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ABSTRACT

Comorbidities have an influence on progression of infectious disease suffered by the patients. In this paper, we

construct and analyze the SIR epidemic model by considering comorbidities in infected patients to characterize
the infectious geelse progression with comorbidities intervention as a consideration in determining the elplaprielte

treatment. By determining the formula of the basic reproduction number, the conditions which represent stability
of the disease-free equilibrium point and thefflisease equilibrium point are identified. Furthermore, the sufficient
and necessary condition for local and global stability of disease-free equilibrium points and local stability of both

non-comorbidities and comorbidities endemic equilibrium points are investigated. Theoretical findings of this

research are supported by performing numerical simulations as an illustration of the dynamics which occur on the

model solution.
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1. INTRODUCTION

In epidemiology, mathematical models that
explain the dynamics of human infectious diseases
have recently played a key role in disease control,
particularly the currently ongoing disease, namely
COVID-19. The pandemic of the new coronavirus
named coronavirus 2019 (COVID-19) is currently still
ongoing and still cannot be completely stopped. This
virus has been transmitted rapidly throughout the
world, including in Indonesia. The COVID-19 had
190,289 510 confirmed cases worldwide as of July 19,
2021, with 4092361 deaths (CFR 2.2%) in 204
infected nations and 151 community transmission
countries. Meanwhile, the Government of the
Republic of Indonesia has recorded 2911733
confirmed cases of COVID-19, 74,920 deaths (CFR:
2.6 percent) from the disease, and 2,293 875 patients
who have recovered [1].

Understanding the process of virus transmission is
essential to determine the best virus mitigation
techniques. Reducing the transmission rate [2], such as
the use of masks, social distancing, and handwashing,
as well as detecting infected individuals, are strategies
to reduce the number of infection [3, 4, 5]. The effort
of early detection in reducing the burden of disease

must always be carried out. However, it must be
acknowledged that lack of resources can make it
difficult to reduce the incidence of infection [6].

Veu‘i()usanelthemelticell models have been
developed t@ct a better understanding of the
dynamics of COVID-19 disease transmission and the
“icacy of therapeutic strategies [7, 8, 9, 10]. Many
models have been developed to assess the
effectiveness of intervention [6, 8, 10, 11] and
investigate the patterns of infectious else
progression [12]. Despite the fact that several
mathematical models have been developed to explore
the dynamics of COVID-19 transmission, research on
COVID-19 transmission which has focused on
individuals with comorbidities 1s still limited, even
though patients with comorbidities, such as
hypertension or diabetes mellitus, are have a higher
risk of undergoing severe symptoms and death [13].

Many epidemic models have been devised by
researchers to get a better understanding on the
mechanism of disease transmission. Since the famous
Kermack-McKendrick SIR  model had been
introduced, various epidemic models have been
defined and explored in various types of literature.
However, the SIR model that differentiates the
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infection population is still very limited. In this paper,
we will formulate and analyze a mathematical model
for disease transmission based on SIR epidemic model
by distinguishing patients with and without
comorbidities. Analysis of the model can be
implemented to determine the progression of
infectious diseases that differentiate between classes
of infection, such as COVID-19 as well as the other
diseases.

2. MODEL FORMULATION
2.1. The Model

On the formation of ﬂ'ﬁllhcmalticall model of
COVID-19 transmission, the population is divided
mto four subpopulations, namely Susceptible (5),
infected without comorbidities (), infected with
comorbidities ( I, ), and Recovered ( R). The
transmission scheme is presented in the compartment
diagram in Figure 1.
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Figure 1 Schematic diagram for the COVID-19

disease.

?is assumed that the susceptible individuals are
recruited into the population at a constant rate A.
Susceptible individuals are reduced by infection,
following primary contact with infected individuals
with or without comorbidities at the rate 8, and a
natural death rate §. Therefore, the rate of change of
the susceptible individuals is given by

as
— =A—-BS(+ 1) — 8S.

dt

The population of infected individuals without
comorbidities is increased by infection of susceptible
individuals at arate of 8. Infected individuals without
comorbidities disease will decrease with the curing
rate @, and natural death rate & Therefore, the
following equation is obtained.

dr
= = BSI—ail = 6.
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T.'he population of individuals infected with
comorbidities is increased by infection of susceptible
individuals at a rate of f. Infected individuals with
comorbidities will decrease with the cure rate ay ,
death due to covid infection at a rate of a5, and the
natural death rate & . Therefore, mathematically, it is

di
d—:’ = BSIp — aylp — pul, — 81,

Furthermore, the recovered population comes from
individuals who recover from infection with or
without comorbidities and decrease due to natural
deaths. The corresponding differential equation is
given by

Z—f=a11+a Ip — 8R.

Thus, the model of COVID-19 transmission with
comorbidities is given by the following nonlinear
differential system:

ﬁ:A-ssuHP)—as

dt
dil
— = BSI — a,] — &1
= F 1
dip (N
E = ,BSIP - a:ZIP —}J[p - 6fp
dR
— = ayl + aylp; — 6R.
dt
The initial conditions of system (1) are

5(0),1(0), I,(0), and R(0).
2.2. Properties of solutions

Because (1) is a model that tracks the changes of
mam population, all parameters are assumed to be
positive for all £ > 0. We also established that the
solution of system (1) is non-negative by stating and
proving the f()ll()winwe()rem.

Theﬂrerraz.l. Let 5(0),1(0), [p((]), and R(0) are
positive, then the solution of the system (1) is non-
negative for all t > 0.

Proof. From the first equation of the system (1) we
have

% S(t) exp fﬁ(f{r) + Ip(t))dt + 6t

= Aexp jﬁ(!(r)+!,,(r))dr+6t
0
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Integrating both sides from t = Oto t = T, we obtain

t
5(T) exp(fﬁ(!(r) +1p(r))dr + ar) — 5(0)
0

T t
= f Aexp (f A1) + 1p(D)dr + 5r).
1]

0

Hence,

t
S(T) = 5(0) exp (— f (1) +Ip())dr + 5:)
[}
t
+exp (— f B + Ip(D)dt + ar)
1]

T t
X J‘Aexp (I BI() + Ip(x))dr + St) dz >0,
0

0

since the initial condition S(0) > 0.

Similarly, it can be shown that ,1(0) > 0, Ip(O) >0,

and R(0) > 0 for all ..

Theorem 2.2. Let S(t),!(t),lp(mmd R(t) be the
solution of the system (1) with non-negative initial
condition 5(0),1(0),1,(0), and R(0). The set of
biological  feasible  region Q={(S,1,1,,R) €

RY| N = A/8} is positively invariant.

Proof. Since the total population N(t) = 5(t) +

I(t) + I, () + R(¢). we get

dN
L =A- — < A —
o = M-l — 6N < A= 6N

Thus, we have 0 < tli_’rf'nmsupN(t)51’\,/6 so all

solution of system (1) ultimately enters the closed set

Q. Hence, the region  is positively invariant.m

2.3. Existence and stability of equilibria

The system (1) always has a disease-free
equilibrium point which is found by setting the right-

hand side of the equation iﬁ) to zero, 1. e.

Ey= (g 0,00).

The basic reproduction number of the system (1) is

Ro = max{Ry, R,},

. __BA ; _ BA
with R, = 5(@148) and R, = a2 rd)

obtained by using the next generation matrix

procedure described in [14].

which

The stability of the disease-free equilibrium point
'ﬁstiltcd in the following theorem.
Theorem 2 3. The disease-free equilibrium point E is
locally asymptotically stable if Rg < 1 and unstable if
Ry > 1.

Proof. The Jacobian matrix of the system (1) at the
disease-free equilibrium point Ey = (%, 0,0,0) is

f(EU) =

BA BA
=6 % - 0
0 ?—(aﬁ—é) 0 0
0 0 B @tu+® o
0 oy oy -8

The eigenvalues of the Jacobian matrix J(E,) are
M ==8=(@ +6) R — 1) 23 =(a; +u+
&)(R, — 1), and A, = —&. Hence, all eigenvalues are
negative if only in m( 1and R; < 1. From (3). it is
concluded that, Ej is locally asymptotically stable if
Ry <1 and unstable if Ry > 1.m

Furthermore, when Ry < 1, we can verify that Ey
1s global sl;lbibf.
Theorem 2 4. The disease-free equilibrium point Eg is
globally asymptotically stable if Ry < 1.

Proof. We deﬁnae Lyapunov function to investigate
whether the endemic equilibrium is globally
asymptotically stable as follows

L=4I +ayl,.
Clearly, L is positive definite and we obtain the
derivative
L _dl | dl,
ac Ca T
= 8(BSI — (ay + ) + a (BS1p — (a2 + p + 6)1)

< &1 @—(a +8) | +ayl @—(a+ +8)
= 5 1 2p\ 73 2 T H
= 6I(ay + 6)(Ry — 1) +aalp(az +p + §)(Ry — 1).

Since Ry < 1, it follows that % < 0and Z—: =0if
I, = 0. Hence, L is a Lyapunov function and the
largest compact invariant set is the singlemrm'o}.
Thus, by LaSalle-Lyapunov Theorem [15], {E} is
globally asymptotically stable. m

The system (1) has a non-comorbidities dominance
equilibrium point E;, in which infected individuals
without comorbidities [ # 0 , while the infected
individuals with comorbidities Ip= 0. The non-
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comorbidities dominance equilibrium point is given
by

a+8 8 ay
E = (T’E(Rl - 1),0,E(R1 -] @
The system (1) also has comorbidities dominance
equilibrium point E3, in which infected individuals
without comorbidities /=0, while the infected
individuals with comorbidities I, # 0 that given by

E, = MDE(R—I)E(R—I) (5)
2= B g 2 "B 2 -

From (4) and (5) we know that the
comorbidities dominance equilibrium point Ey exist if
R; > 1 and the comorbidities dominance equilibrium
point E; exist if R, > 1. Hence, if both Ry and R, are
greater than one. there coexistence of the non-

non-

comorbidities dominance equilibrium point £y and the
comorbidities dominance equilibrium point E, . For
stability these equilibria, we have the following
stability theorem.

Theorem 2.5. Let Ry > 1, and R, > 1.

1 The non-comorbidities dominance
equilibrium point Eyis locally asymptotically
stable if R, < Ry and unstable if Ry < R;.

ii If R<R, then the
dominance equilibrium point E, is locally

ﬂ;vmpmlir‘aﬂy and unstable if R; < Ry.

comorbidities

Proof. The eigenvalues of the Jacobian matrix of the
system (1) at E; are 1; = —4§, which always negative
and Az = (a; + ) — 8. The remaining eigenvalues
are the rots of a quadratic equation A% + §R,A +
(ay +p+ 6)6(R; —1) = 0, which have roots with
negative real part if R; > 1. Thus, all eigenvalues
have negative real parts if (a, + ) — 8 which will be
fulfilled if R, < R,;. Hence, the n()n-ctﬂ()rbidities
dominance  equilibrium  point E; is  locally
asymptotically stable if R, < Ry and unstable if Ry <
R,. The proof of the stability
equilibrium point E; is similar. m

of dominance

3. SIMULATION RESULTS

In this section, we investigate the numerical results
to verify the mathematical aife@lsis and to investigate
the behaviour of the solution of system (1).

3.1. The stability of disease-free equilibrium

We set a parameter values

Advances in Social Science, Education and Humanities Research, volume 597

A=30,=08x%10"7,a, =083,a, =0.75
u=0035=364x10"5  (6)

With the set parameter values in (6), the condition
of Theorem 2.3 is satisfied. We have Ry = 0.79435
and R, =0.84526 so  [Elhat Ry =
max{0.79435, 0.84526} = 0.84526. In this case, we
obtain tl'mdiscasc-ﬁtc equilibrium point Ep =
(824,175,0,0,0) which is globally asymptotically
stable, see Figure 2. Figure 2a shows the time series
solution, while Figure 2b shows that all trajectories
with various initial conditions tend to the disease-free
equilibrium point.
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ure 2 With the set of parameter values in (6), the
disease-free  equilibrium point E; is globally
asymptotically stable.

3.2. The stability of endemic equilibrium
3.2.1. The non-comorbidities dominance

In this case, we set the parameter values
A=30,=08x10"7,a; =03,a, =03,
un=01,68=3.64x 1075 )

310
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With the set parameter values in (7), we have R; =
2.19753 > Ry = 1.6482 so that Ry = Ry = 2.19753
and the condition in Theorem 2.5(1) is satisfied. S0, in
this case, we have the unstable disease-free
equilibrium point E; = (824,175,0,0,0) , the stable
non-comorbidities  endemic  equilibrium E; =
(375,045.5,54.48,0,449,075.8) , and the unstable
comorbidities endemic equilibrium E; =
(500,045.5,0,29.49,243,075.6). Figure 3 shows the
time series and trajectories solution of the stable non-
comorbidities endemic equilibrium point E; .
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Figure 3 With the EfJof parameter values in (7), the
non-comorbidities endemic equilibrium point Ej; is
locally asymptotically stable.

ajectories solution of Ej.

3.2.2. The dominance

equilibrium

comorbidities

In this case, we set the parameter values as in (7)
except @z = 0.1. Thus, we have Ry = 219753 <
R, = 3.2961, so that Ry = R; = 3.2961 and the
condition of Theorem 2.5(i1) 1s satisfied. So, in this
case we have the unstable disease-free equilibrium

Advances in Social Science, Education and Humanities Research, volume 597

point E, = (824,175,0,0,0) , the unstable non-

comorbidities endemic equilibrium E, =
(375,045.5,54.48,0,449,075.8) , and the stable
comorbidities endemic equilibrium E, =

(250,045.5,0, 104.5,287,012.9). Figure 4 shows the
time series and trajectories solution of the stable
comorbidities endemic equilibrium point E,.
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Figure 4 With the set of parametd§Elues in (7) except
a, = 0.1, the non-comorbidities endemic equilibrium
point E; is locally asymptotically stable.

4, DISCUSSION AND FUTURE WORK

In this paper, we discuss a susceptible-infected-
recovered (SIR) epidemic model involving two
infective classes. The first class is the infected
individuals who do not have comorbidities, while the
second «class is the individuals who have
comorbidities. Comorbidities of the patients are
factors that greatly affect the severity of the disease
and often cause death. Numerical analysis and
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simulation have been carried out on the introduced
model. Numerical simulation of this model is done by
selecting sble parameter values. The simulation
also shows the effect of changing the parameter values
on the dynamics of the disease transmission. We
believe that this model can be implemented on real
data, such as the data of COVID-19 transmission, so
that strategies to overcome the disease can be
determined and the disease can be eliminated
immediately. Therefore, the model can still be
developed and modified in the next research, so that it
becomes more appropriate with the real condition of
infectious diseases case, such as COVID-19.
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