1 ≤ 222−1 + 22k+1

+ 1

pk+1 ≤ 22k
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Hence, we may infer that

pn ≤ 22n−1

for every ordinal number n. �

It follows from Theorem 4.15 that the n + 1 prime number, that is,
pn ≤ 22n . So, the number of prime numbers which are less that pn ≤
22n is at least n + 1 prime numbers. In other words, for n ≥ 1, then
there exist n+ 1 prime numbers which are less than 22n .
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Homework Chapter 4

1. Determine the greatest common divisor and the least common
multiple of the integers 54, 24, 35, and 25!

2. Determine the canonic form of the integer 6552 and 4563. Fur-
thermore, determine their greatest common divisor and least com-
mon multiple!

3. Give a counter example to show that the following statement is
not true.
Every positive integer can be represented as the from p+a2 where
p is a prime number or 1 and a ≥ 0.

4. Prove the following statements:

a. Every prime number of the form 3n+ 1 can be represented as
the form of 6m+ 1.

b. A prime number of the form n3 − 1 is only the prime number
7.

5. Determine the prime numbers which divide 51!

6. If p and q are prime numbers such that p ≥ q ≥ 5, then show that
24|(p2 − q2)!

7. If p is a prime number greater than 3. Prove that p2 + 2 is a com-
posite number.

8. Prove that if n is a composite number greater than 4, then n|(n−
1)!

9. If p is a prime number which is not equal to 5, prove that p2 − 1

or p2 + 1 is divisible by 10!.

10. Prove that if 2n − 1 is a prime number, then so is n!
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11. Determine the prime number p such that 17p+1 is a square num-
ber.

12. If n ≥ 1, show that there are infinite of prime numbers of the
form (4n+ 1) and (4n+ 3).

13. For n > 3, show that between the integers n, n + 2, n4 at least
one is not a prime number.

14. Show that there is no integer of the form n3 + 1 which is a prime
number, except 2.

15. Show that every term of the following sequence is a composite
number.

(n+ 1)!− 2, (n+ 1)!− 3, ..., (n+ 1)!− (n+ 1).
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CHAPTERS 5

CONGRUENCE

In number theory, modular arithmetic is a system of arithmetic for
integers, where numbers ”wrap around” when reaching a certain value,
called the modulus. The first modern approach to modular arithmetic
was developed by Carl Friedrich Gauss in his book Disquisitiones Arith-
meticae which had been published in 1801. We will give a simple illus-
tration below.

A familiar use of modular arithmetic is in the 12-hour clock, in which
the day is divided into two 12-hour periods. If the time is 7:00 now, then
9 hours later it will be 4:00. Simple addition would result in 7 + 9 = 16,
but clocks ”wrap around” every 12 hours. Because the hour number
starts over after it reaches 12, this is arithmetic modulo 12. In terms
of the definition below, 16 is congruent to 4 modulo 12, so ”16:00”
on a 24-hour clock is displayed ”4:00” on a 12-hour clock. Hence, it
is very important to us to learn the congruence relation on integer. In
this chapter, we will be studying about the concept and properties of
congruences and their application.

Figure 5.1 Modular Arithmetic on 12-Hour Clock
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5.1 Concept and Basic Properties

Definition 5.1 Let m be a positive integer. An integer a is said to be
congruence to bmodulom ifm divides (a−b). The congruence relation
between the integers a and b will be denoted by a ≡ b (mod m).

Consider the following examples.

1. 26 ≡ 2 (mod 4) since 26− 2 = 24 is divisible by 4.

2. 12 6≡ 1 (mod 3) since 12− 1 = 11 is not divisible by 3.

The following theorem is a necessary and sufficient condition for an
integer to be congruent to another integer.

Theorem 5.2 Let a, b,m are positive integers, a ≡ b (mod m) if and
only if there is an integer k such that a = km+ b.

Proof. Let a, b,m be positive integers. Suppose a ≡ b (mod m). It
follows from the definition of congruence that a − b is divisible by m.
This means a− b = km for some integer k. Furthermore,

a− b = km⇒ a = km+ b.

Conversely, suppose there exists integer k such that a = km + b. This
gives a− b = km which means a− b is divisible by m. In other words,

a ≡ b (mod m).

�

Let a and m be integers such that m > 0. It follows from division
algorithm that a can be represented as

a = qm+ r where 0 ≤ r < m.
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Since 0 ≤ r < m, there exist m number of integers to be congruence to
r. These integers are the set

{0, 1, 2, ...,m− 2,m− 1}.

This condition is fixed by the following theorem.

Theorem 5.3 Let m be a positive integer. Every integer is exactly con-
gruence modulo m to one of the member {0, 1, 2, ...,m− 1}.

Definition 5.4 If a ≡ r (mod m) where 0 ≤ r < m, then r is called
the smallest remainder of a modulo m. The set {0, 1, 2, ...,m − 1} is
called the set of all smallest remainders modulo m.

Example 5.5 1. The set of all remainders modulo 6 is {0, 1, 2, 3, 4, 5}.

2. The set of all remainders modulo 11 is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

3. The set of all remainders modulo 25 is {0, 1, 2, 3, 4, 5, ..., 23, 24}.

Another necessary and sufficient condition for integers to be congru-
ence to each other is given below.

Theorem 5.6 a ≡ b (mod m) if and only if a and b have the same
remainder if both of them are divided by m.

Proof. Suppose a ≡ b (mod m). Then a and b have the same remain-
der if a and b are divided by m. Let r be the remainder. Then a ≡ r

(mod m) and b ≡ r (mod m) where 0 ≤ r < m. Furthermore,

a ≡ r (mod m)⇒a = qm+ r for some integer q

b ≡ r (mod m)⇒b = tm+ r for some integer t

which implies a and b have the same remainder if a and b are divided
by m.

Conversely, suppose a and b have the same remainder if a and b are
divided by m. We therefore have

67



a = qm+ r for some integer q

b = tm+ r for some integer t.

Moreover, a − b = qm − tm = (q − t)m ⇒ m|a − b. In other words,
a ≡ b (mod m). �

Definition 5.7 The set {r1, r2, ..., rm} is called a system of the complete
remainders modulo m if every ri is congruence modulo m to a single
element of {0, 1, 2, ...,m− 1}, where i ∈ {1, 2, ...,m}.

Theorem 5.8 If a ≡ b (mod m) and c ≡ d (mod m), then a+c ≡ b+d

(mod m)

Proof. Suppose a ≡ b (mod m) and c ≡ d (mod m). Then a = qm+b

for some integer q and c = tm+ d for some integer t. Hence,

a+ c = qm+ b+ tm+ d

= (q + t)m+ (b+ d)

(a+ c)− (b+ d) = (q + t)m.

This impliesm|(a+c)−(b+d). In other words, a+c ≡ b+d (mod m)

�

Theorem 5.9 If a ≡ b (mod m) and c ≡ d (mod m), then ax + cy ≡
bx+ dy (mod m) for every integers x and y.

Proof. Suppose a ≡ b (mod m) and c ≡ d (mod m). Then we have

a = ms+ b for some integer s (1)

c = mt+ d for some integer t (2).

Multiplying equation (1) (respectively, (2)) by x (respectively, y), then
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we have

ax+ cy = (msx+ bx) + (mty + dy)

ax+ cy = m(sx+ ty) + (bx+ dy)

(ax+ cy)− (bx+ dy) = m(sx+ ty)

This yields

m|(ax+ cy)− (bx+ dy) =⇒ ax+ cy ≡ bx+ dy (mod m)

�

The next theorem, we give another properties of congruences

Theorem 5.10 If ac ≡ bc (mod m) such that gcd(c,m) = 1, then
a ≡ b (mod m).

Proof. Suppose ac ≡ bc (mod m) then m|ac− bc. Hence

m|c(a− b)

It follows from gcd(c,m) = 1 that m|a− b which gives

a ≡ b (mod m).

�

In general, we have the following property

Theorem 5.11 If ac ≡ bc (mod m) such that gcd(c,m) = d, then
a ≡ b (mod m

d
)

Proof. Suppose ac ≡ bc (mod m) and gcd(c,m) = d. Then

ac ≡ bc (mod m)⇒ m|ac− bc⇒ m|c(a− b).

Since gcd(c,m) = d,

d|m, d|c and gcd(
c

d
,
m

d
) = 1.
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Furthermore
m

d
and

c

d
are integers

because c and m are divisible by d. Since m|c(a− b),

m

d
| c
d

(a− b).

This gives m
d
|(a− b) which implies

a ≡ b (mod
m

d
)

�

5.2 Application of Congruences

The divisibility tests for integers can be developed by congruences.
In the following discussion let n = akak−1 . . . a1a0 denotes

n = ak10k + ak−110k−1 + · · ·+ a110 + a0

where 0 ≤ aj ≤ 9 for j = 0, 1, 2, . . . , k.

We begin with tests for divisibility by powers of 2. Note that

n ≡ a0 (mod 2),

n ≡ a1a0 (mod 22),

n ≡ a2a1a0 (mod 23),

...

n ≡ al−1 . . . a1a0 (mod 2l).

We have the following theorem.

Theorem 5.12 n = akak−1 . . . a1a0 is divisible by 2l if and only if 2l

divides al−1 . . . a1a0.
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Example 5.13 Let n = 4188048. We see that

2 | n since 2 | 8,
4 | n since 4 | 48,

8 | n since 8 | 48,

16 | n since 16 | 8048,

but 32 - n because 32 - 88048.

Next, the divisibility tests for powers of 5 are analogous to those for
powers of 2. We have the following theorem.

Theorem 5.14 n = akak−1 . . . a1a0 is divisible by 5l if and only if 5l

divides al−1 . . . a1a0.

Example 5.15 Let n = 175375. We see that

5 | n since 5 | 5,
25 | n since 25 | 75,

125 | n since 125 | 375,

but 625 - n because 625 - 5375.

Theorem 5.16 10n ≡ 1 (mod 9) for n = 0, 1, 2, 3, ....

Proof. We will prove the theorem using mathematical induction.

1. S(0) : 100 ≡ 1 (mod 9). Thus S(0) is true.

2. Assume that the statement is true for S(k) : 10n ≡ 1 (mod 9)

3. We will prove that the statement is true for S(k + 1) : 10n+1 ≡ 1

(mod 9). Since 10n+1 = 10.10n,

10.10n ≡ 10n (mod 9)

10n ≡ 1 (mod 9)

which implies

10n+1 = 10.10n ≡ 1 (mod 9).
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�

Theorem 5.17 Every integer modulo 9 is congruence to the sum of their
digit.

Proof. Let n be any integer. Then n can be represented as

n = dkdk−1...d2d1d0

where 0 ≤ di < 9, i ∈ {0, 1, 2, ..., k} and di, i ∈ {0, 1, 2, ..., k} are the
digit which appear. In another representation, we have

n = dk.10k + dk−1.10k−1 + ...+ d2.102 + d1.10 + d0.100.

It follows from Theorem 5.16 that 10n ≡ 1 (mod 9). Hence

n ≡dk(1) + dk−1(1) + ...+ d2(1) + d1(1) + d0(1) (mod 9)

n ≡dk + dk−1 + ...+ d2 + d1 + d0 (mod 9)

Thus, the integer n is congruence to the sum of its digits which com-
pletes the proof. �

We will give some examples below which describe the implementa-
tion of the concept of congruence to solve number theory problems.

Example 5.18 Determine the remainder of the integer 35.952 if it is
divided by 9.
It follows from Theorem 5.17 that

35.952 ≡ 3 + 5 + 9 + 5 + 2 (mod 9)

≡ 24 (mod 9)

35.952 ≡ 6 (mod 9)

Hence, the remainder is 6.
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Example 5.19 Determine whether the integer 7.587 is divisible by 9 or
not!
It follows from Theorem 5.17 that

7.587 ≡ 7 + 5 + 8 + 7 (mod 9)

≡ 27 (mod 9)

7.587 ≡ 0 (mod 9)

Hence, the remainder is 0. In other words, 7.587 is divisible by 9.

Example 5.20 Determine whether the integer 48.866 is divisible by 9

or not!
It follows from Theorem 5.17 that

48.866 ≡ 4 + 8 + 8 + 6 + 6 (mod 9)

≡ 32 (mod 9)

48.866 ≡ 5 (mod 9)

Hence, the remainder is 5. In other words, 48.866 is not divisible by 9.

Remark 5.21 The following properties are important.

1. An integer is divisible by 2 if and only if its latest digit is divisible
by 2.

2. An integer is divisible by 3 if and only if the sum of its digits is
divisible by 3.

3. An integer is divisible by 4 if and only if its two latest digits are
divisible by 4.

4. An integer is divisible by 6 if and only if it is divisible by 2 and 3.

5. An integer is divisible by 8 if and only if its three latest digits are
divisible by 8.

Lemma 5.22 Let n be a natural number. Then 10n ≡ (−1)n (mod 11)
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Proof. We will prove the Lemma using mathematical induction.

1. S(0) : 100 ≡ (−1)0 (mod 11). The statement S(0) is true.

2. Assume the statement S(k) : 10k ≡ (−10)k is true.

3. We will prove that the statement S(k+ 1) : 10k+1 ≡ (−10)k+1 is
true. Now assume that k is even. Then 10k ≡ 1 (mod 11). This
implies

10k+1 ≡ 10k.10 (mod 11)

≡ (1)(−1) (mod 11)

10k+1 ≡ −1 (mod 11)

If k is even integer, then k + 1 is an odd integer which implies
(−1)k+1 = −1. Hence, S(k + 1) : 10k+1 ≡ (−1)k+1 (mod 11)

is true. Analogously, the same way we can prove if n is an odd
integer.

Hence, 10n ≡ (−1)n (mod 11) for every natural number n. �

Theorem 5.23 Let n = akak−1...a2a1a0 be an integer. The integer n is
divisible by 11 if and only if

(a0 + a2 + a4 + ...)− (a1 + a3 + a5 + ...)

is divisible by 11.

Proof. It follows from Lemma 5.22 that 10n ≡ (−1)n (mod 11). Let
n = akak−1...a2a1a0 be an integer where 0 ≤ ai ≤ 9, i ∈ {0, 1, ..., k}, ak 6=
0. We therefore have

n ≡ ak10k + ak−110k−1 + ...+ a2102 + a110 + a0100 (mod 11)

≡ ak(−1)k + ak−1(−1)k−1 + ...+ a2(−1)2

+ a1(−1) + a0(−1)0 (mod 11)

≡ ak(−1)k + ak−1(−1)k−1 + ...+ a2 − a1 + a0 (mod 11)

n ≡ ((a0 + a2 + a4 + ...)− (a1 + a3 + a5 + ...)) ≡ (mod 11)
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This means that the integer n is divisible by 11 if and only if

(a0 + a2 + a4 + ...)− (a1 + a3 + a5 + ...)

is divisible by 11. �

Example 5.24 The integer 180.851 is divisible by 11 since (1+8+8)−
(5 + 0 + 1) = 17− 6 = 11 is divisible by 11.
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Homework Chapter 5

1. Let a, b, c, d,m be integers. If a ≡ b (mod m) and c ≡ d (mod m).
Prove that:

a. ac ≡ bd (mod m)

b. an ≡ bn (mod m) for every positive integer n

2. Let a, b,m be integers and let c be a positive integer. Prove that
the following conditions are equivalent:

a. a ≡ b (mod m)

b. ac ≡ bc (mod mc)

3. If a ≡ b (mod m) such that d|m and d|a, then prove that d|b.

4. If a ≡ b (mod m), then prove that gcd(a,m) = gcd(b,m).

5. If a ≡ b (mod m) such that 0 ≤ |b − a| < m, then prove that
a = b.

6. If a ≡ b (mod m) and If a ≡ b (mod n) such that gcd(m,n) =

1, then prove that If a ≡ b (mod mn)

7. If a ≡ b (mod m) such that n|m, then prove that a ≡ b (mod n).

8. Clarify the truth of the mathematics statement: if a2 ≡ b2 (mod m),
then a ≡ b (mod m)!

9. Determine the remainder of the integers 257 and 4185 if they are
divided by 7.

10. Determine the remainder of the integer (15 + 25 + ...+ 1005) if it
is divided by 4.

11. Identify whether the integers below are divisible by 9 or not.

a. 178.531.221
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b. 159.215.573

12. Identify whether the integers below whether the integers are di-
visible by 11 or not.

a. 178.531.221

b. 159.215.573

13. Let n be an integer such that the integer n can be represented as
the b− base form as follows

n = amb
m + am−1b

m−1 + ...+ a1b+ a0

where 0 ≤ ai ≤ b− 1, i ∈ {0, 1, 2, ...,m}. Show that the follow-
ing conditions are equivalent.

a. (b− 1)|n

b. (b− 1)|
∑m

i=0 ai

14. The following integers are disivible by 9 and 11. Determine the
integer p.

(a) 52.817× 3.212.146 = 169.655.p15.282

(b) 2.p99.561 = (3(523 + p))2

15. Show that the following conditions are valid.

(a) If n is an even integer, then 103n ≡ 1 (mod 1001)

(b) If n is an odd integer, then 103n ≡ −1 (mod 1001)
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CHAPTERS 6

DIOPHANTINE EQUATION

Mathematics historians have approximated the birth of Diophantus
to be at about 200 AD in Alexandria, Egypt and his death at 284 AD
in Alexandria as well. Diophantus is best known for his work, Arith-
metica, which contains 13 books ”consisting of 130 problems giving
numerical solutions to determinate equations (those with a unique so-
lution) and indeterminate equations” (Diophantus). The method he for-
mulated for solving later became known as Diophantine analysis. From
his book, Arithmetica , only 6 of the 13 books have survived. Scholars
who studied his works concluded that ”Diophantus was always satis-
fied with a rational number and did not require a whole number” (Dio-
phantus). He did not deal with negative solutions and only required one
solution to a quadratic equation, which was what most of the Arith-
metica problems led to (Diophantus). Brahmagupta was the first to give
the general solution of the linear Diophantine equation ax + by = c.
He also gained fame from another book called On Polygonal Numbers.
Diophantus’ methods of solving problems have had both lasting effects
and great benefits for the studies of algebra and number theory. In math-
ematics, a Diophantine equation is a polynomial equation, usually in
two or more unknowns, such that only the integer solutions are sought
or studied (an integer solution is such that all the unknowns take integer
values). A linear Diophantine equation equates the sum of two or more
monomials, each of degree 1 in one of the variables, to a constant. We
start this chapter with the linear congruence.
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6.1 Linear Congruence

Definition 6.1 A congruence is said to be linear congruence if the con-
gruence contains a variable x with degree one.

Example 6.2 Let a, b, and m be integers. The congruence ax ≡ b

(mod m) is a linear congruence, where x is a variable.

Theorem 6.3 If gcd(a,m) - b, then the linear congruence ax ≡ b

(mod m) has no solution.

Proof. Assume the congruence ax ≡ b (mod m) has a solution. Hence,
gcd(a,m)|b. Let r be the solutions of ax ≡ b (mod m). Then, we
therefore have ar ≡ b (mod m). This means ar−b = km for an integer
k. Since gcd(a,m)|a and (a,m)|km, (a,m)|b. Contrary to gcd(a,m) -
b. So we can infer that the linear congruence ax ≡ b (mod m) has no
solution. �

Example 6.4 The linear congruence 6x ≡ 5 (mod 8) has no solution
since gcd(6, 8) = 2 and 2 - 5.

Theorem 6.5 If gcd(a,m) = 1 and d|b, then the congruence ax ≡ b

(mod m) has exactly 1 solution.

Proof. Since gcd(a,m) = 1, there exist integers r and s such that ar +

ms = 1. If the both side of the equation ar + ms = 1 is multiplied by
b, then we therefore have

(ar)b+ (ms)b = b

a(rb) +m(sb) = b

a(rb)− b = −(sb)m

This gives a(rb)−b is divisible bym. Thus a(rb) ≡ b (mod m). Hence,
the solution of the congruence ax ≡ b (mod m) is the smallest remain-
der rb modulo m. Now, we will show that the solution is unique. Sup-
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pose the congruence ax ≡ b (mod m) has two solutions, that are, r
and s. Then

ar ≡ b (mod m)

as ≡ b (mod m) =⇒ b ≡ as (mod m).

Then, we therefore have

ar ≡ as (mod m).

Since gcd(a,m) = 1, r ≡ s (mod m). This gives m|r − s. In other
word, since the integer r and s are the solution of the congruence ax ≡ b

(mod m), 0 ≤ r < m and 0 ≤ s < m. This implies

−m < r − s < m.

Since m|r − s, r − s = 0 or r = s. This means that the solution is
unique. �

Example 6.6 Determine the solution of the congruence 2x ≡ 1 (mod 17).
It follows from the congruence 18 ≡ 1 (mod 17), we therefore have

2x ≡ 1 (mod 17)

2x ≡ 18 (mod 17)

Since gcd(2, 17) = 1, we have

x ≡ 9 (mod 17)

Hence the solution of the linear congruence 2x ≡ 1 (mod 17) is 9.

Theorem 6.7 If gcd(a,m) = d and d|b, then the congruence ax ≡ b

(mod m) has exactly d solution.

Proof. Suppose ax ≡ b (mod m) be a linear congruence such that
gcd(a,m) = d and d|b. We will show that the congruence ax ≡ b
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(mod m) has exactly d solution. Since gcd(a,m) = d, there exists a′

and m′ such that a = da′ and m = dm′. furthermore, since d|b, b = db′

for an integer b′. We therefore have,

da′x ≡ db′ (mod dm′)

or
a′x ≡ b′ (mod m).

On the other hand, it follows from gcd(a,m) = d that gcd(da′, dm′) =

d which implies gcd(a′,m′) = 1. It follows from Theorem 6.5 that
a′x ≡ b′ (mod m′) has exactly one solution, say r. This implies that
there exist d integers, that are,

r, r +m′, r + 2m′, ..., r + (d− 1)m′

which satisfy the congruence ax ≡ b (mod m). We will clarify this
property into three steps as follow. Every member of the set {r, r +

m′, r+2m′, ..., r+(d−1)m′} satisfies the congruence ax ≡ b (mod m).
Let n be any member of the set {r, r+m′, r+ 2m′, ..., r+ (d− 1)m′}.
Then n can be represented as n = r+km′ where k ∈ {0, 1, 2, ..., d−1}.

1. We therefore have.

ax = a(r + km′) = da′(r + km′) = da′r + da′km′

Since a′r ≡ b′ (mod m′) and m′d = m, then

ax ≡a′rd+ a′km′d (mod m)

≡b′d+ a′km′d (mod m)

≡b′d (mod m)

ax ≡b (mod m) since b = b′d

Hence n = r + km′ satisfies the congruence ax ≡ b (mod m).
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2. Since r is the solution of the congruence a′x ≡ b′ (mod m′), r ≥
0 which implies 0 ≤ r + km′. Furthermore,

r + km′ ≤ r + (d− 1)m′ for every k ∈ {0, 1, 2, ...}.
r + (d− 1)m′ < m′ + (d− 1)m′ = dm′ = m

Hence, 0 ≤ r + km′ < m.

3. There are no two members of the set {r, r + m′, r + 2m′, ..., r +

(d−1)m′}which are congruence tom since the set {r, r+m′, r+

2m′, ..., r + (d − 1)m′} is the remainders of modulo m and they
are different.

These imply that the congruence ax ≡ b (mod m) has d solution. Now
let s is the other solution of the congruence ax ≡ b (mod m). Then
as ≡ b (mod m) and ar ≡ b (mod m). Since gcd(a,m) = d and
as ≡ ar (mod m). Moreover,

s ≡ r (mod
m

d
)

s ≡ r (mod m′) since m = dm′.

This means s − r = tm′ or s = r + tm′ for some integer t. Since s is
the smallest remainder of modulo m, s should be a member of the set
{r, r +m′, r + 2m′, ..., r + (d− 1)m′}. This completes the proof. �

Example 6.8 We will find the solutions of the congruence 6x ≡ 18

(mod 33). Since gcd(6, 33) = 3, the congruence has 3 solutions. Fur-
thermore,

6x ≡ 18 (mod 33)

2x ≡ 6 (mod 11)

x ≡ 3 (mod 11)

Hence the solutions of the congruence 6x ≡ 18 (mod 33) are 3, 14 and
25.
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6.2 Linear Diophantine Equation

Definition 6.9 Let n be a positive integer and a1, a2, . . . , an, b are inte-
gers where ai 6= 0, i = 1, 2, . . . , n. The equation

a1x1 + a2x2 + · · ·+ anxn = b, (6.1)

is called a Diophantine linear equation where we require the solutions
for xi to be integers.

Example 6.10 The Diophantine equation 7x1 + 5x2 = 1 has solution
x1 = −2 and x2 = 3, but x1 = 1

2
and x2 = −1

2
is not a solution.

Example 6.11 The Diophantine equation 3x1− 6x2 = 0 can be simpli-
fied to x1 = 2x2 (without altering the set of solutions). If we let x2 be
any integer k and x1 = 2k, this forms an infinite set of solutions for this
equation. It fact, every possible solution is of this form. We can write
the set of solution as

S = {(2k, k) : k ∈ Z}.

The main result concerning linear Diophantine equations is the fol-
lowing theorem.

Theorem 6.12 The equation (6.1) is solvable if and only if

gcd(a1, . . . , an) | b.

In case of solvability, all integer solutions to (6.1) can be expressed
in terms of n− 1 integral parameters.
Proof. Let d = gcd(a1, . . . , an). Note that if b is not divisible by d then
for every integers x1, . . . , xn, the left-hand side of (6.1) is divisible by
d and the right-hand side is not. This implies (6.1) is not solvable.

If d|b, then we obtain the equivalent equation

a′1x1 + · · ·+ a′nxn = b′,
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where a′i = ai/d for i = 1, . . . , n and b′ = b/d. Clearly, we have
gcd(a′1, . . . , a

′
n) = 1. The rest of the proof can be completed using

induction on the number n of the variable.

In the case n = 1, the equation has the form x1 = b or −x1 = b, and
thus the unique solution does not depend on any parameter. We now
assume that n ≥ 2 and that the solvability property holds for all linear
equations in n − 1 variables. The goal is to show that the equations in
n variables have a solution. Set dn−1 = gcd(a1, . . . , an−1). Then any
solution (x1, . . . , xn) satisfies the congruence

a1x1 + a2x2 + · · ·+ anxn ≡ b (mod dn− 1),

which is equivalent to

anxn ≡ b (mod dn − 1). (6.2)

Multiplying both sides of (6.2) by aφ(dn−1)−1
n and taking into account

that aφ(dn−1)
n ≡ 1 (mod dn−1), we obtain

xn ≡ c (mod dn−1),

where c = a
φ(dn−1−1)b
n . It follows that xn = c + dn−1tn−1 for some

integer tn−1. Substituting in (6.1) and rearranging yields the equation
in (n− 1) variables

a1x1 + · · ·+ an−1xn−1 = b− anc− an−1dn−1tn−1.

It remains to show that dn−1 | (b − anc − an−1dn−1tn−1), which is
equivalent to anc ≡ b (mod dn − 1). The last relation is true because
of the choice of c. Therefore we can divide the last equation by dn−1,
and obtain

a′1x1 + · · ·+ a′n−1xn−1 = b′, (6.3)

where a′i = ai/dn−1 for i = 1, . . . , n − 1 and b′ = (b − anc)/dn−1 −
antn − 1. Because gcd(a′1, . . . , a

′
n−1) = 1, by the induction hypothesis
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the Equation (6.3) is solvable for each integer tn−1 and its solutions can
be written in terms of n−2 integral parameters. If we add to these solu-
tions xn = c+ dn−1tn−1, we obtain solutions to (6.1) in terms of n− 1

parameters. �

Corollary 6.13 Let a1, a2 be relatively prime integers. If (x̂1, x̂2) is a
solution to the equation

a1x1 + a2x2 = b

then all of its solutions are given by

x1 = x̂1 + a2t,

x2 = x̂2 + a1t,

for every integer t.

Theorem 6.14 The Diophantus linear equation a′x+ b′y = c′ which is
derived from the equation ax+by = c where a′ = a : gcd(a, b), b′ = b :

gcd(a, b) and c′ = c : gcd(a, b) has a solution x = r and y = s. Then,
the set of all solutions of ax + by = c is {gcd(x, y)|x = r + b′t, y =

s+ a′t, t is an integer }.

Proof. Prove this theorem as exercise. �

6.3 System of Linear Congruences

A collection of some linear congruences which forms a system is
called system of linear congruences.

Based on the mathematics history, congruences were first used to
calculate calendars in ancient China in the beginning of the 2nd cen-
tury B.C. Many historian believed that the astronomers had defined
shangyuan as the starting point of the calendar. If the Winter Solstice
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of a certain year occurred dl days after shangyuan and d2 days after the
new moon, then that year was N years after shangyuan; hence moti-
vated the system of congruences.

dN ≡ d1 (mod 60)

dN ≡ d2 (mod m)

where d is the number of days in a tropical year and m is the number of
days in a lunar month. On the other hand, a master Sun’s Mathematical
manual from China, Sun Zi Suanjing, raised a problem which means
there are certain things whose number is unknown. A number is repeat-
edly divided by 3, the remainder is 2; divided by 5, the remainder is 3;
and by 7, the remainder is 2. Furthermore, the question asked what will
the number be?. It follows from the problem that we have the system of
linear congruences as follows.

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

Sun Zi had solved the problem by giving the solution as follows

x ≡ 140 + 63 + 30 ≡ 233 ≡ 23 (mod 105).

We begin to explain the properties of a system of linear congruences
by the following theorem.

Theorem 6.15 A system of linear congruences x ≡ ai (mod m), i =

1, 2, 3, ..., k where (mi,mj) = 1 for every i 6= j has a solution modulo
m such that m = m1m2...mk and the solution is unique.

Proof. We will prove the theorem by using mathematical induction.

1. It is clear that the statement S(1) : x ≡ a1 (mod m1) is true
since the congruence x ≡ a1 (mod m1) has a solution.
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2. Consider the system of linear congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2),

where gcd(m1,m2) = 1. We will show that the system of linear
congruences has a solution. Since x ≡ a1 (mod m1), x = a1 +

k1m1 for some integer k1. We therefore have,

a1 + k1m1 ≡ a2 (mod m2)

k1m1 ≡ a2 − a1 (mod m2)

Since gcd(m1,m2) = 1, the latest congruence, k1m1 ≡ a2 − a1
(mod m2), has a solution, say t,. Then k1 = t + k2m2 for some
integer k2 which satisfies the latest congruence. Hence,

x = a1 + k1m1 = a1 + (t+ k2m2)m1

x = (a1 + tm1) + k2m2m1.

This means x ≡ (a1 + tm1) (mod m1m2)

which implies that the system of linear congruence has a solution.
Now assume that S(r − 1) : x ≡ ai (mod mi) has a solution,
where i ∈ {1, 2, 3, ..., r − 1}, say the solution is s. Then

x ≡ s (mod m1m2m3...mr−1).

3. We will show that S(r) : x ≡ ai (mod mi) has a solution, where
i ∈ {1, 2, 3, ..., r − 1, r}. Since

x ≡ s (mod m1m2m3...mr−1),

the system of the linear congruences containing r linear congru-
ences can be represented as follows.

x ≡ s (mod m1m2m3...mr−1)

xa1 (mod mr)

This system of linear congruences has the same solution since
gcd(m1m2m3...mr−1) = 1 since mi and mj are relatively prime
for every i 6= j, and i, j ∈ {1, 2, 3, ..., r − 1}.
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Moreover, we will show that the solution is unique. Suppose that the
system of linear congruences x ≡ ai (mod m), i = 1, 2, 3, ..., k where
(mi,mj) = 1 for every i 6= j has two solutions modulo m, say r and s.
We therefore have.

r ≡ ai (mod mi)

s ≡ ai (mod mi)

Hence,

r − s ≡ 0 (mod mi)

It means that mi|(r − s) for every i ∈ {1, 2, 3, ..., k}. In other words,
r − s is a common multiple of mi,m2, ...,mk. Since gcd(mi,mj) = 1

for every i 6= j, (m1m2...mk)|(r − s). Remember that r and s are the
solution of the system of linear congruences, the integers r and s are
the smallest remainder modulo (m1m2...mk) such that

−(m1m2...mk) < r − s < (m1m2...mk).

Since r and s is common multiples of m1,m2, ...mk and for every i 6=
j, gcd(mi,mj) = 1. Hence, we can infer that

r − s = 0 or r = s.

In other words, the system of linear congruences has a unique solution.
�

Example 6.16 We will find the solution of the following system of li-
near congruence.

x ≡ 3 (mod 4)

x ≡ 4 (mod 5)

x ≡ 1 (mod 3)
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In order to solve the problem easier, we give the following hint. Now
consider the system of linear congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...
...

x ≡ ak (mod mk)

such that gcd(m1,m2, ...,mk) = 1. Define

Mi =

∏k
i=1mi

mi

and si is the solution of the linear congruence Mix ≡ 1 (mod mi), i ∈
{1, 2, ..., k}. Then

s =

k∑
i=1

aisiMi

satisfies the system of linear congruences. Thus, the solution is

x ≡ s (mod

k∏
i=1

mi).

Implement this method to solve this example. It follows from the
problem explained in this example that

a1 = 3 m1 = 4

a2 = 4 m2 = 5

a3 = 1 m3 = 3.

We therefore have,

M1 = 5.3 = 15, which implies 15x ≡ 1 (mod 4) or x ≡ 3 (mod 4)

M2 = 4.3 = 12, which implies 12x ≡ 1 (mod 5) or x ≡ 2 (mod 5)

M3 = 4.5 = 20, which implies 20x ≡ 1 (mod 3) or x ≡ 2 (mod 3)
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Thus

s =

3∑
i=1

aisiMi

= 3.3.15 + 4.3.12 + 1.3.20

= 135 + 144 + 60

s = 339

So, the solution of the system of linear congruences can be represented
as

x ≡ 339 (mod 4.5.3)

≡ 339 (mod 60)

x ≡ 39 (mod 60).

In the previous material, we have learned to solve a system of linear
congruence with one variable. Moreover, we will describe some prop-
erties of a system of linear congruences with multiple variable.

Theorem 6.17 Let m be a natural number and gcd(∆,m) = 1 such
that ∆ = ad− bc. Then the system of linear congruence

ax+ by ≡ e (mod m)

cx+ dy ≡ f (mod m)

has a solution, say (x, y) where

x = ∆−1(de− bf) (mod m)

y = ∆−1(af − ce) (mod m)

and ∆−1 is the inverse of ∆ modulo m.

Proof. We multiply the congruence ax+ by ≡ e (mod m) with integer
d and the congruence cx + dy ≡ f (mod m) with the integer b, we
therefore have

adx+ bdy ≡ de (mod m)

bcx+ bdy ≡ bf (mod m)
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Thus,
(ad− bc)x ≡ (de− bf) (mod m),

and since ∆ = ad−bc, where ∆ is the determinant of the representation
matrix (

a b

c d

)

∆x ≡ (de− bf) (mod m).

Furthermore, since gcd(∆,m) = 1,∆ has an inverse modulo m, say
∆−1. Hence,

x ≡ ∆−1(de− bf) (mod m).

Using the same method to eliminate the x variable, we multiply the
congruence ax + by ≡ e (mod m) with integer c and the congruence
cx+ dy ≡ f (mod m) with the integer a, we therefore have

acx+ bcy ≡ ce (mod m)

acx+ ady ≡ af (mod m)

Thus

(ad− bc)y ≡ (af − ce) (mod m)

∆y ≡ (af − ce) (mod m)

Since gcd(∆,m) = 1, we therefore have

y ≡ ∆−1(af − ce) (mod m).

This implies that (x, y) is the solution of the system of multivariable
linear congruences, where

x ≡ ∆−1(de− bf) (mod m)

y ≡ ∆−1(af − ce) (mod m),

which completes the proof. �
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Definition 6.18 Let A = (aij) and B = (bij) be n × k matrices such
that their entries are integers. The matrix A is congruence to the matrix
B modulo m (it is denoted by A ≡ B (mod m)) if the entry aij ≡ bij
(mod m) for every i ∈ {1, 2, .., n}, j ∈ {1, 2, ..., k}.

Example 6.19 The matrix(
15 3

8 12

)
≡

(
4 3

8 1

)
(mod 11)

since

15 ≡ 4 (mod 11)

3 ≡ 3 (mod 11)

8 ≡ 8 (mod 11)

12 ≡ 1 (mod 11).

Theorem 6.20 LetA = (aij), B = (bij) be n×k matrices, letC = (cij)

be a k × p matrix, and let D = (dij) be a t × p matrix such that their
entries are integers. Then, we have

AC ≡ BC (mod m)

DA ≡ DB (mod m)

Proof. It is clear. �

Matrix is a useful tool that can be used to solve a system of linear con-
gruences especially for a multivariable linear congruences. Consider the
following example.

Example 6.21 The following system of linear congruences.

x+ 4y ≡ 5 (mod 13)

2x+ 5y ≡ 7 (mod 13)

can be represented as(
1 4

2 5

)(
x

y

)
≡

(
5

7

)
(mod 13)
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Definition 6.22 Let A be an n × n matrix and its entries are integers
such that AA−1 = A−1A ≡ I (mod m), where I is the n × n identity
matrix. The matrix A−1 is called the inverse of A modulo m.

Theorem 6.23 Let

A =

(
a b

c d

)
be a matrix, where a, b, c, d are integers such that det(A) = ∆ = ad−bc
is prime relative to a positive integer m. Then

A−1 = ∆−1 =

(
d −c
−b a

)
is the inverse of A modulo m.

Proof. Let

A =

(
a b

c d

)
be a matrix such that its entries are integers. Then

AA−1 =

(
a b

c d

)
∆−1

(
d −b
−c a

)
=

(
1 0

0 1

)
Analogously, we can see that A−1A = I . �

Theorem 6.24 If A is a square matrix such that ∆ = detA 6= 0, then
Aadj(A) = (det(A))I .

Proof. Prove this theorem as exercise. �

Theorem 6.25 If A is a square matrix and its entries are integers and
let m be a positive integer such that gcd(∆,m) = 1, then the inverse of
A modulo m is

A−1 = ∆−1adj(A)
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Proof. Let A be a square matrix and its entries are integers and let m be
a positive integer such that gcd(∆,m) = 1, where ∆ = det(A). Then
∆−1 exists. Thus Aadj(A) = ∆I . We therefore have

A∆−1adj(A) ≡ ∆∆−1I ≡ I (mod m)

∆−1adj(A)A ≡ ∆∆−1I ≡ I (mod m)

These show that A−1 = ∆−1adj(A). �

Example 6.26 We will solve the following system of linear congru-
ences three variables.

2x1 + 3x2 + 2x3 ≡ 3 (mod 11)

4x1 − 5x2 + 5x3 ≡ −7 (mod 11)

−3x1 + 7x2 − 2x3 ≡ 5 (mod 11)

We therefore have the following representation matrix. 2 3 2

4 −5 5

−3 7 −2


 x1

x2
x3

 ≡
 3

−7

5

 (mod 11)

Furthermore, we will represented the inverse of the entries with the
respect of addition modulo 11. We have the following condition. 2 3 2

4 6 5

8 7 9


 x1

x2
x3

 ≡
 3

4

5

 (mod 11)

The inverse of the matrix 2 3 2

4 6 5

8 7 9

 (mod 11) is the following matrix
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 3 2 8

7 9 3

9 1 0

 .

This gives x1
x2
x3

 ≡
 3 2 8

7 9 3

9 1 0


 3

4

5

 (mod 11)

≡

 57

72

31

 (mod 11)

 x1
x2
x3

 ≡
 2

6

9

 (mod 11)
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Homework Chapter 6

1. Let 9x ≡ k (mod m) where k be an element of the set of all
remainders of module 12. Determine the integer k such that.

a. The congruence has no solution.

b. The congruence has solutions.

2. Find the solution of the congruence 4x ≡ 6 (mod 18).

3. Determine how many the number of the solutions of the following
congruences.

a. 3x ≡ 6 (mod 15)

b. 6x ≡ 11 (mod 15)

c. 3x ≡ 6 (mod 24)

d. 3x ≡ 1 (mod 23)

4. Find the integers x and y which are the solutions of the following
equation.

(a) 2x+ by = 18

(b) 6x+ 15y = 51

5. Determine the smallest positive integer a > 2 such that 2|a, 3|a+

1, 4|a+ 2, 5|a+ 3, 6|a+ 4.

6. Mr.Bob opened his store in the early morning. He provides duck
eggs and chicken eggs in his store. The price of duck egg is Rp
2.900,00 per grain and the price of chicken egg is Rp 1.800,00
per grain. How many eggs which are successfully sold if Mr. Bob
received Rp 28.900,00 for the total sales.

7. If a ≡ b (mod m), the prove that a ≡ b (mod 2m) or a ≡ b+m

(mod 2m).
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8. Determine the solution of the system of linear congruences as
follows:

x+ 2y ≡ 1 (mod 5)

2x+ y ≡ 1 (mod 5)

9. Determine the matrix A such that the entries of A are the mem-
bers of the set of all remainders of modulo 5. Suppose

A ≡

(
2 4

1 3

)(
4 2

0 1

)
(mod 5)

10. Let A and B be n× n square matrices such that the entries of the
both matrices are integers. Show that if A ≡ B (mod m), then
Ak ≡ Bk (mod m) for every positive integer k.

11. Show that the matrix

A =

(
4 11

1 22

)
satisfies the congruence A2 ≡ I (mod m) where I is the 2 × 2

identity matrix, that is,

I =

(
1 0

0 1

)
.

12. Determine the inverse modulo 7 of the following matrices.

A =

(
0 2

4 1

)

B =

(
1 2

5 1

)

C =

(
3 3

4 6

)
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13. Determine the inverse modulo 7 of the following matrices.

A =

 1 1 0

2 0 1

0 1 1

 and B =

 1 2 3

2 2 5

1 4 6



14. Determine the solution of the following system of linear congru-
ence.

x+ y ≡ 1 (mod 7)

x+ z ≡ 3 (mod 7)

y + z ≡ 2 (mod 7)

15. Determine the solution of the following system of linear congru-
ence.

x+ 2y + 3z ≡ 1 (mod 11)

x+ 2y + 5z ≡ 1 (mod 11)

y + 4y + 6z ≡ 1 (mod 11)
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CHAPTERS 7

FERMAT AND WILSON THEOREM

7.1 Fermat Theorem

Pierre de Fermat was born in Beaumont-de-Lomagne between 31
October and 6 December 1607. He was a French lawyer at the Par-
lement of Toulouse, France. He was also a mathematician. He has many
contributions in the development of number theory. Fermat’s original
statement was

Tout nombre premier mesure infailliblement une des puissances -1 de
quelque progression que ce soit, et l’exposant de la dite puissance est
sous-multiple du nombre premier donné -1; et, après qu’on a trouvé la

première puissance qui satisfait à la question, toutes celles dont les
exposants sont multiples de l’exposant de la première satisfont tout de

même à la question.

which was interpreted in English as:

Every prime number [p] divides necessarily one of the powers minus
one of any [geometric] progression [a, a2, a3, ...] and the exponent of

this power [t] divides the given prime minus one [divides p− 1]. After
one has found the first power [t] that satisfies the question, all those

whose exponents are multiples of the exponent of the first one satisfy
similarly the question [that is, all multiples of the first t have the same

property

Based on the history of the development of number theory. The man
who provided the published proof was Euler. He published the proof
in his article entitled ”Theorematum Quorundam ad Numeros Primos
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Spectantium Demonstratio” in the Proceedings of the St. Petersburg
Academy in 1936. On the other hand, Leibniz also gave the same proof
but the draft was unpublished. In this section, we will explain the Fer-
mat Theorem and some related properties. We start with the following
theorem.

Theorem 7.1 Let a and m be positive integers. If gcd(a,m) = 1, then
the smallest remainders modulo m of the sequence a, 2a, 3a, ..., (m −
1)a are the permutation of 1, 2, 3, ...,m− 1.

Proof. Consider the sequence a, 2a, 3a, ..., (m − 1)a. In fact, every
member of the sequence a, 2a, 3a, ..., (m − 1)a is not congruence to 0

modulom. We will prove that every member of the sequence a, 2a, 3a, ..., (m−
1)a is exactly congruence to one of the member of {1, 2, 3, ...,m− 1}.
Suppose there are two terms of the sequence a, 2a, 3a, ..., (m − 1)a

which is congruence to each other, say

ra ≡ sa (mod m) where 1 ≤ r < s < m.

Since gcd(a,m) = 1, we can cancel the integer a. We therefore have

r ≡ s (mod m).

It follows from the property of ra and sa stating that ra and sa are
the smallest remainders modulo m that r = s, contrary to the condi-
tion 1 ≤ r < s < m. In other words, every member of the sequence
a, 2a, 3a, ..., (m − 1)a is exactly congruence to one of the member of
{1, 2, 3, ...,m− 1} which completes the proof. �

Theorem 7.2 Fermat Theorem. If p is a prime number and gcd(a, p) =

1, then ap−1 ≡ 1 (mod p).

Proof. Let a be an integer and let p be a prime number such that gcd(a, p) =

1. It follows from Theorem 7.1 that the smallest remainders modulo p
of the sequence a, 2a, 3a, ..., (p−1)a is exactly congruence to one of the
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member of {1, 2, 3, ..., p− 1} which implies the multiplication between
them will be congruence to modulo p. Hence,

a.2a.3a...(p− 1)a ≡ 1.2.3...(p− 1) (mod p)

ap−1(1.2.3...(p− 1)) ≡ (p− 1)! (mod p)

ap−1(p− 1)! ≡ (p− 1)! (mod p)

We know that gcd(p− 1, p) = 1. This gives

ap−1 ≡ 1 (mod p)

which completes the proof. �

In general case, we have the following generalization.

Theorem 7.3 Let a4 = be an integer and let p be a prime number. Then
pp ≡ a (mod p).

Proof. It follows from Thorem 7.2 that

ap−1 ≡ 1 (mod p)

Multiplying the both side with the integer a, we have

ap ≡ a (mod p).

�

Furthermore, prove the Theorem 7.3 using mathematical induction.

Example 7.4 We will use the Fermat Theorem to find the remainder of
the division 539 : 11. It follows from the Fermat Theorem that 510 ≡ 1

(mod 11). Moreover,

539 ≡ (510)3(52)45 (mod 11)

≡ 1.34.5 (mod 11)

5399 ≡ (mod 11)

Hence, the remainder is 9.
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Theorem 7.5 If p and q are prime numbers such that p 6= q and ap ≡ a

(mod q), then
apq ≡ a (mod pq)

Proof. It follows from Theorem 7.3 that (aq)p ≡ aq (mod p). Further-
more, since aq ≡ a (mod p), apq ≡ a (mod p). This gives

p|(apq − a) (7.1)

Analogously, we have
q|(apq − a) (7.2)

It follows from the statement 7.1, the statement 7.2, and p, q are differ-
ent prime numbers that pq|(apq − a. This means

apq ≡ a (mod pq)

�

7.2 Wilson Theorem

In this section, we will discuss an important theorem which was first
stated by Ibn al-Haytam (c. 1000 AD) and in the 18th century, John
Wilson stated the same theorem. However, Edward Waring also posted
the theorem 1770. But Edward Waring and John Wilson still could not
prove it. Later, in 1771, Lagrange gave his first proof.

Theorem 7.6 Let p be a prime number and let x2 ≡ 1 (mod p). Then
the congruence x2 ≡ 1 (mod p) has exactly two solutions, that are, 1

and p− 1.

Proof. Let r be the solution of the congruence x2 ≡ 1 (mod p). Then

r2 − 1 ≡ 0 (mod p)

(r + 1)(r − 1) ≡ 0 (mod p).
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This gives p|(r + 1)(r − 1). Since p is a prime number, p|(r + 1) or
p|(r − 1). We therefor have

r + 1 ≡ 0 (mod p) or r − 1 ≡ 0 (mod p)

r ≡ −1 (mod p) or r ≡ 1 (mod p)

r ≡ p− 1 (mod p) or r ≡ 1 (mod p)

which implies that 1 and p− 1 are the solutions. �

Example 7.7 The solution of the congruence x2 ≡ 1 (mod 11) are 1

and 10.

Theorem 7.8 Let p be a prime number such that p 6= 2 and let a′ be the
solution of the congruence ax ≡ 1 (mod p) where a ∈ {1, 2, 3, ..., p−
1}. Then

a. If a 6≡ b (mod p), then a′ 6≡ b (mod p).

b. If a = 1 or a = p− 1, then a′ ≡ a (mod p).

Proof. We know that if a ∈ {1, 2, 3, ..., p − 1}, then gcd(a, p) = 1

such that ax ≡ 1 (mod p) has exactly one solution. This means that a′

exists, where aa′ ≡ 1 (mod p).

a. Suppose a′ ≡ b (mod p). Then aa′ ≡ ab′ ≡ 1 (mod p). Remember
that a′ and b′ are the solutions of the congruence ax ≡ 1 (mod p).
Furthermore,

aa′b ≡ ab′b ≡ b (mod p) where b ∈ {1, 2, 3, ..., p− 1}
a ≡ b (mod p) since b′b ≡ 1 (mod p)

which completes the proof.

b. If a = 1, that is x ≡ 1 (mod p), then the solution is a′ = 1 which
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implies a′ ≡ a (mod p). Moreover,

in case, a = p− 1, (p− 1)x ≡ 1 (mod p)

−x ≡ 1 (mod p)

x ≡ −1 (mod p)

x ≡ p− 1 (mod p)

Hence, a′ ≡ a (mod p).

�

Example 7.9 Consider the congruence ax ≡ 1 (mod 13). Now let a′

be the integer such that aa′ ≡ 1 (mod 13). We therefore have the fol-
lowing table.

Table 7.1 The Integers Satisfying ax ≡ 1 (mod 13)

a 1 2 3 4 5 6 7 8 9 10 11 12
a’ 1 7 9 10 8 11 2 5 3 4 6 12
aa’ 1 1 1 1 1 1 1 1 1 1 1 1

Moreover, we have the following congruences

1.1 ≡ 1 (mod 13)

2.7 ≡ 1 (mod 13)

3.9 ≡ 1 (mod 13)

4.10 ≡ 1 (mod 13)

5.8 ≡ 1 (mod 13)

6.11 ≡ 1 (mod 13)

12.12 ≡ 1 (mod 13)

and
1.2.7.3.9.4.10.5.8.6.11 ≡ 1 (mod 13). (7.3)
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If the congruence 7.3 is multiplied the both side by 12, we therefore
have

1.2.3.4.5.6.7.8.9.10.11.12 ≡ 10 (mod 13)

10! ≡ 10 (mod 13)

10! ≡ −1 (mod 13)

In general, we have the Wilson Theorem.

Theorem 7.10 (Wilson Theorem) If p is a prime number, then (p −
1)! ≡ −1 (mod p).

Proof. Since every integer a such that ax ≡ 1 (mod p) gives the ex-
istence of the integer a′ such that aa′ ≡ 1 (mod p) where a, a′ ∈
{2, 3, 4, ..., p − 2, p − 1}, there exist 1

2
(p − 3) couples numbers which

are congruence to 1 modulo p. We therefore have

2.3.4...(p− 2) ≡ 1 (mod p)

1.2.3.4...(p− 2)(p− 1) ≡ p− 1 (mod p)

(p− 1)! ≡ −1 (mod p)

which completes the proof. �

Furthermore, the converse of the Wilson Theorem is also true. Hence,
we have the following consequence.

Theorem 7.11 Let p be a positive integer. The following conditions are
equivalent.

a. p is a prime number.

b. (p− 1)! ≡ −1 (mod p).

Proof. The statement from (a.) to (b.) has been already proven in The-
orem 7.10. Conversely, suppose p is not a prime number. Then there
exist positive integers a 6= 1, p and b such that p = ab such that a|p and
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a ≤ p− 1. Now, since (p− 1)! ≡ −1 (mod p) then p|(p− 1)! + 1 and
a|p, a|(p − 1)! + 1. Moreover, since a ≤ p − 1, a is one of the divisor
of (p− 1)! which implies a|(p− 1)!. Remember that a|(p− 1)! + 1 and
a|(p − 1). Then a|1, contrary to the condition a 6= 1. Hence, p should
be a prime number. �

Theorem 7.12 Let p be a prime number. Then the congruence x2 + 1 ≡
0 (mod p) has solutions if and only if p ≡ 1 (mod 4).

Proof. Let a be the solution of the congruence x2 + 1 ≡ 0 (mod p).
Then a2 ≡ −1 (mod p) and gcd(a, p) = 1. It follows from Fermat
Theorem, we therefore have

ap−1 ≡ 1 (mod p)

(a2)
1
2
(p−1) ≡ 1 (mod p)

(a2)
1
2
(p−1) ≡ 1 (mod p)

(−1)
p−1
2 ≡ 1 (mod p)

Hence, the prime number of the form 4k + 3 does not satisfy the latest
congruence above. On the other hand, the prime number 2 does not meet
the requirement. So, the only possible prime numbers are the prime
numbers of the form 4k+ 1 which implies p ≡ 1 (mod 4). Conversely,
consider the following conditions.

p− 1 ≡ −1 (mod p)

p− 2 ≡ −2 (mod p)

...
p+ 1

2
≡ −p− 1

2
(mod p)

and

(p− 1)! = 1.2.3...(p− 1)
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Then

(p− 1)! ≡ 1.2.3...
p− 1

2
.
−p+ 1

2
...(−2)(−1)(p− 1) (mod p)

(p− 1)! ≡ (−1)
p−1
2 (1.2.3...

p− 1

2
)2 (mod p)

(p− 1)! ≡ (1.2.3...
p− 1

2
)2 (mod p)

Since p = 4k + 1 for some integer k, (−1)
p−1
2 = 1 which implies

(p− 1)! ≡ ((
p− 1

2
)!)2.

It follows from Wilson Theorem that

−1 ≡ ((
p− 1

2
)!)2.

This gives ((p−1
2

)!)2 satisfies the congruence x2 + 1 ≡ 0 (mod p). So,
we may deduce that the congruence has solutions. �

Example 7.13 We will find the solution for the congruence x2 + 1 ≡ 0

(mod 17). Since the prime number 17 has the form of 4k+ 1. Then the
congruence x2 + 1 ≡ 0 (mod 17) has solution

(
17− 1

2
)! ≡ 8! (mod 17)

≡ 40.320 (mod 17)

(
17− 1

2
)! ≡ 13 (mod 17)

Moreover, the integer 17 − 13 = 4 is also the solution. Hence, the
solution of the congruence x2 + 1 ≡ 0 (mod 17) is {4, 13}.
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Homework Chapter 7

1. Determine the remainder of the following integers.

(a) 314159 : 7

(b) 314162 : 7

2. Find the two latest digit of the integer 7355!

3. If gcd(a, 35) = 1, show that a12 ≡ 1 (mod 35).

4. Prove that n21 ≡ n (mod 15) for every integer n.

5. Prove that of q is an odd prime number, then

1q + 2q + 3q + ...+ (q − 1)q ≡ 0 (mod q).

6. Determine the remainder of 16! if 16! is divided by 19!

7. Let q be a prime number which is greater than 5. Prove that

2(q − 3)! + 1 ≡ 0 (mod q)

8. Let n be an integer and q be a prime number. Show that

q|nq + (q − 1)!n

9. Let n be an integer and q be a prime number. Show that

q|(q − 1)!nq + n

10. Let q be an odd prime number. Show that 2q|(22q−1 − 2)!

11. Find the solution of the following congruences

(a) x2 ≡ −1 (mod 31)

(b) x2 ≡ −1 (mod 47)
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12. Let q be a prime number and Let a and b are integers which are
not divisible by q. Show that

aq ≡ bq (mod q) =⇒ a ≡ b (mod q)

13. Let q be a prime number and Let a and b are integers which are
not divisible by q. Show that

aq ≡ bq (mod q) =⇒ a ≡ b (mod q2)

14. Let q be an odd prime number. Show that

1q−1 + 2q−1 + 3q−1 + ...+ (q − 1)q−1 ≡ −1 (mod q)

15. For a prime p of the form 4k + 3, prove that either

(
p− 1

2
)! ≡ 1 (mod p) or (

p− 1

2
)! ≡ −1 (mod p)
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