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ABSTRACT
Article History: We considered an in-host tuberculosis model that described the interaction
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Revised :D-M-20XX of vaccination treatments on uninfected macrophages. Optimal control is applied
Accepted :D-M-20XX to show the optimal vaccination and effective strategies to control the disease. The
Online  :D-M-20XX optimal control formula is obtained using the Hamiltonian function and
Pontryagin's maximum principle. Finally, we perform numerical simulations to
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A. INTRODUCTION

We consider a within-host tuberculosis model in (Adi & Thobirin, 2020) with three
components: uninfected macrophages, infected macrophages (M;), and MTb bacteria, denoted
by M, M;, and B, respectively, given in the following form of ordinary differential equation
system

M, o~ pM,B

dt “ 1+aB’
M, pM,B kM,
dt 1+aB ' 14+eM,’
dB

(11)

In this model (1.1), A and u are a constant production rate and a natural death rate of

uninfected macrophages, respectively. Parameter £ is the maximal transmission of infection
BM,B
1+aB’
an inhibition effect. Parameter r and c are the average numbers of the MTb bacteria released

by infected macrophages and the rate of macrophages burst, respectively. The parameters y is
the MTb bacteria death rate by uninfected macrophages, and d is MTb bacteria natural death
rate. The infected macrophages die due to an adaptive immune response modeled in a density-

rate at which macrophages became infected at a saturated incidence rate of whitﬁ is




2|

dependent term,%, whereas k is the maximum killing rate, and ¢ is a half-saturation
constant.

In many works of literature of tuberculosis models @t is usually considered drug
administration or vaccination, as in (Baba et al,, 2020; Blaser et al., 2016; Brooks-Pollock et al,,
2014; Byrne etal., 2015; Kim et al., 2018; Kuddus et al., 2020; Kyu et al,, 2018). Many of the TB
models use optimal control theory regarding their treatment strfifegies (Agusto & Adekunle,
2014; Baba et al,, 2020; Bowong, 2010; Choi et al,, 2015; Emvudu et al,, 2011; Fatmawati et al.,
2020; Gao & Huang, 2018; Moualeu et al., 2015). In a within-host tuberculosis model, the
immune response to bacteria is generally assumed, as in (Adi & Thobirin, 2020; Zhang, 2020;
Zhang et al, 2020). This paper will apply the optimal control theory to a within-host
tuberculosis model by considering the vaccination that affects macrophages.

We organize this paper as follows. We begin by briefly review the basic concept of optimal
control in Section 2. In Section 3, we are formulating the optimal control model. To support the
theoretical results, we give some numerical simulations in Section 5. Finally, the discussion and
conclusion are provided in Section 5.

B. BASIC CONCEPT OF OPTIMAL CONTROL
In this section, we recall the basic theory of optimal control (Chambers et al, 1965). We
consider a system of ordinary differential equations
x = f(x(1)),x(0) = X, (2.1)
where x, € R, f:R™ —» R", and x: [0, %) — R™. Suppose that the right-hand side depends
on a parameter u: [0, ) — A, where A € R™. Then the system becomes
X= f(xa), u(t)),x(0) = x, X(T) free. (2.2)
In this system, the solution x(t) depends on the control u(t). The corresponding response
of the system is a trajectory that corresponds to the control u(t). In system (Z8), the control
may be arbitrary, so the problem does not have a solution. Therefore, we need to find the best
control to minimize or maximizgJthe performance measure as an objective function. In a
disease-control model, we need to find the pontrol to minimize the cost of controlling the
disease. For that purpose, a payoff functional is defined as follows

JIu] = f, g(x(®),u()dt, (23)

where x(t) solves (2.2) for the specified control u(t), with the given function g: R* x A —»

R and terminal time T as well. The function g is called the running payoff. Now, introduce the
admissible controls

Q = {u(t) € L}(0,T):u(t) € A}. (2.4)

The optimal control problem is to find a control u* (t) € () that miflimizes or maximizes the
payoff functional (2.3). A corresponding solution together with the optimal control gives the
pair of optimal control (x*,u").

If such a control u(t) exists, it is called the optimal control. For maximum problem, the
solution (x*,u"), if exits, can be found by Pontryagin's maximum principle. According to the
constraint in the Lagrangian problem, the time-varying Lagrange multiplier A(t) was
introduced. The function A(t) is usually called an adjoint variable of the system. The
comparable function, in this case, is the Hamiltonian function H, defined for all t € [0,T] by

H(x(t),u(t), A(t)) = g(x(t), u(6)) + Xizy 4(0)fi(x(6), u(1)). (2.5)

The Pontryagin maximum principle is precisely formulated as follows .

Theorem 1. Letu*(t) be a piecewise control defined on [0,T] and x*(t) be the associated
trajectory. Then there exists a nonzero adjoint vector function A*(t) that is a solution to the
adjoint system
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A(D) P 2.6)
A(T) =0,
so that X" (t) maximizes H (X" (t), u(t), A(t)) for u(t) € Q, thatis
H(x*(t),u" (1), A" (t)) = H(X*(t), u(t), A" (), for all u(t) € Q. (2.7)

Thus, the necessary conditions for optimizing the Hamiltonian are:
aH
=0= g, + XL A(OFu =0,

g

: AH(x(t)u(t)A(t)) 3

L) = —+ = 4i(t) = =g, — Xima (O f)xp (2.8)
AT) =0.

Please refer to Pontryagin's book (Kaufman, 1964) and some extensions book, such as
(Beckeretal, 1989; Seierstad & Sydsaeter, 1977) for more details.

C. RESULT AND DISCUSSION
1. Optimal control problem
This section reformulates and analyzes an optimal control problem for the model (1.1) to

determine the optimal trajectories of uninfected macrophages, infected macrophages, and
MTb bacteria in response to the optimal strategy. The control is chosen basis on the
significant parameter used as the bifurcation parameter (Adi & Thobirin, 2020). We
introduce a control function u(t), which represents the effort of tuberculosis prevention,
such as vaccination. The control model is given as follows

M, (1—u(t)fM,B

ax A THMum e
M, (1-u(t)pM,B kM,
a — 1+aB T TyeM,
dB

T =rcM; —yM,B — dB,

(3.1)

where u(t) represents a control strategy that cures a fraction of uninfected macrophages
and reduces the rate at which macrophages leaves uninfected clss towards the infected
class. The controlis bounded between 0 and u,, ,,. From a medical point of view, itis realistic
to assume that u,,,,, < 1, since the vaccination is not completely effective. Let us define the

set of admissible control as
Q= {u(t) € L'(0,7): 0 < u(t) < Upnar, vVt € [0, T]} (3.2)

Then, optimal control theory is applied to determine the optimal treatment ad ministration
that will maximize the effort on tuberculosis prevention measures and the cost associated
with this support. We define the set of state variables X (t) = (M, (t), M;(t), B(t)) and the
objective functional as

JTul = f; (M, (6) = My(6) = u* (&), (33)

which consider the fraction of the uninfected macrophages (M,) and the infected
macrophages (M;) and the cost associated with the support of transmission measure (u).




The optimal control problem is to find the control u* with corresponding state trajectories
X* = (M;, M;,B") on the time interval [0, T], that maximizes the objective functional (3.3)
subject to dynamical system constraints (3.1), thatis

J[w'] = max/[u]. (3.4)
Then, to apply Pontryagin's maximal principle in Theorem 1, we define the Hamiltonian as
H(My, My, By, 2) = My (6) = Mi(8) — () + Ay S+ A 4+ 2,2
. - M,B
= M, (£) = My(t) — u(t) + Ay (A — M, — S0
(-u(t))B MyB kM, (3.5)
T Mo

+Ay(rcM; —yM, B — dB).

According to Pontryagin's maximum principle, for 1" to be an optimal solution with
corresponding optimal states X*, the following conditions must be satisfied.

ax  _ _on

at A’

dH

w =0 (3.6)
di _ OH

dt - ax

According to the optimal condition (3.6), we claim the optimal solution of system (3.1) in
the following theorem.

Theorem 2. There exists an optimal control u* corresponding to the optimal solution
M;, M{,B* t|#t maximizes the objective function J[u] over f1. Moreover, there exist adjoint
variables 1;,i = 1,2,3, along with the transversality conditions A;(T") = 0 such that

iy _ (-u(E)BB" (1) "

o =l (- ) e — Ay B (D),

2; _ —k

w = At e T Ao (3.7)
dis Q-u' ()Mi()

2= (= Bt — Aad.

Furthermore, associated optimal controlu* is given by
* s BA1=22) My (t) B (t)
u'(t) = min{uyay, max{o, T raean'@) 1} (3.8)

Proof. The adjoint system (3.7) is derived by taking partial derivatives of the Hamiltonian
(3.5) with respect to the associated state variables so that
di, ~ 0H di,  O0H di;  OH
atc oM, dt oM @dt = 0B
together with the transversality conditions A;(T) = 0,i = 1,2,3. The optimal control u* is
defined by solving z—i = 0. This lead to the condition of optimal control: —2u(t) + f(1, —
My (£)B(t) _

2)———— = 0. Hence, we have
1+aB(t)
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u(t) = B4 — )M, (t)B(1)
21+ aB(b)

Since u* must belong to (), we obtain

ifu<20
ifos u < 1,
ifu=1

*

u =

= o

which can also be characterized as
B4y — )M ()B™ (1)
2(1 +aB*(t))

u*(t) = min{uy,a,, max{0,

This completes the proof.

. Numerical simulations

This section gives some numerical simulations by using the ode45 solver in MATLAB to
demonstrate the previous section's theoretical results. We compute numerically the
Theorem 2 by implementing a forward-backward fourth-order Runge-Kutta method, as
described in (Campos etal,, 2020). The iterative method is starting with a guess on a control
variable over the time interval [0, T] using a forward scheme. Then, using the transversality
conditions A;(t) = 0, the co-state equation (3.7) are solved by a backward scheme.
Furthermore, we update the control by using the state's new values and the value from (3.8).
The iterative processes are stopped if the values reach convergence.

5
g 20, . - . 5 = . ; a
32} .
=
3 il L 'l ' ' i A '
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time (days)
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Figure 1. Solution of the System (3.4) with low transmission rates f§ so that it does not require
optimal control.

For the simulation, we consider a set of parameter values obtained from the literature
(Adi & Thobirin, 2020; Zhang et al., 2020), with the unit volume in milliliters and time in
days as follows

A=3300,u=0.01,0 =0.01,c =0.01,k = 0.1,¢ = 10,
r =100, y = 0.125 x 10~%,d = 0.05, (4.1)




with variation of parameter (. The initial value for the uninfected macrophage, infected
macrophage, and MTb bacteria are taken as M,,(0) = 300000, M;(0) = 20, and B(0) = 500,
respectively. Now, we consider the case of low transmission of infection rate at which the
uninfected macrophages became infected and choose parameter f = 1.5 x 1078, Figure 1
shows that the infected macrophages and the MTb bacteria population are reduced, and in
this case, almost no macrophages will be infected by the MTb bacteria, and the MTB bacteria
become extinct. This means, in cases of very low transmission, vaccination or control is not
needed, and the Mtb bacteria and infected macrophages will disappear from the body.
Figure 1 shows that infected macrophages and MTb bacteria disappear from the body in

about a year (after about the 300th day).
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Figure 2. Results from optimal control with a set of parameter (4.1) and § = 1.5 x 1077 of
uninfected macrophages, in dashed, compared with that of no control (solid).

80 r
- VUt COMtros
ith contral
2 kK
ok 5 E ~ . - P E——
o 1o 200 300 400 500 600 o0 809 BO0 X0
time (days)
00
wIoLt control
—- == with control




D.

Yudi Ari Adi, A within-host tuberculosis model with... 7

Figure 3. Results from optimal control with a set of parameter (4.1) and § = 1.5 x 1077 of
infected macrophages and MTb bacteria, in dashed, compared with that of no control (solid).
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Figure 4. Optimal control «* for the optimal control problem (3.4) subject to the initial
condition M, (0) = 300000, M;(0) = 20, and B(0) = 500 and the admissible control (L.

Now, we vary  with a much higher transmission rate, which is about ten times as much,
and keep all other parameter values asin (??). Since vaccination is not completely effective,
in this simulation, we set u,,q, = 0.85. Figure 2-3 show comparison trajectories for
uninfected macrophages, infected macrophages, and MTb bacteria with and without control.
Meanwhile, Figure 4 shows control variate over time. With the control, the number of
uninfected macrophage populations is higher than without control. The increase in the
number of uninfected macrophages is proportional to the decrease in the number of
infected macrophages. As shown in Figure 3, with the initial condition of infected
macrophages 20, without control, this number will increase to its maximum level in less
than two years. Likewise, MTb bacteria's population continued to grow until it was at a
constant level for less than two years. Meanwhile, if given control, both population infected
macrophages and MTb Bacteria will decrease and disappear from the body in about two
years. Appropriate controlis shown in Figure 4, and a control policy is obtained; in this case,
the complete vaccination is given for approximately 900 days (30 months) then decreases
within 100 days later.

CONCLUSION AND SUGGESTIONS
This paper has studied an optimal control problem for a within-host tuberculosis model

describing @ie interaction between Microbacterium tuberculosis and macrophages. We
determine the existence of optimal control analytically and characterize them using
Pontryagin's maximum principle. From our results, we suggest that for the tuberculosis disease
to be successfully eradicated, it is necessary to optimize the treatment g@vaccination. In other
words, there is still a need to improve medical methods and technology. From the point of view
of mathematical modeling, it is still necessary to develop a more realistic in-host TB model that
considers the most relevant treatment methods and uses actual data to help doctors determine
the right treatment for TB patients. Our future research will learn more about this.
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