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Analysis of a Mathematical Model of the
Interaction between PIP3, AKT, and FOXO3a in

Acute Myeloid Leukemia

Yudi Ari Adi, Lina Aryati, Fajar Adi-Kusumo, and Mardiah Suci Hardianti

Absrmcr—me maodel of interaction between PIP3, AKT, and
FOXO03a in the PI3K/AKT signaling pathways in Acute Myeloid
Leukemia (AML) is described and analyzed in this paper. We
assume that the biochemical reaction in this pathway follows
Hill’s equation and consider the case that the mechanism of
protein dephosphorylation does not work properly. Then, we
analyze the model using the slahilily@zory of differential
equations to determine the parameters that play an important
role in AML disease. Firstly, we discuss existence of steady
states and their stability. Furthermore, numerical simulations
are given to support the analytical results of the model. Sensi-
tivity index is also analyzed to identify parameters which have a
significant influence on AML disease and should be targeted by
intervention strategi ur results show how targeted therapy
can be performed on the PI3K/AKT pathway for the treatment
of AML.

Index Terms—PI3K/AKT pathway, Mathematical model, Sta-
bility, Sensitivity analysis.

[. INTRODUCTION

CUTE Myeloid Leukemia (AML) is the most com-

mon hematological malignancies in hematopoietic sys-
tem characterized by deregulated proliferation of imma-
ture myeloid cells [1]. Commonly, there is deregulation of
PIBBK/AKT pathways in AML patients, which is about 50
to 80 % of AML patients undergoing phosphorylation of
AKT on Thr 308 and Ser 473 [2], [3], [4]. The AKT
phosphorylation is associated with significantly elevated lev-
els of phosphorylated FOXO03a in AML blast cells which
later suppresing its normal function in induction apoptosis
and cell cycle regulations [5], [6], [7]. Normally, FOXO3a
transcriptionally activates several genes as the target. The
FOXO3a binds to an administrator of apoptosis-inducing
genes, such as Bim, FasL, and TRAIL, and a promoter of
cell cycle inhibitors, such as p27 and p21. The FOXO3a also
activates autophagy genes Gabarapll, ATGI12, etc. [8], [9].
The studies in [7], [10], [9] have shown that phosphorylation
of FOXO03a is associated with increased proliferation, low
rall survival, and an adverse prognosis factor in AML
patient.
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Mathematical models of hematopoiesis provide a frame-
work for study leukemia genesis and treatment strategies.
Several mathematical models have been couslruclccm ex-
plain various aspects of leukemia diseases. These models
have been applied to evaluate the existing therapies and to
desigmbination therapies or to suggest novel therapies. A
brief review of some mathematical models for leukemia has
been conducted by Clapp & m* [11]. Recently, Besse et al.
[12] have studied a model of interaction between cancer cells
and immune systems in a Chronic Myeloid Leukemia. For
mathematical modeling in biopathways, several models in
recent decades have been published by many authors such as
in [13], [14], [15], [16]. However, in our knowledge of those
model, there is no modeling that studies dynamics of AML
cells at functional levels. In recent decades, the PI3K/AKT
pathway has received considerable attentions as a potential
therapeutic target in malignancy diseases including AML.

Previously, Adi et al. [17] proposed a mathematical model
describing an interaction of protein in PI3K/AKT pathways.
The mudcmls motivated by some recent studies that some
promising new agents are currently in advanced development
to treat AML. The treatment was divided into three cat-
egories based on the mechanisms of their actions: cytotoxic
agents, small-molecule inhibitors, and targeted therapies
[3], [18], [19]. Recent preclinical or clinical developments
have shown that many patients with AML have considered
being treated with a small molecule inhibitor that targets
molecules in PI3K/AKT pathways [1], [18]. The modeling
results suggested that PIP3, phosphorylated AKT protein,
and phosphorylated FOXO3a are potentially targeted to AML
therapy. However, the most influential parameters that used
as a measure on the sustainability of AML disease could not
be determined analytically.

In a disease management point of view, it is necessary to
identify the range of parameter values so that the disease
either can be healed or persists. Mathemeﬂ:ally, the iden-
tification process can be done through a stability analysis
of the ilibrium point of the model. Motivated by that
notion, in this paper, we propose a new model that describes
interactions bmeen proteins in PI3K/AKT pathways. A
mathematical analysis of the model is carried out by first
simplifying the model developed. The simplification is done
by adding assumptions on the model so that it is sufficiently
accessible to conduct the mathematical analysis. The results
of these analyses can be used as an alternative reference in
AML lallmem strategy.

The organization of this paper is as follows. In the next
section, we will present our mathematical model. In Secli
3. we discuss properties of the solutions and equilibria of
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the model. In section 4, wemalyze existences and local
stabilities of the equilibria. In section 5, some numerical
simulations are given to support the theoretical results. Next,
in section 6, we do a sensitivity analysis to describe how
local changes in parameter values affect system behaviors.
Finally, conclusion and discussion are provided in Section 7.

II. Mo

In [17], Adi et al constructed a mathematical model
that describes the dynamics of interaction bctweaiomc
molecules in PI3K/AKT pathways. The model was given as
a system of ODEs in five equations, describing the dynamics
of phosphatidylinositol trisphosphate (PIP3), AKT protein
kinases, phosphorylated AKT protein kinase, forkhead tran-
scription factor-3a (FOXO3a), and phosphorylated FOX03a
(FOXO3ap). In this paper, we improved the model [17]
by adding an assumption that FOXO3a as a transcriptional
regulator always exists in a certain amount within the nucleus
[8]. Under this assumption, we found that the phosphory-
lation of FOXO3a has a disruption that also follow Hill’s
Equation. The disruption is represented by I”K;“_'f‘—\
the parameter A is residual of FOXO3a in the nucleus. We
note that Hill’s function is commonly used for sigmoidal
binding behavior as a characteristic mooperativc binding
mechanisms [20]. This is convenient to estimate the number
of ligand molecules that are required to bind the receptor in
order to produce a functional effect [21].

We also consider that in AML, the mechanism of protein
dephosphorylation does not proceed normally, due to a
decrease in a level of phosphatase or the presence of phos-
phatase deletions, i.e. PTEN and PP2A [5], [10]. According
to this fact, we assume that the dephosphorylation of proteins
does not occur. Also, the phosphorylation processes in the
activation of AKT occur relatively faster than the degradation
processes [22]. This condition leads us to assume that the
degradation re@f AKT can be neglected. Therefore, the
mathematical model is given in the following system of
ODEs:

FORMULATION

, where

= }C[} T bl"lr, - {fl.r]_

kowyxl
= qy — tamey

K3t}
o Js'zz:u;% daa
= KItaz — 4878 (D
kaxgx?

— (. — _ _ Daisty
- (-I4 A) (P ]"]'T.I.;) K;+.e,j
o k..:z;;{u—.’\}.pi — deze

K“ +b1’ [ehts B

together with the initial conditions:

21(0) = 0,72(0) = 0,z5(0) = 0,24(0) = A, z5(0) = 0,
)
where 11,9, r3, 14, and x5 are the phosphatidylinosi-
tol trisphosphate (PIP3), AKT protein kinases, phospho-
rylated AKT protein kinase, forkhead transcription factor-
3a (FOXO3a), and phosphorylated FOX0O3a (FOXO3ap),
respectively. Parameters d, dy, and d5 represent the degrada-
tion rates of PIP3, AKT protein kinase, phosphorylated AKT
protein kinase, and phosphorylated FOXO3a, respectively.
Parameters kg,ao, and p are the production rate of PIP3,
AKT, and FOXO3a, respectively. Parameters k;, and k, are
the phosphorylattion rates of AKT and FOXO3ap, respec-
tively. Parameter m is the degradation rate of FOXO3a by

protein 14-3-3, whereas parameters K> and /4 represent the
E:haclis constants of AKT phosphorylation and FOXO3ap,
respectively.

In the next section, we will discuss the solution properties
of the model (1) which include the positivity, boundedness,
and uniqueness of the solution.

111. ﬁOPERTIES OF SOLUTION

In order for the system (1) to have biological meaningful,
it is necessary to show that system solutions with positive
nitial conditions will always be positive and bounded. This
is shown in the following lemma.

Lemma 3.1  (Positivity). The ser =
1, 20, 13,14, 75)} € Rﬂ_ U {0} : zy = A} is positive
:'nvariamar System (1) with initial conditions (2).

Proof. Let x = (zy, 7y, 73, 74, 25 [ERd n;,i = 1,2,3,4,5
is a normal vector to the segment 77 = 0,2, = ﬂ,a
0,2z, = A, and 5 = 0 inward the domain (2. We have n,
(1.0,0,0,0),n; = (0,1,0,0.0),n3 = (0,0,1,0,0), 04
(0,0,0,1,0), and n5 = (0,0,0,0,1). Then, we calculate the
dotproduct @mmal vector n; with vector field x. As we
see,nq-X = 1% +0-x+0-%3+0-%4+0-%5 = ky+bzy = 0,
Since the value of dotproduct is not negative, this means that
the vector field will be in the same direction as a normal

vector, i.e. inside the domain €. Analogous calculations can
be applies along other parts of boundaries they are all not
negative. So, it can be concluded that the solution of system
(1) together with initial conditions (2) exist for all = 0 and
x;(t) € Q. Therefore, it is proven llml is positive invariant.

Lemma 3.2 (Boundedness). Let ©1(t), zo(t), xa(t), z4(t),
and x5(t) are solution of system There exist M = 0,
such that lim,_, .. sup ;(t) < M, for all t €gg) T1.

Proof. We must proof that for all t € [0,7],
w1(t), wol(t), xa(t), z4(t), and z5(f) will be bounded. We
me that all of the parameter values used in the system (1)
are positive.

From the fourth equation of system (1), we get

kazszs
1y —A) ((P —mry) — ﬁ)

kyzsyTs
I — mr — 3
4 ((P 4) Kf;' i r;'

< mylp—mzy).

dza
dt

[

Hence, we Jconsider it = u(p—rmu), which a solution u(t) =
u(0) 2
H.’—.—u{u;,li"uu{tn’
that @4 (f) < 4(f), then by the comparison theorem [23].it
implies that lim, . sup z4(t) < lim, . sup u(t) = £ =

ﬂh‘
Similarly, from the first and third equation of system (1)
it follows that lim; .. sup z,(t) < kymgtbp? M, and

mgdy

. . N 2
lim,_, o sup ag(f) < Hebumabhabp _

where lim,_, .. sup u(t) = {J’T ‘We know

g d;
Now, from the fourth an hli] equation of system (1), we
get
d:]‘.‘4 d:i‘.‘r, _
?— e = (-H‘AJ((P_W--H)—dGTG)
< oz ((p—may) — dyzs)
p
= — —mz4) — dsxs
S ((p— mxa) rs)
2
< r_ q (g +x5)
m
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where g = min{p,ds}.
2 2
Therefore, x4 (1) +xs5(f) < £+ (24(0)+x5(0) — L )9,

— myg g S
and limy .. sup (zy(t)+25(f)) < {% = M;. Thus, z4(f) +
xff) is bounded, so z5(t) is also bounded.
Similarly, from the second and third equation of system
(1), we get
{f:i’.'g d‘r;;,

—= 4+ —— =ay —dyry < ay,

dt dt
s we have o (f) —22(0) +25(t) —23(0) < ast or z, () <

To(0) + z3(0) + ast < x5(0) + z3(0) + axT = My.

TEERfore, choose M = r{Ml,Mg,M;g,ﬂh,;11;,}, 50
that x;(f) < M,i=1,2.5, for all t € [0, T]. This completes
the proof.

Theorem 3.1 (Existence and uniqueness). Le = .
If the initial conditions of system (1) satisfy x1(0) >
0,2859) > 0,23(0) > 0,24(0) > A, 25(0) > 0, then for
all t € R, xq(t), xa(t), xa(t), z4(t), z5(t) will exist in €.

Proof. In system (1), we have

ko + bry —dyry

kgwyal
oy E2F1dy
42 = KZta:
. &21:11;; — daz
f(x) = "o — dazs
kazge?
(z4—A) ((P —miy) — Kitat
Fuz;:;(:;;—;’\)z;i .
B

Since [ £ C'l(R'r’), thus F is locally Lipschitz in R, so
that by Lemma 3.1, Lemma 3.2, and Fundamental existence
and uniqueness theorem [23], we know that the solution of
system (1) is exist and unique in €2. This completes the proof.

Next, by simple calculation we have that system (1) has
the AML-free equilibrium point

z - (k[} Kyvasd,  as A O) 3)
o=175: R R ]
dy kgky —aody ds
and the others equilibr'@
o * * * # #
Bl = (T %o, 34, Ty Ts4) )
where
e ky 4 fJi';u;l;;z{z;; —"\J‘
1i d1 dydsds (Ki+a;t)’
o K, uzdldﬁdn(}(g+w3§]
TET koka—and)dads (Kt ) tbkaksazeyZ (23, —A)
¥ op
Tai = d;»
. fegaamt?a? —A)
Te, =

ot rl:;rir,[K_:;+1;_;i‘]
()
and xj;,1 = 1,2,3,4 are positive solutions of the following
equation:

x] + cax + cox? + 1y + g =0, (6)
with
-3
p aoky L pK
g =——, €= ey =K§, eo=- (7
m mids m

IV. EXISTENCE AND LOCAL STABILITY OF EQUILIBRIA

In this section, we deal with the existence and local
stability of the equilibria. We note that the condition kyky —
asdy > 0 guaranteed that the AML-free equilibrium point
Ejy always exists.

A. The Existence of Equilibria

For the existence of the equilibriva £7;,i = 1,2, 3,4, the
solutions of (6) must be real and positive. The solutions of
equation (6) are

T 41
:1";2 (8)
T3
:1":4
where
szT—(‘z—Ul ©
D= \/5_.{1—Sz—2cz—$(4ﬂ‘2f‘:;—gfl_ci)*lfs#n
\/)'_4fl — 203 +2\/uj —4ep, S =0
(10)
3c2 P : if.
F= \/1—"_32_2@_%(4p2p:,1_3p1—r§),1f5¢0
Vi e 2w, 5= 0

(1n

with u; 1s a real root of cubic equation
u? — epu® + (e1e5 — depJu + (depeq — r.'f — c[}cﬁ) =10. (12)

See [24], [25] for more detail about the cubic and quartic
equation.

According to Descartes Rule of Sign, we can find that
the equaﬂ] (6) must have one or three positive real roots.
We thus have the following results for the existence of the
equilibria £7;,7 =1,2,3,4.

Theorem 4.1 If S = 0. kpky — asdy > 0, and =}, >
A, i =1,....4, the following results hold:

(i). The system (1) has equilibrium point E}, whenever
lﬁag.‘.:.;mp — 5{1;53}3 - 2:16?’??‘}0!4}[\"; 2 0 and 3{133’)2 —

Banmk, < 0.

(i1). The equilibrium point EY, does not exist.

(iii). The system (1) has equilibrium point E}, whenever
16agkymp — Sdsp® + 256m*ds K < 0 and 3dsp® —
SBapmbky = (.

(iv). The system (1) has equilibrium point EY, whenever
16agksmp — 5dsp® + 256m3ds K} < 0 and dsp® —
dagymky = 0.

Proof. To prove the existence of the equilibria EY;, i =

1,...,4 we use the existence z},, 7 = 1,...,4 in equation

(6) which should be real and pos;live, From equation (9),
S = 0 implies u; = %3—”’— Clearly — 2 = £ is
real and positive, so x}; in (8) is real and positive when
D is real. After some simple calculations, we found that
7y = —2 +1(S + D) with § = 0 is real and positive
when 16azkymp — Sdsp® + 256m3d; K3 > 0 and 3dsp* —
8aomks < 0. The conditions of z3; real and positive implies
that the equilibrium point £}, exist. For conditions (ii), (111),
and (iv), the proofs are simizlar,

Theorem 4.2 Let A = £ 5 — ¢y —wy, B = 4esey — Sep —

2

« 2
.8 =2 — o+ koke—agdr >0, and x5, > A i =

y dag kym—dqp® .
1,nd If S > 0 then uy > 4‘!—«1:””? and the following
results hold:

(1). The equilibrium point EY, exist, whenever A+ 4&
(ii). The equilibrium point B}, exist, wheneverA + {5

and B — (8u; + %’f‘}) 5 <

>0,
>0
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(ii1). The equilibrium point Ef.} exist, wheneverA — % =0
P
and S — £ < /A -
(iv). The equilibrium point 14 exist, whenever A — % =0

and £ — 5 > /A -

2m

Proof. Using a procedure 51m1lar to the proof of Theorem
4.1, the existence of equilibriva E},, i =1,...,4for § =0
also be done using the existence z};, ¢ = 1,...,4 in equation
(8) wich should be real and positive. From equation (9) § >
0 implies u, > %ﬁ To show that =}, = 2 +

(9 D) is real and positive, it is sufficient to prove that 1)
is real. Finally, it is found that £, exists, whenever A—— =
(. The proof for (ii), (1i1), and (iv) are similar.
B. The Stability of equilibria

In this subsection, we analyze the local stability of the
equilibria by analyzingﬂm eigenvalues of the Jacobian
matrices of the system (1). The stability determined by the
signs of real part of eigenvalues of the Jacobian matnx at a
given equilibrium point. The Jacobian matrix for system (1)
is given by

—di 0
_ &'221;222 _2}\'2236'21;1122
Kitag (K§+1:§)
1'21;3 QKZZFG'QA;H;Q —d- 0 0
K343 (K§+w§) 3
0 0 T EC Y R, 0
(i)
AT _
L ’ GEARERE
where
(z4 = A) -3 4
g = m e (2}.:4;173[\.4;1?4 — };4;1‘3;1?4)
(K} +x3)
}i.;:i‘.“;:l‘.‘z
+p—2mry — —— L
P S
and
o o (.{{j - Tj) ("64.1'.'3.1'.'3 - 2}64.1'3.?.'4 (‘1'.'_1 - A.))
54 = > ;
’ (K3 + )
-1
e N
eI (Bkyzzzy (24 — A)) .
(K§ +x3)

For the local stability of AML-free equilibrium point Ej),
we define the threshold value
I'= mA + pk'_;ug,’\z
) dy (K3 +A3)
Tlm we have the following theorem.
Theorem 4.3 The AML-free equilibrium point Ej is
locally asymprotically stable if I' and unstable if I' > 1.
Proof. The eigenvalues of the Jacobian matrix of system

Kafaady  ag
dy egka —aady ffi'A 0

(13)

(1) at equilibrium point £y = (

. _ _ 2fazdi S (koka— ugrh] _

are Ay = —dy, Ay = _W\rz Az =
. — : — 5 _ _ kgapA®

—daz, A = —ds, and A = p— mA PNCSESOR We

have four eigenvalues llﬁalways strictly negative. The fifth

one, given by negative. The equilibrium point Fj, is locally
kgaz A

asymptotically stable if \s = p—mA — Tk +A) negative,
. o kgnah? ) P .
ie. p < mA a5 (K3 A7) or T bam? < 1. Thus

dg ( K3ad)

27
the AML-%& equilibrium point Ejy is locally asymptotically
stable if I" < 1 and unstable if [' > 1. The proof is complete.
Next, we will find out the conditions for which the
equilibria £, ¢ = 1,2, 3,4 are locally asymptotically stable.
We define
Q _ uyiﬂlgri;(f(i'{'l;i?]
T kodgds (K34 yd ) thkaaga el —A)7
v Quz(d‘dr(}(”+i,gj‘)u,.&2 agdy )bk} (x],—A))
T kohadgds (K3 ta i3 ) fbhanzziZ(z) —A)
{.z.h71’\}(231”12}(44.4‘731'41121;_;‘2)
da (K tat)”

C'=p—2mz}, + mA —

_ Fi'_qu;'.e;;z
dg(K‘+.¢4‘ )’
N = Fs_mz.bq, '\+i.mzK J.J‘H.e,h—z'\J
4 )

dy (K R ]

kaxy:(x A
H = M,
oy =dy +dy+ds + M- C,
0y = {f{{fr (dg - d,r,)l.rf— (1‘1.’{ - d]_]({f:; - {fr, — C) -+ d]_ﬂ.f_.
ay = (M + dy)(dsd; — (ds + d5)C) — dyd5C

—d]_i‘.r.’(d:; T d.r, — (z‘] — bQH
kg = dlilf(d;-}dr, — (d;i - dr,)(,'] — (1‘1! - dljd;-}dﬁ(,'

+b(C + N)QH,

= —dydads M C.
(14)

Then, we find that the characteristic equation of sys-

tEE) (1) corresponding to the equilibrium points E};, =
(z;, w8, T4, T4, 13;) is given by
MaaX +aN + oM +aud+a5 =0, (15)

From the Routh-Hurwitz fffrion, E},, i = 1,2,3,4 are
locally asymptotically stable if and only if &y > 0, g >
0, a;>0, A;>0andA, >0, where A, = ajas—asy,
and A4 = (ry(ka ('13(]'4—2(1'1(1'4 ¥s —
nz, + cracvgoes > (.

It is obvious that cvy > 0,005 > 0, and oqey —
C' < 0, that is

mados —atal—odag—
g = 0if

(w,— A)(2kana Koy, —kiaze?)
da( K3 +a3?)”

— 2mzy, + mA —
(16)

kgaqzt?
S Lot L T 0.
rIg(K +a3d ] <

The other term of the th-Hurwitz condition can be

verified by the numerical
Table L.

aa summarize the above result in the Theorem 4.4 below.

Theorem 4.4 The equilibrium points E, i = 1,2,3,4
is locally asymptotically stable if C' < 0, a3 > 0, and
Ay =0

In the next section we will give some numerical simulation
to illustrate the theoretical results for several cases.

es of the parameter set as in

V. SIMULATION RESULTS

In this section, we present some numerical simulations to
demonstrate the theoretical results obtained in the previous
section. The parameter values used in the system which given
in Table I was obtained from Adi et al [17].

Case (i), AML-free guilibrium point. In this case, we
take the parameter values ky = 0.01,b = 0.0083, d; =
0.033,a2 = 0.09,d3 = 0.09A = 02,p = 02, m =
0.28, &k, = l.Ix'n: 0.1, ky =004, Ky =0.1,d5 = 0.125.

With these values, the condition of Theorem 4.3 is
satisfied. We have I' = 0.85551 < 1 and the
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TABLEI

PARAMETER VALUES AND KINETIC RATES BEING USED.

Parameter Unit Value
Feny p:‘lfm,in_l 001 -0.1
b min~—! 0.0083
dy min ! 0.001 —0.01
s ;.L:‘lhn,in_l 0.036 - 0.108
ko min ! 1-20
dy min~! 0.0008 - 0.1
P min~1 0.002 - 05
m pM~Ymin—?! 0.004 — 0.28
keq min ! 0-033
dy, min~—! 0.033 - 0.125
Ko M 0.1
Ky M 01 -1

system (1) has AML-free equilibium point E; =
(0.30303, 0.064998, 1.000, 0.2, 0) which is locally aymptot-
ically stable (see Fig.1).

Case (ii), The equilibria EY;, i = 1,2,3,4. In this case,
we take the parameter values ky = 0.01,b = 0.0083,
di = 0.02,a2 = 0.09,ds = 0.09,A =02,p = 0.33,m =
0.22,ky =2, Ky =0.1,ky = 0.1, Ky = 0.2,d5 = 0.125.

With these values, the equation (6) has one real
root that satisfies the condition Of Theorem 4.2(1), that
s, w = —0.07024, tuzkam—dy? —0.10795, so
we have u, > %’L A+ % = 1.4921 > 0.
The system (1) has one equilibrium  point

B = (0.?680.024931.1.0000,1.08286?,0.64816),
In this case, the conditions of Theorem 4.4 are satisfied,
that 18, C' = —0,120816 < 0, oz = 0,0080883 = 0,
and Ay = 5,927949 ) * > 0, so Ej, is locally
asymptotically stable (see Fig.2).

Next, we set the parameter values by = 0.01, b =
0.0083,d; = 0.033,a2 = 0.09,ds = 0.09, A = 0.2,
p = 036,m = 025,ky = 2, Ky = 0.1,k = 012,
Ky = 0.2,d; = 0.125. With these parameter values, the
equation (6) have three real r that satisfies the condition
of existence EY; in Theorem 4.2(i), 4.2(ii), and 4.2(iii), that
isun = 013700 > dagha—dap” — 0 0384,4 + & =

A m2
0.51355 > 0, A — £ = 0.32593 > 0, B— (Suy +£5) S =
1 = 0.5709.

—1.31275 < 0, ‘:? = —0.30112 < /A -
The system (1) has thlee possible equilibria,

"
‘E’llf

(0.49055, 0.03178, 1.0000, 0.92775, 0.74556),
Ef, = (0.30001,0.04122, 1.0000,0.21113,0.02735),
Ey = (0.42222,0.03459, 1.0000, 0.43601, 0.4739).

We find that E{; and EY, are meet the condition of
Theorem.4. Thus, £}, and E7, is locally asymptotically
stable (see Fig.3 and Fig.4). In this case, £, is unstable.
According to the root of equation (15) we find that E7, is a
safZ% point.

In the following Figs.1-4, we denote figure (a), (b). (c),
and (d) as the dynamic between the FOXO3ap and PIP3,
FOXO3ap and AKT, FOXO3ap and AKTp, and the d'\amic
between FOXO3ap and FOXO3a, respectively. Fig.1 shows
that the AML-free equilibrium point £} is locally asymptot-
ically stable. We can see that all trajectories which starting

FOX03ap

FOXO3ap

T 8 £’ [} ] 0% 1 1 141
AKTp
(©
0.4
e
a 0.3
=
2
0.2
0.1
“-:2 025 03 0.3 0.4 0.45
FOX03a
(d)

Fig. 1. The phase pornrait projection confirms that the AML-free
equilibdum point £ = (0.30303, 0.064998,1.000,0.2,0}) is locally
asymptotically stable.
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B EEEEEER
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FOX03a FOX03a
(d) (d)
Fig. 2. The phase portrait projection confirms that the equilibrium — Fig. 3. The phase portrait projection confirms that the equilibrium

point BT, = (0.768986, 0.024931, 1.0000, 1082867, 0.64816) is locally  point ET, = (0.49055,0.03178, 1.0000, 0.92775, 0.74556) is locally
asy ptotically stable. asymptotically stable.
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03
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FOXO3ap
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AKTp

(c)
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FOX03a

(d

Fig. 4. The phase portrait projection confirms that the equilibrium
point EF, = (0.30991,0.04122, 1.0000, 0.21113,0.02733) is locally

asymptotically stable.

from different initial values will tend to the equilibrium
point, with FOXO3ap always tend to zero. It agrees with
the Theorem 4.3 that, for a smaller production rate of
FOXO3a p, the FOXO3ap can be eventually eliminated. In a
medical point of view, these results suggest that the AML
cell does not occur. This is consistent with the fact that
FOXO3a does not present in the cytoplasm, indicated with
zero concentration of FOXO3ap. Biologically, it means that
cells al’c normal condition and AML will not grow.

Fig.2 shows that the equilibrium point E7, is locally
asymptotically stable. We can see that all trajectories which
starting from different initial values will tend to the equilib-
rium point, with FOXO3ap always tend to a certain values.
In a medical prespective, the aML cells occur and can
be controlled. Fig.3 shows the 1 asymptotic stability of
equilibrium point E}, and Fig.4 shows the local asymptotic
stability of equilibrium point E7,. In Fig.3, it can be seen
that if we choose an initial condition which is close enough
to the equilibrium EY,, then the trajectory of the system
is tend to EY,, whereas in Fig4, if the initial condition is
close enough to EY,, then the solution will tend to EY,.
We can see that all trajectories tend to these equilibria
provided that the initial conditions are sufficiently close
to these equilibria. We note that £, has higher FOXO3a
and FOXO3ap concentration, while E7; has lower FOXO3a
and FOXO3ap concentration. Therefore, in this case, the
system has two stable equilibria and one unstable equilibrium
point. It is observed that the equilibrium point with lower
FOX03a and FOXO3ap concentrations E7, is very close to
the AML-free equilibrium point £y as in case (i). So in this
case, we do hope that the equilibrium point tends to the
lower FOXO3ap concentration EY, rather than the higher
FOXO3ap concentration EY,. Medically, with condition of
lower FOXO3ap concentrations, it is easier to treat AML
than a higher concentration condition.

We also give an illustration that the region of attraction of
the two stable equilibria is separated by lhgashed trajectory
in the phase plane diagram (see Fig. 5). As shown in Fig.
5, the unstable equilibrium point separating the basin of
attractions of the two stable equilibria. Medically, if the
trajectories convergen to the equilibrium point EY,, then the
AML cell will persist in the patient.

06 08 1 - 16

FOX03a

Fig. 5. Phase plane diagram showing the two stable equilibria for p = 0.36.

In order to determine AML treatment, we have to find
the analytical conditions so that the trajectories of the
system converges to the AML-free equilibrium point Ey.
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This analytical comon is given in Theorem 4.3, that
is the equilibrium point Ey of the system (1) is locally
asymptotically stable if I' < 1. So, we can then choose varies
values for the parameters p, m, ag, k4, or K4, and observe the
changes that occur in system behavior. In the next section,
we provide a sensitivity analysis to identify how changes in
each of these parameters affect system behavior.

VI. SENSITIVITY ANALY SIS
In this section, the sensitivity indices of I' will be analyzed.
sensitivity analysis can be used to discover a key
parameters that have a high impact on the transmission and
spread omVIL disease and should be intervened by targeted
therapy. We calculate the sensitivity index which is defined
as the ratio of the relative change in I' to the relative change
in a parameter p, as follows [26], [27]:
r O s
7 Os . r a7
Now, we can derive the sensitivity il]diﬂs of I' from
the explicit formula (13) by using (17) for each of the six
different parameters described in Table I. The sensitivity
index of I’ nef depend on several parameters, but also can
constant, does not depend on any parameter values. For
example, the sensitivity index of I" with respect to constant
e of FOXO3a production, p is T}: = % X 11_.3 = +1,
does not depend on any parameter values. It is meaning
that increasing (decreasing) of p, say 10 %, leads to 10 %
increasing (decreasing) of I'. The values of the sensitivity
indices for l@:}arameter values of case (i) are presented
in Table II. From Table II, it can be seen that the sign
athe sensitivity indices with respect to all parameters
&,. whether [" increases or decreases when a parameter
increases) agrees with an intuitive expectation. For example,
since TE_: = —05 then increasing (or decreasing) the
phosphorylation rate of FOXO3a by 10 % decreases (or
increases) I' by 7.605%. As illustration, in case (i), if we
increase ky from 0.04 to 0.044 then I' decrease from 0.8555
to 0.795.

TABLE 11
THE SENSITIVITY INDICES OF I”
Parameter || Sensitivity index

i +1

m —0.2395
Ky —0.7605
dy +0.7605
ag —0.7605
Ky +0.2535

According to Table II, the most sensitive parameter is p,
i.e the production rate of FOX0O3a, so we should pay special
attention to this parameter. Note that in case (i), with the
parameter value of p = 0.2, we have I' = 0.8555. In order
to keep the stability of AML-free equilibrium point £y, the
threshold value I must less than one. Because the sensitivity
index of I' with respect to the constant rate of FOXO3a
production pis Tl—; = +1, it can be seen that if p increases by
14.45 % from 0.2 to 0.23377 result to the value of I' = 1,
so that the AML-free equilibrium point Ej, failed to have
stability. So p must be kept to less than 0.23377.
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0.z .4 L1 LE 1 12 14
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B
0z a 06 08 1 12 14
FOX03a
(©
1
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0.8 1
F o ]
=} 4
=
a
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04 06 08 1 12 14 156
FOX03a
(d)

Fig. 6. The phase plane diagram for various values of p.
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Medically, controlling the production rate of FOXO3a is
an alternative way that can be done to improve the success
of AML treatment. Thus, the production rate of FOXO3a
should be targeted by intervention strategies.

Furthermore, by using the set of parameter values in case
(ii), we can see the changes in a system behavior if the value
of the parameter p is changed in Fig.6. In Fig.6a, il we set
the values of p = 0.4, the system (1) only have one stable
equilibrium point with high FOXO3ap concentration E7,.
For smaller values of p, a separatrix appears which reduces
the basin of attraction of E},. As seen in Fig.6b, if we set
the value of p = (.38, there are two stable equilibria, E7,
and FEY,; and one saddle point EYf;. For p = 0.352, then the
separatrix shift to the right reduces the basin of attraction
of equilibrium point with a high concentration of FOXO3ap
E7,. and enlarges the basin of attraction of EY,, see Fig.fc.

Furthermore, if the values of p reduced to p = .33, then
the system (1) only have one AML-free equilibrium point
£y and the system changes from bistable to monostable,
Fig.6d. The qualitative behavior for various parameter p can
be summarized on a bifurcation diagram as shown in Fig.7.

0.9
¢
0.8
SN p- 034188454532

0.7 SRy

(X %
0 A
% .

0.5 .
r\? . B

N

2 04 N SN ;p - 0.38416443396
] \
2 . \

0.3 A /

BP = 035 1

0.2

01 EIZ

o il N Y - T R gy §

034 038 038 04 042 044 046 048 05

Fig. 7. A schematic of a bifurcation diam showing bistable behavior for
system (1)with various values of p. The solid curves depict stable behavior
and the dashed curves depict unstable behavior.
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The gurcation diagram in Fig.7 shows that the system
(1) only have one stabcquilibrium point EY, whenever
p = (.38416443396. In this case, there is transcritical
bifurcation at p = 0.35 and saddle-node bifurcations at
p = 0.38416443396 and p = 0.34188454532, respectively.
Bistable behavior exist whenever 0.34188454532 < p <
0.38416443396.

VII. CONCLUSION

In this paper, we investigate the PI3K/AKT pathway in
AML with biochemical reactions following the Hill's equa-
tion. We consider that the dephosphorylation of protein does
not work properly. This is due to the fact that in AML there is
a deletion or decrease in phosphatase levels. Furth@rc, we
show the existence of equilibria and established conditions
for the stability of these equilibria.

For the condition of Theorem 4.3, we can say that if the
production rate of FOX03a is restric:ted the degradation
and phosphorylation term of FOXO3a, then the AML-free
equilibrium point £y is locally asymptotically stable. If the
opposite condition occurs, the AML-free equilibrium @1[
Ey loses stability, and the equilibrium point EY,, i =

1,2,3,4 may occur. Unlike the AML-free equilibrium point
Ey, for the equilibrium point EY,, i = 1,2,3,4 we cannot
find the mathematical formula that can be used as a measure
such that AML disease can heal or continue. Theorem 4.4
only provide the necessary condition so that the equilibrium
point EY;, i = 1,2,3,4 become locally asymptotically
stable.

‘We note that in the analysis of this model, it is assumed
that there is a deletion of phosphatase which causes protein
dephosphorylation does not occur. As a result, phosphory-
lated proteins cannot return to an unphosphorylated state. As
can be seen from numerical simulations, the concentration
of AKTp in all cases is always at the same amount of
concentration, which is equal to the ratio of AKT production
and AKTp degradation. This is due to the absence of AKT
degradation and AKTp dephosphorylation. Different condi-
tions will occur if there is protein dephosphorylation. Such
conditions also occur in FOXO3a. We found that, without
hcsphm‘ylaticn of FOX3ap, when FOXO3a undergoes
translocation from the nucleus to the cytoplasm through
phosphorylation, FOXO3a cannot return to the nucleus.
Furthermore, FOXO3ap in the cytoplasm will increase the
continuity of the PI3K/AKT pathway. From the model, it
was found that the greater the FOXO3a in the nucleus, the
greater the translocation of FOXO3a to the cytoplasm. We
have shown that if the rate of FOXO3a production is less than
the total ammount of degradation and phosphorylation of
FOX03a, AML cells can be e&ninaled, Mathematically, this
is indicated by the condition that the AML-free equilibrium
point £y is locally asymptotically stable.

Finally, from the sensitivity analysis, we found that the
most important parameter for AML disease is the production
rate of FOXO3a. Thus, one way that can be done to reduce
FOXO3ap in the cytoplasm is to inhibit the growth rate of
FOXO03a. Medically, treatment of AML patients can be done
through targeted therapy on the production of FOXO3a.
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