A mathematical model for the response of immune cells to mycobacterium tuberculosis

By YUDI ARI ADI

http://www.hillpublisher.com/journals/JAMC/

ISSN Online: 2576-0653 ISSN Print: 2576-0645

A mathematical model for the response of immune cells to mycobacterium tuberculosis

Fitri Nur Rahmawati, Yudi Ari Adi*

(Affiliation): Department of Mathematics, Faculty of Applied Science and Technology, Ahmad Dahlan University, Yogyakarta, Indonesia

How to cite this paper: Rahmawati, F.N., Adi, Y.A. (2020) Paper Title. ******, 4, *_*. http://***/*** 2020.*****

Received: **** **, *** Accepted: **** **, *** Published: **** **, ***

*Corresponding author: Email: yudi.adi@math.uad.ac.id

Abstract

Tuberculosis (TB) is an infectious disease that is a problem almost all over the world. In 2019, the World Health Organization (WHO) reported 10 million new infections each year, with an average of 1.2 million people dying from the disease. 23 cination to healthy people is an effort to protect against infection with this disease. In this paper, a mathematical model of the interaction with this disease. In this paper, a mathematical model of the interaction with this disease. In this paper, a mathematical model of the interaction with this disease. In this paper, a mathematical model of the interaction with this disease. In this paper, a mathematical model of the interaction with this disease. In this paper, a mathematical model of the interaction of the interaction with this disease. In this paper, a mathematical model of the interaction with this disease. In this paper, a mathematical model of the interaction with this disease. In this paper, a mathematical model of the interaction wi

Keywords

Mycobacterium tuberculosis, macrophage, a mathematical model

4 1. Introduction

Tuberculosis (TB) is an infectious 21 ease caused by the bacteria Mycobacterium tuberculosis, which can attack the lungs or other body organs. Tuberculosis is one of the top 10 causes of death worldwide. WHO (2019) reported that, India is the largest contributor to TB cases in the world, amounting to 27%. Five other countries that account for nearly two-thirds of total global TB cases are China (9%), Indonesia (8%), the Philippines (6%), Pakistan (6%), Nigeria (4%) [1].

TB is characterized by early fever symptoms, a relatively long cough, coughing up blood, and chest pain [2]. This disease is transmitted through the air containing the bacteria Mycobacterium tuberculosis, not through direct contact. When people with active TB experience coughing, sneezing, screaming, or singing, the bacteria will be carried out of the lungs into the air. Transmission occurs when a person inhales air containing the bacteria Mycobacterium tuberculosis and then reaches the lungs' alveoli. When bacteria enter the human body, the immune system will try to resist and destroy them. The immune response plays a role in controlling the development of Mycobacterium tuberculosis in macrophages and T lymphocytes [3].

Macrophages originate from monocytes, which are part of white blood cells. These macrophages include phagocytic cells (eating cells). Cells damaged by bacteria will produce chemical signals that function to call phagocytes (macrophages) to eat or destroy these bacteria. T lymphocytes are white blood cells that are part of the immune system. The role of T lymphocytes is to recognize harmful foreign objects that enter the body or antigens. With memory T lymphocytes, antigens that have entered the body can be easily identified and destroyed more quickly [4].

Mathematical models can be applied to understand tuberculosis dynamics. Several mathematical models have been developed to study tuberculosis's dynamics, as in [5 - 10]. Ibarguen-Mondragon et al. [5] have modeled immunol 14 cal cells in tuberculosis. Furthermore, Ibarguen et al. [6] extended the assumption of bacterial population growth by forming a system of ordinary differential equations, a model of the interaction between uninfected macrophages, infected macrophages, T cells, and

Mycobacterium tuberculosis bacteria to control tuberculosis. We performed numerical simulations by entering values in the model parameters to estimate the likelihood of disease. Shi et al. [7] extended the previous model to consider chemotherapy drug administration. They were using assumptions that the rate of chemotherapy drug administration is constant (fixed), and the rate of chemotherapy drug administration varies.

Meanwhile, Magombedze et al. [8] developed a tuberculosis model with the infection's location in the lungs. Zhang et al. [9] established a tuberculosis model and then performed global stability and bifurcation analysis for disease-free equilibrium points. Also, Adi & Thobirin [10] compiled a model of the interaction of macrophage cells and Tb bacteria and found a backward bifurcation condition. This paper constructs a dynamic model of tuberculosis in a within-host, an extension of the Adi & Thobirin model in [10], taking vaccin 20n into account.

We organize the paper as follows. In 30 tion 2, we formulate our model and establis 4 ng the properties of solutions. We then discuss the existence of equilibria and the stability of the disease-free equilibrium point in Section 3. In section 4, we provide some numerical simulations to support the theoretical results. Finally, the discussion and conclusion are given in Section 5.

2. Mathematical model

To construct a mathematical model of the immune response of tuberculosis bacteria, the population was divided into uninfected macrophages (M_u) , infected macrophages (M_i) , Mycobacterium tuberculosis (B) and T cells (T). It is assumed that uninfected macrophages reproduce with a growth or recruitment rate of uninfected macrophages of Λ_u and die with a natural mortality rate of uninfected macrophages of μ_u . When bacteria enter the body, uninfected macrophages will get a signal to come to cells that are attacked by bacteria. There is a possibility that uninfected macrophages are unable to clean the bacteria so that uninfected macrophages will become infected macrophages with an infected rate of β . The infected macrophages were killed by T cells of α_T and the infected macrophages exploded due to the proliferation of bacteria outside the threshold for infected macrophages of b.

Mycobacteria tuberculosis bacteria multiply in infected macrophages to a threshold and then explode and release the bacteria. Therefore, it is assumed that the growth rate of rbM_i with r is the rate of bacteria reproducing in infected macrophages. The leased bacteria will become extracellular, then infect macrophages or be eaten (killed) by uninfected methodology ophages γ and the natural death rate of bacteria is μ_B . T cell population using the logistic equation $(1-T)k_1M_i$ where k_1 is the growth rate of T cells, which is limited and can be stimulated by bacteria $\frac{c_BBT}{e_BT+1}$ and died with a natural death rate μ_T .

From the above assumptions, the TB model is written as follows

$$\begin{split} \frac{dM_u}{dt} &= \Lambda_u - \beta B M_u - \mu_u M_u \\ \frac{dM_i}{dt} &= \beta B M_u - b M_i - \alpha_T M_i T \\ \frac{dB}{dt} &= r b M_i - \gamma M_u B - \mu_B \\ \frac{dT}{dt} &= (1 - T) k_1 M_i + \frac{c_B B T}{e_B T + 1} - \mu_T T \end{split} \tag{1}$$

The following theorem verifies that all solutions with nonnegative initial conditions remain nonnegative for all t > 0. So the model of the system (1) has biological meaning.

Theorem 1. The set

$$\varOmega = \left\{ (M_u, M_i, B, T) \in \mathbb{R}_+^4 \ \middle| M_u + M_i \leq \frac{\Lambda_u}{\mu_u}, B \leq \frac{rb \, \Lambda_u}{\mu_u}, T \leq \frac{\Lambda_u}{\mu_T \mu_u} \bigg(k_1 + \frac{rb c_B}{e_B} \bigg) \right\},$$

is a positive invariant and attracting set for equation (1).

Proof. From the first and second equation of (1), we find

$$\frac{dM_u}{dt} + \frac{dM_i}{dt} = \Lambda_u - \mu_u M_u - b M_i$$

$$\leq \Lambda_u - \bar{\mu}_u (M_u + M_i)$$

_ 3

with $\bar{\mu}_u = \min \{\mu_u, b\}$. We have

$$0 \le (M_u + M_i)(t) \le \frac{\Lambda_u}{\bar{\mu}_u} = M_{max}.$$

From the third equation of (1), we find

$$\frac{dB}{dt} = rbM_i - \gamma M_u B - \mu_B B \leq rb\frac{\Lambda_u}{\bar{\mu_u}} - \mu_B B$$

Then, we have

$$B(t) \le \frac{rbM_{max}}{\mu_B} = B_{max}.$$

Lastly, from the fourth equation of (1), we have

$$\begin{split} &\frac{dT}{dt} = (1-T)k_1M_i + \frac{c_BBT}{e_BT+1} - \mu_TT \\ &\leq (1-T)k_1\frac{\Lambda_u}{\bar{\mu}_u} + \frac{c_B}{e_B}\frac{rbM_{max}}{\mu_B} - \mu_TT. \end{split}$$

Hence,

$$\limsup_{t\to\infty} T(t) \leq \frac{1}{\mu_T} \bigg(k_1 M_{max} + \frac{c_B}{e_B} B_{max} \bigg).$$

Therefore, all solutions of model (1) that starting in Ω remain in Ω for all $t \ge 0$.

27

3. Existence and stability of quilibrium points

5

The system (1) always have s disease-free equilibrium point $E_0 = \left(\frac{\Lambda_u}{\mu_u}, 0, 0, 0\right)$. Then, applying the next generation matrix procedures, we find the basic reproduction number

$$R_0 = \frac{r\beta \Lambda_u}{\gamma \Lambda_u + \mu_u \mu_B}.$$

Furthermore, 2 have the following theorem.

Theorema 2. If $R_0 < 1$ then the system (1) has an only disease-free equilibrium point $E_0 = \left(\frac{\Lambda_u}{\mu_u}, 0,0,0\right)$ and if $R_0 > 1$ then the system (1) has two equilibrium points, that is, the disease-free equilibrium point $E_0 = \left(\frac{\Lambda_u}{\mu_u}, 0,0,0\right)$ and the disease equilibrium point $E_1 = \left(M_{uv}^*, M_1^*, B^*, T^*\right)$.

Proof. Solving the system (1) by setting the right-hand side equal to zero, we get

$$M_{u}^{*} = \frac{\Lambda_{u}}{\beta B + \mu_{u}}, \quad M_{i}^{*} = \frac{B}{rb} \left[\gamma \frac{\Lambda_{u}}{\beta B + \mu_{u}} + \mu_{B} \right], T_{1}^{*} = \frac{k_{1}B}{rb} \left[\gamma \frac{\Lambda_{u}}{\beta B + \mu_{u}} + \mu_{B} \right],$$

and B^* is a positive real root of

$$a_1B^4 + a_2B^3 + a_3B^2 + a_4B = 0,$$

where

$$\begin{split} a_1 &= \frac{\beta^2 k_1(\mu_B)^2 \alpha_T}{(rb)^2} \\ a_2 &= 2 \frac{\beta k_1 \gamma \Lambda_u \alpha_T \mu_B}{(rb)^2} + \frac{\beta^2 \mu_B}{r} + \frac{\beta k_1 \mu_u (\mu_B)^2 \alpha_T}{(rb)^2} + \frac{\beta \mu_u k_1 (\mu_B)^2 \alpha_T}{(rb)^2} \\ a_3 &= \frac{rb^2 \beta}{(rb)^2} (\gamma \Lambda_u + \mu_u \mu_B) (1 - R_0) + \frac{k_1 (\gamma \Lambda_u)^2 \alpha_T}{(rb)^2} + 2 \frac{k_1 \gamma \Lambda_u \alpha_T \mu_u \mu_B}{(rb)^2} + \frac{\beta \mu_u \mu_B}{r} + \frac{k_1 (\mu_u \mu_B)^2 \alpha_T}{(rb)^2} \\ a_4 &= \frac{\mu_u}{r} (\gamma \Lambda_u + \mu_u \mu_B) (1 - R_0). \end{split}$$

We find B = 0 or

$$a_1 B^3 + a_2 B^2 + a_3 B + a_4 = 0. (2)$$

If B = 0 we have a disease-free equilibrium point, $E_0 = \left(\frac{\Lambda_u}{u_0}, 0,0,0\right)$.

The coefficient a_1 and a_2 always positive. If $R_0 < 1$, the coefficient a_3 and a_4 also positive, so there no positive real root. Consequently, system (1) has no disease equilibrium point. If $R_0 > 1$, then the coefficient a_3 can be positive or negative, while a₄ is negative. Hence, there is one change of coefficient sign of (2) and according to Descartes's rule of sign, there is at least one positive root of (2). We find that, in addition to E_0 , the system (1) at least has one positive disease equilibrium point. This completes the proof.

Next, the following theorem shows the equilibrium point's stability determined by the sign of real part eigenvalues of the Jacobian matrix of system (1) at the equilibrium point. 12

Theorema 3. The disease-free equilibrium E_0 is locally asymptotically stable if $R_0 < 1$ and unstable if $R_0 > 1$. *Proof.* The Jacobian matrix of system (1) at $E_0 = \left(\frac{\Lambda_u}{\mu_u}, 0, 0, 0\right)$ is

$$J_0 = \begin{bmatrix} -\mu_u & 0 & -\frac{\beta \wedge_u}{\mu_u} & 0\\ \hline 0 & -b & \frac{\beta \wedge_u}{\mu_u} & 0\\ 0 & rb & -\frac{\gamma \wedge_u}{\mu_u} - \mu_B & 0\\ 0 & k_1 & 0 & -\mu_T \end{bmatrix}.$$

The characteristic polynomial of J_0 is

$$p(\lambda) = (\lambda + \mu_u)(\lambda + \mu_T) \left(\lambda^2 + \left(b + \mu_B + \frac{\gamma \wedge_u}{\mu_u}\right)\lambda + \left(\frac{b\gamma \wedge_u}{\mu_u} + b\mu_B\right)(1 - R_0)\right) = 0.$$
 (3)

The roots of (3) are
$$\lambda_1 = -\mu_u < 0$$
, $\lambda_2 = -b < 0$, and the other two roots are determined by the quadratic equation
$$\lambda^2 + \left(b + \mu_B + \frac{\gamma \wedge u}{\mu_u}\right) \lambda + \left(\frac{b\gamma \wedge u}{\mu_u} + b\mu_B\right) (1 - R_0) = 0. \tag{4}$$

We find that both roots of eq17 ion (4) have a negative real part if $R_0 < 1$. If $R_0 > 1$, the equation (4) has one root with a positive real part. Hence, E_0 is locally asymptotically stable if $E_0 < 1$ and unstable if $E_0 > 1$.

We then prove the global stability of E_0 when $R_0 \le 1$.

Theorema 4. The disease-free equilibrium E_0 is globally asymptotically stable if $R_0 \leq 1$. **Proof.** Consider the Lyapunov function

$$V = \beta \Lambda_u B + (\gamma \Lambda_u + \mu_u \mu_B) M_i$$

The derivative V given by

$$\begin{split} \frac{dV}{dt} &= \beta \Lambda_u (rbM_i - \gamma M_u B - \mu_B B) + (\gamma \Lambda_u + \mu_u \mu_B) (\beta BM_u - bM_i - \alpha_T M_i T) \\ &= r\beta \Lambda_u bM_i - \gamma \beta \Lambda_u M_u B - \beta \Lambda_u \mu_B B + \gamma \Lambda_u \beta BM_u - b\gamma \Lambda_u M_i - \gamma \Lambda_u \alpha_T M_i T \\ &+ \mu_u \mu_B \beta BM_u - \mu_u \mu_B bM_i - \mu_u \mu_B \alpha_T M_i T \\ &\leq (\gamma \Lambda_u + \mu_u \mu_B) bM_i (R_0 - 1) + \mu_B \beta \mu_u B \left(M_u - \frac{\Lambda_u}{\mu_u} \right). \end{split}$$

Since $M_u \le \frac{\Lambda_u}{\mu_u}$, we have $\frac{dV}{dt} \le 0$ as long as $R_0 \le 1$. Furthermore, we can see from the system (1) that as t tend to infinity, $M_u \to \frac{\Lambda_u}{\mu_u}$, $M_i \to 0$, $B \to 0$, and $T \to 0$. Hence, the maximum invariant set in $\left\{M_u, M_i, B, T_0 : \frac{dV}{dt} = 0\right\}$, is the singleton $E_0 = \left(\frac{\Lambda_u}{\mu_u}, 0, 0, 0\right)$. Thus, by following Lasalle's Invariance Principle in [11], we have that E_0 is globally asymptotically stable.

For the stability of disease equilibrium E_1 , we claim the following theorem.

Theorema 25 et $A = \beta B^* + \mu_u$; $J = \beta B^*$; $C = \gamma B^*$; $D = b + \alpha_T T^*$; E = rb; $F = \beta M_u^*$; $G = \gamma M_u^* + \mu_B$; $H = \frac{e_B c_B T^{*2} + c_B T^*}{(D_a T^{*1})^2}$; $I = \alpha_T M_i^*$. The disease equilibrium point E_1 is locally asymptotically stable if $k_1 M_i^* - \frac{c_B B^*}{(e_B T^* + 1)^2} - k_1 I T^* - k_1 I > 0$, DG + AD + AG - CF - EF > 0, and ADG + FJE - CDF - AEF > 0.

Proof. The characteristic equation for the Jacobian matrix of system (1) at E_1 is $\lambda^4 + P_1\lambda^3 + P_2\lambda^2 + P_3\lambda + P_4,$ (5)

where

$$P_{1} = k_{1}M_{i}^{*} - \frac{c_{B}B^{*}}{(e_{B}T^{*} + 1)^{2}} + \mu_{T} + G + D + A$$

$$P_{2} = k_{1}M_{i}^{*}(G + D + A) - \frac{c_{B}B^{*}}{(e_{B}T^{*} + 1)^{2}} \frac{(G + D + A) + \mu_{T}(G + D + A) + (DG + AD + AG) - (k_{1}IT^{*} - k_{1}I) - (CF - EF)}{(E_{B}B^{*} + 1)^{2}}$$

$$P_{3} = k_{1}M_{i}^{*}(DG + AD + AG) - \frac{c_{B}B^{*}}{(e_{B}T^{*} + 1)^{2}} \frac{(DG + AD + AG) + \mu_{T}(DG + AD + AG) + ADG}{(E_{B}T^{*} + 1)^{2}}$$

$$- (k_{1}AIT^{*} - k_{1}AI + k_{1}GIT^{*} - k_{1}GI) - (CFk_{1}M_{i}^{*} - CF \frac{c_{B}B^{*}}{(e_{B}T^{*} + 1)^{2}} + CF\mu_{T} + CDF) + EHI + FJE$$

$$- \left(EFk_{1}M_{i}^{*} - EF \frac{c_{B}B^{*}}{(e_{B}T^{*} + 1)^{2}} + EF\mu_{T} + AEF\right)$$

$$\begin{split} P_4 &= \left(ADGk_1M_i^* - ADG\frac{c_BB^*}{(e_BT^* + 1)^2} + ADG\mu_T\right) + \left(-k_1FIC + k_1FICT^*\right) - \left(-k_1AGI + k_1AGIT^*\right) \\ &- \left(CDFk_1M_i^* - CDF\frac{c_BB^*}{(e_BT^* + 1)^2} + CDF\mu_T\right) + AEHI + \left(FJEk_1M_i^* - FJE\frac{c_BB^*}{(e_BT^* + 1)^2} + FJE\mu_T\right) \\ &- \left(AEFk_1M_i^* - AEF\frac{c_BB^*}{(e_BT^* + 1)^2} + AEF\mu_T\right). \end{split}$$

11

According to Routh-Hurwitz stability criteria, all roots of (5) have a new part if $P_1 > 0$, $P_2 > 0$, $P_3 > 0$, $P_4 > 0$ and $P_1P_2P_3 > P_3^2 + \frac{2}{13}P_4$, that is $k_1M_i^* - \frac{c_BB^*}{(e_BT^*+1)^2} - k_1IT^* - k_1I > 0$, DG + AD + AG - CF - EF > 0, and ADG + FJE - CDF - AEF > 0.

4. Numerical results

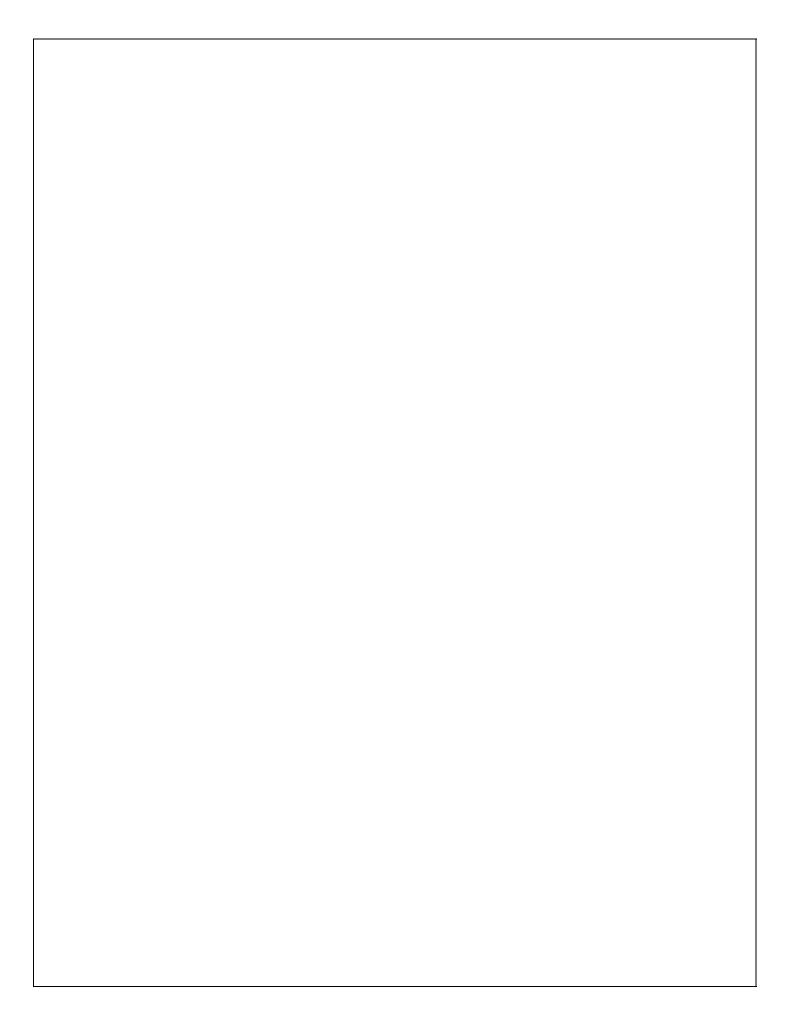
G

In this section, we present the numerical results of the system (1). We also provide the sensitivity of the basic reproduction number R_0 to know the relative importance parameter in the disease.

4.1 Numerical simulation

The parameter values used in the numerical simulation were obtained from the literature [9] given in Table 1.

DOI: ***/*** 2017. **** 5 Sciences



http://www.hillpublisher.com/journals/JAMC/

ISSN Online: 2576-0653 ISSN Print: 2576-0645

Table 1.	Parameter	values	heing used	

Parameter	Values	Unit
Λ_u	1000 - 5000	ml.day-1
β	$8,25 \times 10^{-9} - 2 \times 10^{-5}$	day-1
μ_u	0,0033 - 0,01	day-1
b	0.11 - 0.4	day-1
α_T	0.1 - 0.5	day-1
r	0.055 - 0.1	day-1
γ	$1,25 \times 10^{-7} (10^{-8}, 10^{-9})$	ml. day-1
μ_B	0,012	day-1
k_1	0,484848	day-1
c_B	5×10^{-3}	day ⁻¹
e_B	10^{-4}	day-1
μ_T	0,01 - 0,3333	day-1

We take the set of parameter values $\Lambda_u = 1000, \beta = 2 \times 10^{-6}, \mu_u = 0.01, b = 0.11, \alpha_T = 0.1, r = 0.1, \gamma = 1.25 \times 10^{-7}, \mu_B = 0.012, \mu_T = 0.1$. With the solution converges to the disease-free equilibrium point $E_0 = (100000, 0, 0, 0, 0)$. On the other hand, by choosing $\beta = 2 \times 10^{-5}$ and keeping all others parameter values, we have $R_0 = 8.163 > 1$, and we show the stability of the disease equilibrium point $E_1 = (13065, 4123, 3327, 1)$ (Figure 2).

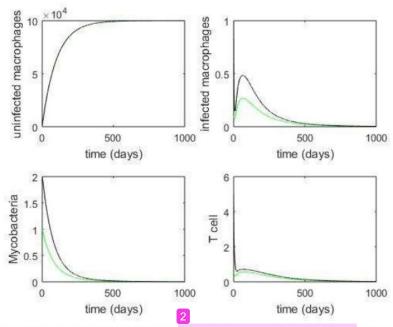


Figure 1. Time series solution with different initial conditions of the system (1) with $R_0 = 0.8163$.

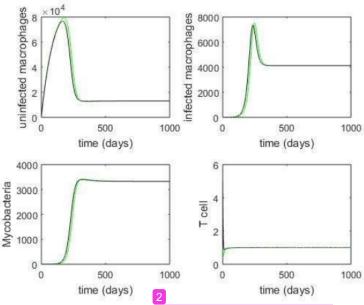


Figure 2. Time series solution with different initial conditions of the system (1) with $R_0 = 8.163 > 1$.

4.2 Sensitivity analysis of R₀

In order to discover the key parameters that have a high impact on disease, we present the sensitiving indices of R_0 to the given set of parameters. We follow the methods in [12] to calculate the sensitivity index, which is defined as the ratio of relative change on R_0 to the relative change on a parameter p as

$$\Gamma_p^{R_0} = \frac{\partial \Gamma}{\partial p} \times \frac{p}{\Gamma}.$$
 (6)

We note that the maximum value of $\Gamma_p^{R_0}$ is 1, which implies that an increase (decrease) of p by a % increase (decrease) R_0 by a %. The sensitivity indices for the set of parameter values are presented in Table 2.

Table 2. The sensitivity indices of R_0		
Parameter	Indeks Sensitivity	
r	+1,0000	
β	+1,0000	
Λ_u	+0,9057	
γ	-0,0943	
μ_u	-0,9057	
μ_B	-0,9057	

Table 2 shows that the most sensitive parameters are the infection rate and the rate of bacterial proliferation. Therefore, sensitivity analysis can predict the appropriate intervention strategy to prevent and control the disease's spread described by the model. In Figure 3, we show the effect of changing parameter β on the number of infected macrophages. From Table 2, we know that the sensitivity index of β , $\Gamma_p^{R_0} = 1$. We find that, if β increase by 10 % from 6×10^{-6} to 6.6×10^{-6} , then R_0 increase by 10 % from $R_0 = 2.44898$ to $R_0 = 2.693878$.

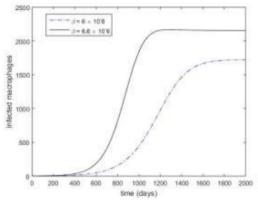


Figure 3. The changing effects of the infection rate β on the number on infected macrophages.

Considering the initial conditions $M_u(0) = 750$, $M_i(0) = 10$, B(0) = 2, and D(0) = 5 the results of the simulation are given in Figure 3.

5. Conclusion

In this study, we present a theoretical and 7 uantitative analysis of the within-host TB model, taking into account the immune response and vaccination. From the mathematical mode 31 the interaction of the immune response to Mycobacterium tuberculosis, two equilibrium points are 16 ained, namely the disease-free equilibrium point and the infected equilibrium point. The global asymptotically stable disease-free equilibrium point if $R_0 \le 1$ and the disease equilibrium point is stable if $R_0 > 1$. From the sensitivity analysis, it is known that the most influential parameters in the spread of tuberculosis are the infection rate (β) and bacterial proliferation (r). Medically, TB treatment can be done by paying attention to the two most sensitive parameters. A more in-depth analysis will be carried out for future research.

Acknowledgments

This paper is supported by Ahmad Dahlan University.

References

- [1] WHO (2019), Global Tuberculosis Control. http://www.who.int/tb/publications/global_report/2019/pdf/fullreport.pdf.
- [2] CDC (2011), The Difference Between Latent TB Infection and Active TB Disease.
- [3] CDC (2016), Transmission and Pathogenesis of Tuberculosis.
- [4] Marino dan Kirschner, D. E. (2004), The human immune response to the Mycobacterium tuberculosis in lung and lymph node, *Journal of Theor Biol*. Vol. 227, pp. 463-486.
- [5] Mondragon, E. I., Esteva, L. dan Galan, L. C. (2011), A Mathematical Model for Cellular Immunology of Tuberculosis, *Mathematical Biosciences and Engineering*, vol. 8, no. 4, pp. 973-986.
- [6] Mondragon, E. I., Esteva, L. dan Burbano-Rosero, E. M. (2018), Mathematical model for growth of Mycobacterium tuberculosis in granuloma, *Math Biosci Eng.* vol. 15, no. 2, pp. 407-428.
- [7] Shi, R., Li, Y. dan Tang, S. (2014), A mathematical model with optimal controls for cellular immunology of tuberculosis *Taiwanese Journal of Mathematics*, vol. 18, no. 2, pp. 575-597.
- [8] Magombedze, G., Garira, W., Mwenje, E. (2006), Modelling the human immune response mechanisms to Mycobacterium tuberculosis infection in lungs, *Math Biosci Eng.* vol. 3, pp. 661-682.
- [9] Zhang, W., Frascoli, F., Heffernan, J. M. (2020), Analysis of solutions and disease progressions for a within-host tuberculosis model, *Mathematics in Applied Sciences and Engineering*, vol. 1, no. 1, pp. 39-49.
- [10] Adi, Y.A. dan Thobirin, A. (2020), Backward bifurcation in a within-host tuberculosis model, *Advances in Mathematics Scientific Journal*, vol. 9, no. 9, pp 7269–7282.
- [11] Khalil, H.K. (2002), Nonlinear System, Prentice-Hall, New Jersey.

[12] Chitnis, N., Hyman, J.M., Cushing, J.M. (analysis of a mathematical model, <i>Bulletin of Ma</i>	2008), Determining Important paramete athematical Biology, vol 70, no. 5, pp. 12	ers in the spread of malaria through the sensitivity $272 - 1296$
DOI: ***/***.2020.****		Journal of Applied Mathematics and Computation

A mathematical model for the response of immune cells to mycobacterium tuberculosis

ORIGINALITY REPORT

18%

SIMILA	Ö % ARITY INDEX		
PRIMA	PRIMARY SOURCES		
1	www.hindawi.com Internet	64 words — 2%	
2	Soovoojeet Jana, Palash Haldar, T. K. Kar. "Mathematical analysis of an epidemic model with isolation and optimal controls", International Journal of Mathematics, 2016 Crossref	36 words — 1 % Computer	
3	rajpub.com Internet	31 words — 1%	
4	Fatmawati, Hengki Tasman. "An Optimal Treatment Control of TB-HIV Coinfection", International Journal of Mathematics and Mathematical Sciences, 2016 Crossref	29 words — 1 %	
5	Zahura Khatun, Md.Shahidul Islam, Uttam Ghosh. "Mathematical modeling of hepatitis B virus infection incorporating immune responses", Sensors International Crossref	28 words — 1 %	
6	www.gilmasart.nl Internet	26 words — 1 %	
7	hdl.handle.net	25 words — 1 %	
8	Industrial and Applied Mathematics, 2015. Crossref	24 words — 1 %	

9	Zhang Zhonghua, Suo Yaohong. "Stability and Sensitivity Analysis of a Plant Disease Model with Continuous Cultural Control Strategy", Journal of App Mathematics, 2014 Crossref	20 words — 1 %
10	terra.estgp.pt Internet	20 words — 1 %
11	Xiwei Liu, Zhonghua Li. "Asymptotic Stability of Quaternion-Valued Love Model", 2018 IEEE International Conference on Information and Automat 2018 Crossref	20 words — 1 % ion (ICIA),
12	Miaoran Yao, Yongxin Zhang, Wendi Wang. "Bifurcation analysis for an in-host Mycobacterium tuberculosis model", Discrete & Continuous Dynamica B, 2017 Crossref	18 words — 1 % al Systems -
13	Zhu Zhengping. "Modeling and analyzing the spread worms based on quarantine", 2008 27th Chinese Control Conference, 07/2008	of 16 words — 1 %
14	www.scielo.org.co Internet	16 words — 1 %
15	cyberleninka.org Internet	15 words — 1 %
16	Mukandavire, Z "Asymptotic properties of an HIV/AIDS model with a time delay", Journal of Mathematical Analysis and Applications, 20070615 Crossref	4 words — < 1%
17	www.intechopen.com Internet	4 words — < 1%
18	www.ajol.info Internet	3 words — < 1%

19	www.groundai.com Internet	12 words — <	1%
20	Hai-Feng Huo, Yong-Lan Chen, Hong Xiang. "Stability of a binge drinking model with delay", Journal of Biological Dynamics, 2017 Crossref	11 words — <	1%
21	chapes-petit.fun Internet	9 words — <	1%
22	www.tandfonline.com Internet	9 words — <	1%
23	Omar Zakary, Sara Bidah, Mostafa Rachik, Hanane Ferjouchia. "Mathematical Model to Estimate and Predict the COVID-19 Infections in Morocco: Optima Control Strategy", Journal of Applied Mathematics, 2		1%
24	mafiadoc.com Internet	8 words — <	1%
25	text-id.123dok.com Internet	8 words — <	1%
26	Muhammad Ozair, Takasar Hussain. "Analysis of vector-host model with latent stage having partial immunity", Applied Mathematical Sciences, 2014 Crossref	8 words — <	1%
27	link.springer.com Internet	8 words — <	1%
28	docplayer.net Internet	8 words — <	1%
29	"Systems Medicine", Springer Science and Business Media LLC, 2016 Crossref	8 words — <	1%

