PAPER•OPEN ACCESS

The Sixth Seminar Nasional Pendidikan Matematika Universitas Ahmad Dahlan 2018

To cite this article: 2019 J. Phys.: Conf. Ser. 1188011001

You may also like
The First Ahmad Dahlan International Conference on Mathematics and Mathematics Education

Cubaritme in the trajectory learning of multiplication concept Andriyani and M Maulana

Expansion of paranormal operator Gunawan, D A Yuwaningsih and M Muhammad

View the article online for updates and enhancements

The Electrochemical Society
Advancing solid state \& electrochemical science \& technology
242 nd ECS Meeting
Oct 9 - 13, 2022•Atlanta, GA, US
Abstract submission deadline: April 8, 2022
Connect. Engage. Champion. Empower. Accelerate.
MOVE SCIENCE FORWARD

The Preface of the Seminar Nasional Pendidikan Matematika (SENDIKMAD) 2018

Puguh Wahyu Prasetyo
Editor in Chief of SENDIKMAD's 2018 Publication, Universitas Ahmad Dahlan Kampus IV UAD, Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Daerah Istimewa Yogyakarta 55191

E-mail: puguh.prasetyo@pmat.uad.ac.id

Preface

The Sixth Seminar Nasional Pendidikan Matematika Ahmad Dahlan is a biennial event of Department of Mathematics Education of Universitas Ahmad Dahlan. The objectives are to improve mathematics teaching and to expand mathematics contributions to the society. The main topics of the conference are divided into five categories namely Analysis, Statistics, Algebra, Applied Mathematics, and Mathematics Education.

The keynote presentations are provided especially to show the contribution of Mathematician and Mathematics Educators in the world of mathematics and mathematics education towards research and knowledge sharing where our conference theme for this year is Developing literation skills and High Order Thinking Skills by Innovative Mathematics Learning in Industry Era 4.0. The main event is the talk of the Minister for the Ministry of Education and Culture of the Republic of Indonesia, Professor Dr. Muhadjir Effendy, M.A.P as the first keynote speaker. We have two another keynote speakers coming from Universitas Muhammadiyah Malang, Professor Dr. Yus Mochamad Cholily and Universitas Gadjah Mada, Dr. Nanang Susyanto, M.Sc.

We also have a speaker in workshop session coming from Universitas Ahmad Dahlan, Dr. Rully Charitas Indra Prahmana, S.Si., M.Pd. SENDIKMAD 2018 was an overwhelming success, attracting the delegates, speakers and sponsors from many countries and provided great intellectual and social interaction for the participants. Without their support, the conference would not have been successfully organized. I trust that all the participants found their involvement in the Conference both valuable and rewarding. Our wish is that all participants would enjoy this conference, contribute effectively toward it and take back with you knowledge, experiences, contacts and happy memories of this conference and especially with this beautiful kingdom of Yogyakarta.

Dr. Puguh Wahyu Prasetyo, S.Si., M.Sc

PAPER•OPEN ACCESS

The Committees of the Seminar Nasional Pendidikan Matematika (SENDIKMAD) 2018

You may also like
Committees
Conference Committees
The International Commission on
Radiological Protection meets, elects new members
Jack Valentin

View the article online for updates and enhancements.

The Electrochemical Society Advancing solid state \& electrochemical science \& technology 242 nd ECS Meeting

Oct 9 - 13, 2022•Atlanta, GA, US
Abstract submission deadline: April 8, 2022
Connect. Engage. Champion. Empower. Accelerate.
MOVE SCIENCE FORWARD

The Committees of the Seminar Nasional Pendidikan Matematika (SENDIKMAD) 2018

\author{

Puguh Wahyu Prasetyo Daerah Istimewa Yogyakarta 55191
 E-mail: puguh.prasetyo@pmat.uad.ac.id
 | Organizing Committee | |
| ---: | :--- |
| Fariz Setyawan | Chairman |
| Afit Istiandaru | Secretary |
| Rima Aksen Cahdriyana | Treasurer |

}

Editor in Chief of SENDIKMAD's 2018 Publication, Universitas Ahmad Dahlan Kampus IV UAD, Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul,

Advisory Committee
Kasiyarno Rector
Trikinasih Handayani Dean of Faculty of Teacher
Training and Education
Suparman Vice Dean of Faculty of
Teacher Training and
Education

Steering Committee

Abdul Taram	Head of Mathematics
	Education Department
Uswatun Khasanah	Secretary of Mathematics Education Department
Muhammad Sayuti	Lecturer of Mathematics Department

The committees of the Seminar Nasional Pendidikan Matematika (SENDIKMAD) 2018 would like to express gratitude to all advisory editorial board and scientific reviewer Committee for the volunteering support and contribution in the editing and reviewing process.

Advisory Editorial Board

Universitas Muhammadiyah Malang Universitas Gadjah Mada University of Toronto Universitas Ahmad Dahlan Universitas Terbuka Mohammad Khairul Amilin Haji Universiti Brunei Darussalam Tengah Wahyu Hidayat IKIP Siliwangi
Hardimah Said Universiti Brunei Darussalam Jamaal Rashad Young University of North Texas Rully Charitas Indra Prahmana Universitas Ahmad Dahlan

Scientific and Reviewer Committee
Kamirsyah Wahyu IAIN Mataram
Benidiktus Tanujaya Universitas Negeri Papua
Farida Nurhasanah Universitas Sebelas Maret
Elizar Universitas Syiah Kuala
Rina Oktaviyanthi Universitas Serang Raya
Yoppy Wahyu Purnomo Universitas Muhammadiyah Prof. Dr. Hamka
Syariful Fahmi Universitas Ahmad Dahlan
Afit Istiandaru Universitas Ahmad Dahlan
Aan Hendroanto Universitas Ahmad Dahlan
Fariz Setyawan Universitas Ahmad Dahlan
Vita Istihapsari Universitas Ahmad Dahlan
Dian Ariesta Yuwaningsih Universitas Ahmad Dahlan
Rusmining Universitas Ahmad Dahlan
Anggit Prabowo Universitas Ahmad Dahlan
Burhanudin Arif Nurnugroho Universitas Ahmad Dahlan
Soffi Widyanesti Priwantoro Universitas Ahmad Dahlan
Harina Fitriyani Universitas Ahmad Dahlan

PAPER•OPEN ACCESS

The Photographs of the Seminar Nasional Pendidikan Matematika (SENDIKMAD) 2018

To cite this article: 2019 J. Phys.: Conf. Ser. 1188011003

View the article online for updates and enhancements.

You may also like
International Pharmacy Conference UAD 2017 on Product Authentication: Key Factor in Quality Control of Pharmaceutical Products

The Preface of the Second Ahmad Dahlan International Conference on Mathematics and Mathematics Education (ADINTERCOMME) 2019 P W Prasetyo, J Purwadi, U Khasanah et al.

On (R, S)-Module Homomorphisms D A Yuwaningsih, I E Wijayanti and P W Prasetyo

The Photographs of the Seminar Nasional Pendidikan Matematika (SENDIKMAD) 2018

Puguh Wahyu Prasetyo
Editor in Chief of SENDIKMAD's 2018 Publication, Universitas Ahmad Dahlan
Kampus IV UAD, Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Daerah Istimewa Yogyakarta 55191
E-mail: puguh.prasetyo@pmat.uad.ac.id
\section*{Muhadjir Effendy}
Yus Mochamad Cholily
Nanang Susyanto
Keynote Speakers
Ministry of Education and Culture of the Republic of Indonesia Universitas Muhammadiyah Malang Universitas Gadjah Mada

Figure 1. Muhadjir Effendy, the Minister for Education and Culture delivering his keynote talk on Higher Order Thinking Skills

Figure 2. Yus Mochamad Cholily from Universitas Muhammadiyah Malang delivering his keynote talk

Figure 3. Nanang Susyanto form Universitas Gadjah Mada delivering his keynote talk

Figure 4. One of the Participants of SENDIKMAD 2018 giving his talk in parallel session.

Table of contents

Volume 1188
March 2019
4 Previous issue Next issue＊
The Sixth Seminar Nasional Pendidikan Matematika Universitas Ahmad Dahlan 20183
November 2018，Yogyakarta，Indonesia

Accepted papers received： 15 February 2019
Published online： 26 April 2019

Open all abstracts

Preface

OPEN ACCESS

011001
The Sixth Seminar Nasional Pendidikan Matematika Universitas Ahmad Dahlan 2018
＋Open abstractView article

OPEN ACCESS
The Committees of the Seminar Nasional Pendidikan Matematika（SENDIKMAD） 2018
＋Open abstractView article

OPEN ACCESS
The Photographs of the Seminar Nasional Pendidikan Matematika（SENDIKMAD） 2018
＋Open abstract
国 View article
禺 PDF

OPEN ACCESS
Peer review statement
＋Open abstractView article食 PDF

Papers

OPEN ACCESS

Modeling and simulation of queue waiting time at traffic light intersection
E Harahap，D Darmawan，Y Fajar，R Ceha and A Rachmiatie
＋Open abstractView article
問 PDF

Thie sita asessokies．By continuing to use this site you agree to our use of cookies．To find out more，

M Simanihuruk
＋Open abstract 国 View article 禺 PDF

OPEN ACCESS

Analysis of content components and context components of mathematics literacy on linear algebra

Rusmining，A Purwanto and Sumargiyani
＋Open abstract 国 View article 風 PDF

OPEN ACCESS

Thinking errors of pre－service mathematics teachers in solving mathematical modelling task

A Shodikin，A Istiandaru，Purwanto，Subanji and Sudirman
＋Open abstract
View article
ADF

OPEN ACCESS
Individual differences in attitudes toward mathematics
N R Siregar，S Wimbarti and M Ilham
＋Open abstractView article
閊 PDF

OPEN ACCESS
Cognitive differences between male and female students in higher order thinking skills
N P Anggraini，Budiyono and H Pratiwi
＋Open abstract
View article
禺 PDF

OPEN ACCESS
A cooperative learning model type MURDER CTL on cube and cuboid material
N F Kusuma，Mardiyana and D R S Saputro
＋Open abstractView article
閊 PDF

OPEN ACCESS
012008
Cooperative learning model using AFL to learn geometry based on creativity perspective
M Nurudin，R Riyadi and S Subanti
＋Open abstractView article
禺 PDF

OPEN ACCESS
How mathematics attitude of mothers in rural area affects their children＇s achievement
A P Makur，R C I Prahmana and B Gunur
＋Open abstract
View article
閊 PDF
This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more， sebur Rgedessind Cookies policy．

On the existing of fully invariant submodule
P W Prasetyo，Widayati and D A Yuwaningsih
＋Open abstract 国 View article 四 PDF

OPEN ACCESS

Poverty modeling of regencies／municipalities in the island of Sumatera
D S Rini，D Agustina，I Sriliana and P Novianti
$\boldsymbol{+}$ Open abstract 國 View article PDF

OPEN ACCESS
012012
Application of graf coloring for optimization of traffic light settings in Medan
F Marpaung and A Ritonga
＋Open abstract 国 View article 僉 PDF

OPEN ACCESS

Why do pre－service teachers use the two－variable linear equation system concept to solve the proportion problem？
M Irfan，T Nusantara，Subanji，Sisworo，Z Wijayanto and S A Widodo
＋Open abstract
国 View article
戌 PDF

OPEN ACCESS

Analysis for instability of parameter in quantile regression with Lagrange multiplier：Is the dependent and independent variable relationships have changed？

TJ Parmaningsih，S Haryatmi and Danardono
＋Open abstract 国 View article 興 PDF

OPEN ACCESS

The ability of seventh－grade disabilities students in solving number operation problems
Laila Fatika Nuari and Rully Charitas Indra Prahmana
＋Open abstractView article
四 PDF

OPEN ACCESS

Analysis of student＇s geometry reasoning ability at senior high school
W Ayuningtyas，Mardiyana and I Pramudya
＋Open abstract 国 View article 四 PDF

OPEN ACCESS
Estimating Survival Time of Dengue Haemorrhagic Fever Using Extended Cox Model
M Muhammad，Gunawan and D A Yuwaningsih
this open abstract uses cookies．By continuing to use this site you agree to our use of cookies．To find out more， see our Privacy and Cookies policy．

Analyzing Three Factor Experiments using Partitioned Design Matrices
S Nugroho
＋Open abstractView article
PDF

OPEN ACCESS
The nonparametric regression model using Fourier series approximation and penalized least squares（PLS）（case on data proverty in East Java）

D R S Saputro，A Sukmayanti and P Widyaningsih
＋Open abstract 国 View article 毌 PDF

OPEN ACCESS
012020
Parameter estimation of Gumbel distribution using Quasi－Newton Broyden Fletcher Goldfarb Shanno（BFGS）method and its application on data of daily precipitation in Purworejo regency

D R S Saputro，H Handayani and P Widyaningsih
＋Open abstractView article
PDF

OPEN ACCESS
012021
Poverty Mapping of the Coastal Areas Using Spatial Empirical Best Linear Unbiased Prediction Method

E Sunandi，D Agustina and H Fransiska
＋Open abstractView article
为 PDF

OPEN ACCESS
Mathematical connections ability in solving trigonometry problems based on logical－ mathematical intelligence level

Sarkam，I Sujadi and S Subanti
＋Open abstract 国 View article 置 PDF

OPEN ACCESS
Problem solving investigation on linear equation of two variables using independent learning of student

R S Nasution，J Y Harahap and K Samosir
＋Open abstract 国 View article 刞 PDF

OPEN ACCESS
Ethnomathematics：Exploring the activities of culture festival
Maryati and Rully Charitas Indra Prahmana
＋Open abstractView article
次 PDF
This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，
SEBGNr PGGedsand Cookies policy．

Development of Higher－Order Thinking Skills（HOTS）Questions of Probability Theory Subject Based on Bloom＇s Taxonomy
 P N Sagala and A Andriani
 ＋Open abstract 国 View article 風 PDF

OPEN ACCESS

Pbl－team teaching：supporting vocational students logical thinking and creative disposition

A Maharani，Darhim，J Sabandar and T Herman
＋Open abstract 国 View article PDF

OPEN ACCESS

Expansion of paranormal operator
Gunawan，D A Yuwaningsih and M Muhammad
＋Open abstractView article
閊 PDF

OPEN ACCESS

012028
Revised Bloom＇s taxonomy to analyze the final mathematics examination problems in Junior High School

W I Himmah，A Nayazik and F Setyawan
＋Open abstractView article
四 PDF

OPEN ACCESS
A study of local culture utilization on the higher order thinking skills－categorized items
Y C Adinata，Budiyono and D Indriati
＋Open abstract 国 View article 器 PDF

OPEN ACCESS

The problems of teaching fractional arithmetic operations for disabled student using Realistic Mathematics Education

F Sulistyowati，K S Kuncoro，P Nugraheni，H Hernowo and F Setyawan
＋Open abstract
View article
PDF

OPEN ACCESS
Misconception in fraction for seventh－grade students
Nur Lailatul Fitri and Rully Charitas Indra Prahmana
＋Open abstractView article
冏 PDF

How concrete operational student generalize the pattern？：use semiotic perspective
Thissaitandses aqukiefn，By cartibuing todtse this site you agree to our use of cookies．To find out more， see our Privacy and Cookies policy．
＋Open abstract
View article
四 PDF

OPEN ACCESS
Identifying the reversible thinking skill of students in solving function problems
S Maf＇ulah，H Fitriyani，E Yudianto，F R Fiantika and R M Hariastuti
＋Open abstractView article
四 PDF

OPEN ACCESS
Profiles quantitative reasoning and students＇generalization ability on topic of direct proportion

M Muzaini，D Juniati and T Y E Siswono
＋Open abstract
View article
烕 PDF

OPEN ACCESS

Written mathematical communication accuracy on linear equation and inequality
M Zahri，I K Budayasa and A Lukito
＋Open abstract 国 View article 㬂 PDF

OPEN ACCESS
Geometric thinking level of the Indonesian seventh grade students of junior high school
M Prayito，D Suryadi and E Mulyana
＋Open abstractView article
幾 PDF

OPEN ACCESS

The effect of using bilingual basic mathematics textbooks with constructivism approach
A Yunita Hamdunah and S Imelwaty
＋Open abstract 国 View article 墖 PDF

OPEN ACCESS
Engaging problems on trigonometry：why were student hard to think critically？
M Aminudin，T Nusantara，I N Parta，S Rahardjo，A R As＇ari and Subanji
＋Open abstractView article
恜 PDF

OPEN ACCESS

The students＇achievement of algebraic thinking ability using Merrill＇s First Principles of Instruction

H Wilujeng，Y S Kusumah and D Darhim
＋Open abstract
View article
PDF

S L Manurung，Elfitra and S Frisniory
＋Open abstractView article

OPEN ACCESS
The achievement analysis of Indonesian TIMSS 2011 in mathematics towards didactical situation

Ade Sunawan and Rizky Rosjanuardi
＋Open abstract
View article
四 PDF

OPEN ACCESS
Research－based learning to increase creative thinking skill in mathematical Statistic
I Krisdiana，T Masfingatin，W Murtafiah and S A Widodo
＋Open abstractView article
鿖 PDF

OPEN ACCESS
012043
3D page flip professional：Enhance of representation mathematical ability on linear equation in one variable

F Ferdianto，Setiyani and D Nurulfatwa
＋Open abstractView article
畯 PDF

OPEN ACCESS
Profile of students＇errors in trigonometry equations
D Fahrudin，Mardiyana and I Pramudya

+ Open abstract 国 View article 㬂 PDF

OPEN ACCESS
Relationship 6 task KKNI for student＇s scientific publications
Elfitra，M B Darari and E Simanjuntak
＋Open abstractView article
気 PDF

OPEN ACCESS
012046
Classification of cultural capital to view profile of pedagogical content knowledge mathematics teachers in gayo highlands

E Saputra，H Hakim and Suwarno

+ Open abstract 国 View article 風 PDF

OPEN ACCESS

012047
Inquiry learning strategy to improve mathematics achievement of junior high school
E Siregar and S R Sirega
\pm Open abstract 国 View article 僉 PDF
This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more， see our Privacy and Cookies policy．

OPEN ACCESS
The effectiveness of test instrument to improve mathematical reasoning ability of mathematics student

E Simanjuntak，H D M Hutabarat and Y Hia
$\boldsymbol{+}$ Open abstract 国 View article 四 PDF

OPEN ACCESS

012049
Cubaritme in the trajectory learning of multiplication concept
Andriyani and M Maulana
＋Open abstract
View article
閣 PDF

OPEN ACCESS
Analysis of student＇s mathematical writing skill with two stay two stray models toward writing in performance tasks strategy at SLETV materials

F D Asmarawati，Sutopo and G Pramesti
＋Open abstract 国 View article PDF

OPEN ACCESS

012051
Analyzing the need of math geometry drawing tools in mathematics classroom
A Hendroanto and H Fitriyani

+ Open abstract 国 View article 四 PDF

OPEN ACCESS

Using the ADDIE model to develop learning material for actuarial mathematics
E Widyastuti and Susiana

+ Open abstract 国 View article 風 PDF

OPEN ACCESS

Self－assessment profile on statistics using computer－based mathematical summative test
W Pramadya，Riyadi and D Indriati
＋Open abstract 国 View article 咀 PDF

OPEN ACCESS
Analysis of mathematical ability based on gender
L Misu，Hasnawati and U Rahim
＋Open abstractView article
鿖 PDF

OPEN ACCESS
Translation process of mathematics representation：From graphics to symbols and vice versa
 see our Privacy and Cookies policy．
＋Open abstract
View article
四 PDF

OPEN ACCESS

The eXeLearning for social arithmetics through scientific approach
N Rokhima，B L Harisna，I E Ningrum and D Sulisworo
＋Open abstractView article
閊 PDF

OPEN ACCESS
Mathematical Reasoning：The characteristics of students＇mathematical abilities in problem solving

Sri Indriati Hasanah，Chairul Fajar Tafrilyanto and Yuniatul Aini
＋Open abstract
View article
四 PDF

OPEN ACCESS
The Roster context in angle learning for Primary School pre－service teachers
A Fauziah，R I I Putri，Zulkardi and Somakim

+ Open abstract 国 View article 国 PDF

OPEN ACCESS

Students＇misconceptions on the algebraic prerequisites concept：operation of integer numbers and fractions

D Permata，P Wijayanti and Masriyah
＋Open abstractView article
恜 PDF

OPEN ACCESS
Student＇s mathematical literacy ability on PISA＇s space and shape task
A Nurutami，R Riyadi and S Subanti
＋Open abstract
国 View article
卥 PDF

OPEN ACCESS

Direct learning models assisted by Lectora Inspire media to improve the understanding of geometry concepts

A Sanwidi and G T Swastika
＋Open abstract 国 View article 回 PDF

OPEN ACCESS

How Students Non－Generative Thinking Identifying Parallelogram？
Rahma Wahyu，Purwanto，I Nengah Parta and Rustanto Rahardi
＋Open abstractView article
四 PDF

This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more， see our Privacy and Cookies policy．

Developing ethnomathematical tasks in the context of yogyakarta to measure critical thinking ability
Rino Richardo，Adhetia Martyanti and Suhartini
＋Open abstract 国 View article 国 PDF

OPEN ACCESS

Error Identification in Problem Solving on Multivariable Calculus
Reni Untarti and Anggun Badu Kusuma

+ Open abstract 国 View article 㬂 PDF

OPEN ACCESS
012065
Mathematical reasoning ability in relations and function using the problem solving approach

S A P Lestari
＋Open abstractView article
因 PDF

OPEN ACCESS
012066
Analyzing the student＇s cognitive abilities through the thinking levels of geometry van hiele reviewed from gender perspective

A Maharani，H Sulaiman，Saifurrohman，N Aminah and C D Rosita
＋Open abstract 国 View article PDF

OPEN ACCESS

012067
Designing educational game android to improve mathematical understanding ability on fraction

Setiyani，F Ferdianto，R Meidasari and L Sagita
＋Open abstract 国 View article PDF

OPEN ACCESS

Developing eXeLearning application through project－based learning
I Prasetyani，D M Darojah，N Novianti and D Sulisworo
＋Open abstractView article
PDF

OPEN ACCESS
012069
ICT on mathematics learning process at Pagaralam elementary school
C Rahayu，R I I Putri，Zulkardi and Y Hartono
＋Open abstract 国 View article 匃 PDF

OPEN ACCESS

Polya theory to improve problem－solving skills
K R Daulay and I Ruhaimah
This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more， tee Onur pibstract and Cookies policy．

OPEN ACCESS
Development of learning tools：learning constructivist mathematics to improve creative thinking ability

N Ubaidah and M Aminudin
＋Open abstract 国 View article 皿 PDF

OPEN ACCESS
I am not good in circle task：Exploration on student＇s semi－relationalist mathematical concepts

I Gunawan，Kusnandi and Darhim
＋Open abstract 国 View article 国 PDF

OPEN ACCESS

012073
PISA－like mathematics problems using rice fields context in Karawang
I N Aini，Zulkardi，R I I Putri and P Yaniawati
＋Open abstract 国 View article 㬂 PDF

OPEN ACCESS

012074
Prim＇s algorithm to model the pipe network at the water supply company
M S Sinaga，E S Manurung，Arnita and S Manullang
＋Open abstractView article
興 PDF

OPEN ACCESS
Interactive Learning Media Using Kvisoft Flipbook Maker for Mathematics Learning
S Fahmi，S W Priwantoro，R A Cahdriyana，A Hendroanto，S N Rohmah and L C Nisa
＋Open abstract
View article
四 PDF

OPEN ACCESS

Misconception of triangle concept through epistemological mathematics belief
Rahaju，Purwanto，IN Parta and S Rahardjo
＋Open abstract 国 View article 围 PDF

OPEN ACCESS
Understanding hearing impairment students at SMPLB in rectangle based gender
A Husniati，K Budayasa，D Juniati，I Akib and Baso
＋Open abstractView article
句 PDF

OPEN ACCESS

The Development of Teaching Materials Base on Inquiry Oriented Discovery
W Mataheru，N C Huwaa and C Matitaputty
This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，

OPEN ACCESS
Analysis of student mathematics textbook for second grade of Senior High School based on Curriculum 2013

R N Afifah，I Sujadi and I Kurniawati
＋Open abstract 国 View article 罠 PDF

OPEN ACCESS
How teacher professionalism influences student behaviour in mathematical problem－
solving process
Y Harisman，Y S Kusumah and K Kusnandi
＋Open abstract 国 View article 戍 PDF

OPEN ACCESS

Implementation of self－directed learning model to improve students＇self－regulated learning and self－confidence

L N Zamnah and A M Ruswana
＋Open abstractView article
䛼 PDF

OPEN ACCESS
012082
The students＇mathematical critical thinking process reviewed from the cognitive style
D Muhtadi，Supratman and R Hermanto
＋Open abstract
国 View article
侖 PDF

OPEN ACCESS
Using Realistic Mathematics Education approach to learn linear program
L F Amrina and R Rosnawati
$\boldsymbol{+}$ Open abstract 国 View article 四 PDF

OPEN ACCESS
012084
Developing collaborative mathematics learning model for students with intellectual disability

T Y Pratama，C Rakhmat，Hidayat，Sunardi，A Wibawanto，S A Sidik，R F Abadi，Y T Utami and A Istiandaru
＋Open abstractView article
圆 PDF

OPEN ACCESS
012085
Virtual simulation instructional training for students＇drop out of mathematical science digital entrepreneurs

F C Wibowo，D R Darman，H Abizar，Sjaifudin，S M Leksono，S R N Hodijah，L Nulhakim and A Istiandaru
＋Open abstract 国 View article 咼 PDF

Relationship between students＇multiple intelligence－based instructional areas and assessment on academic achievements

L Nulhakim，B Wibawa and T N Erwin
＋Open abstractView article
成 PDF

OPEN ACCESS

Formal student thinking in mathematical problem－solving
S A Widodo，Istiqomah，Leonard，A Nayazik and R C I Prahmana
＋Open abstract 国 View article PDF

OPEN ACCESS

012088
HOTS on mathematical modelling approach in primary school
B Riyanto，Zulkardi，R I I Putri and Darmawijoyo
$\boldsymbol{+}$ Open abstract 国 View article 僉 PDF

OPEN ACCESS
The development role of mathematic intuition principles in mathematical problem－ solving

Arwanto，I Ketut Budayasa and Mega Teguh Budiarto
＋Open abstractView article
四 PDF

OPEN ACCESS
Pseudo－thinking process in solving logic problem
Rima Aksen Cahdriyana，Rino Richardo，Syariful Fahmi and Fariz Setyawan
＋Open abstract 国 View article 成 PDF

OPEN ACCESS
012091
Classification and diagnosis of diabetic with neural network algorithm learning vector quantizatin（LVQ）

Arnita，M S Sinaga and Elmanani
＋Open abstractView article
图 PDF

OPEN ACCESS
012092
Virtual media simulation technology on mathematical representation of sound waves
D R Darman，F C Wibowo，A Suhandi，W Setiawan，H Abizar，S Nurhaji，L Nulhakim and A Istiandaru

+ Open abstract 国 View article 盛 PDF

OPEN ACCESS

Improving logical thinking skills using HOTS－based mathematics teaching material
N Anriani，A S Pamungkas，K Iskandar and A Istiandaru
This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more， see Open pabstract cound Cook Vies policy．

OPEN ACCESS
Mathematical modeling approach of an evacuation model for tsunami risk reduction in bengkulu

Z M Mayasari，U Rafflesia，M Astuti and Y Fauzi
＋Open abstract 国 View article 国 PDF

OPEN ACCESS

Reyog Ponorogo art exploration as mathematics learning resources：An
ethnomathematics study
Alip Sugianto，Wakit Abdullah，Sumarlam and Sahid Teguh Widodo
＋Open abstract
国 View article
－PDF

OPEN ACCESS
Graph edges coloring to determine lecture classroom of mathematics education department at muhammadiyah university of surabaya

H Mursyidah
＋Open abstract 国 View article PDF

OPEN ACCESS
Mnemonic on the logarithm of the form of creativity from $21^{\text {st }}$ century skills
A Cahyono，I Slamet and B Usodo
＋Open abstract 国 View article 畇 PDF

OPEN ACCESS

Developing Adobe Flash－based mathematics learning media for $7^{\text {th }}$－grade students of junior high school

D P Astuti，Leonard，Y B Bhakti and I A D Astuti
＋Open abstract 国 View article 気 PDF

OPEN ACCESS

012099
Blended learning in students＇view
N Siregar，TM Siregar and B H Siregar
＋Open abstractView article
戌 PDF

OPEN ACCESS
Field－independence versus field－dependence：a serious game on trigonometry learning
A Prabowo，B Usodo and I Pambudi
＋Open abstract 国 View article 因 PDF
 examoninatiingns and Cookies policy．

Padhila Angraini and Rully Charitas Indra Prahmana
＋Open abstractView article
毁 PDF

OPEN ACCESS

Spatial reasoning ability of mathematics college students
T Septia，I Yuwono，I N Parta and H Susanto
＋Open abstract 国 View article 閂 PDF

OPEN ACCESS

Effect of Edmodo towards interests in mathematics learning
Trisniawati，Mahmudah Titi Muanifah，Sri Adi Widodo and Martalia Ardiyaningrum
＋Open abstract 国 View article 敛 PDF

OPEN ACCESS

Ethnomathematics exploration on units and calculus within a village farmer community
T Suprayo，M S Noto and T Subroto
＋Open abstract 国 View article 四 PDF

OPEN ACCESS
Student＇s engagement behaviour and their success in abstract algebra：structural equation modelling approach

S Suryanti，Y Arifani，I Zawawi and N Fauziyah
＋Open abstract 国 View article 気 PDF

OPEN ACCESS

The students＇understanding of mathematical concepts in resolving the proof of induction
T Wibowo，Fatmawati and D Yuzianah
$\boldsymbol{+}$ Open abstract 国 View article 国 PDF

OPEN ACCESS

Mathematics communication skill of student in junior high school based on students thinking style

S N Rahmy，B Usodo and I Slamet

+ Open abstract 国 View article PDF

OPEN ACCESS
The development of IT－based learning media integrated 6 tasks of the KKNI through blended learning

S Frisnoiry，M B Darari and N R Refisis
$\boldsymbol{+}$ Open abstract 国 View article 佥 PDF
This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more， see our Privacy and Cookies policy．

The implementation of blended learning to improve understanding of mathematics
S Fitri and C L Zahari
＋Open abstract
View article
咀 PDF

OPEN ACCESS
The design learning of fraction with realistic mathematics education in elementary school
Warsito，Y Nuraini，Sukirwan and D Muhtadi
＋Open abstractView article
禺 PDF

OPEN ACCESS

Error patterns in determining combined probability functions from continuous random variables

F Mulyatna and W Nofiansyah
＋Open abstract 国 View article PDF

OPEN ACCESS
Development of blended learning media using the mentimeter application to improve mathematics creative thinking skills

A Andriani，I Dewi and P N Sagala
＋Open abstract 国 View article 僉 PDF

OPEN ACCESS
Prospective teachers＇understanding on students＇learning hypotheses in solving proportion problem

A F Sari，A Ernawati and Z Abidin
＋Open abstractView article
禺 PDF

OPEN ACCESS

012114
On（ R, S ）－Module Homomorphisms
D A Yuwaningsih，I E Wijayanti and P W Prasetyo
＋Open abstract 国 View article 風 PDF

OPEN ACCESS

The applying of KKNI－based textbooks as productivity facilities student creativity
program
T M Siregar and S Frisnoiry
＋Open abstract 国 View article PDF

JOURNAL LINKS

Journal home

Journal Scope
Information for organizers
Information for authors

Contact us

Reprint services from Curran Associates

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

PAPER • OPEN ACCESS
Pseudo-thinking process in solving logic problem
To cite this article: Rima Aksen Cahdriyana et al 2019 J. Phys.: Conf. Ser. 1188012090

View the article online for updates and enhancements.

You may also like
NEWS
Types of proportional reasoning of seventh grade junior high school students in Jombang W S Hidayati and L B Tristanti

A recognition method for extreme bradycardia by arterial blood pressure signal modeling with curve fitting Yongxin Chou, Aihua Zhang, Jason Gu et al.

Pseudo-thinking process in solving logic problem

Rima Aksen Cahdriyana ${ }^{1}$, Rino Richardo ${ }^{2}$, Syariful Fahmi ${ }^{3}$, and Fariz Setyawan ${ }^{4}$
${ }^{1,3,4}$ Universitas Ahmad Dahlan, Jalan Ring Road Selatan, Bantul, Yogyakarta 55191, Indonesia
${ }^{2}$ Universitas Alma Ata, Jl. Brawijaya No. 99 Tamantirto, Kasihan, Bantul DIY, Indonesia, 55183

E-mail: rima.aksen@pmat.uad.ac.id

Abstract

This study was intended to describe the students' false-pseudo-thinking process in solving a mathematical logic problem. The problem presented was the true value of a compound statement without using the truth table. The subjects consisting of male and female students. Data collection used the think aloud method. The results indicated that (1) in understanding problem: male subjects were able to understand some components of the problem, women could understand each element of the problem; (2) in planning problemsolving: male subject unaware of the initial concepts needed to solve problem, while female subject aware of it; (3) in implementing the plan: both male and female subjects used incomplete knowledge structures to solve problem; and (4) both subjects did not re-check the answers found. The thinking structure of false-pseudo in solving mathematical logic problem occurred because 1) the lack of initial knowledge that will be used to plan problem-solving, 2) superficial similarities: the habit of completing the previous practice makes the subject consider the many similarities in the problem-solving process, and there is no reflection on the answers given.

1. Introduction

Mathematics is the study of patterns and rules [1]. In order to be able to understand, students are required to develop the thinking ability through learning activities [2]. Ruggiero said the thinking process is a mental activity that is used to formulate or solve problems, make decisions and get understanding [3]. Meanwhile, Subanji said that thinking is a mental activity that occurs in the brain in order to remember, understand to find or make a way, analyze, synthesize problems and solve them [4]. This shows that students will have the ability to understand, analyze, and be able to solve mathematics problems when their thinking potential is trained and developed.

In solving mathematics problems, students often experience difficulties and produce wrong answers. This often happens because the solution to the problem is not immediately known by using routine procedures [5-9], and also the mathematics learning that is monotonous and procedural, such as the teacher explaining the material, giving examples, assigning students to practice the problem, then discussing the problem-solving which is then copied by the students. An essential aspect of learning, namely the process of students thinking is not the main focus. The impact of this condition resulted in many students who could not understand the concept of mathematics well [10-12].

Other conditions, students also often apply procedures that are wrong in solving problems, they consider the problems are same, even though the context is different, so the answers obtained are
wrong [13]. According to Vinner, most students assume that he has done the thinking process in problem-solving, even though students only imitate what is done by the teacher. This situation is called pseudo-thinking, a situation where students do not really use their minds to solve a problem [14]. The results of a problem-solving process are not the output of actual mental activity [4]. Based on the understanding of procedures used by students in answering questions and relatedness to other concepts, pseudo-thinking is divided into two, namely: analytic pseudo-thinking and pseudo conceptual thinking. Analytic pseudo-thinking is a mental activity that occurs in the brain that is not based on controls on the chosen procedures and used procedures. Conceptual pseudo-thinking is a mental activity that occurs in the brain that does not think about the meaning of a concept used and its relationship to other concepts. Based on the answers given by students and the clarification process used, pseudo-thinking is divided into two, namely: false-pseudo-thinking and true-pseudo-thinking. False-pseudo-thinking is a mental activity that occurs in the brain in giving wrong answers but can correct errors after self-reflection. True-pseudo is a mental activity that occurs in the brain in giving the correct answer but cannot give or occur errors in justifying the answers given [15].

According to Subanji and Nusantara, pseudo-thinking has an impact that there are errors made by students in working on mathematical problems. This matter really needs attention, because these mistakes will greatly affect their understanding of mathematics concepts [16]. To reduce the impact of errors in building the next concept, it is important to search for sources and causes of errors. These sources can be found through the formation of student thought schemes called the concept construction process of students [17]. Through this research, it will be revealed the source of the formation of students' thinking errors in solving problems. The results of this study will be useful to improve the structure of students' thinking, thus helping them to understand the correct mathematical concepts.

2. Method

This study was intended to describe the students' false-pseudo-thinking process in solving a mathematical logic problem. The logic problem was to indicate whether a compound statement is a tautology or not without using the truth table. This research was classified as qualitative research. According to Bogdan dan Taylor, qualitative methods are research procedures that produce descriptive data from research subjects related to observed behavior [18]. The research subjects were students in the odd semester of 2018/2019 academic year who had studied the logic material, especially the topic of compound statements and the truth tables. The research subjects were selected based on purposive sampling, which was taken by considering their communication ability so that the disclosure of the thinking process could be done well. Researchers took two samples as subjects based on gender.

The instrument of this research was the researcher that guided by the task sheet instrument to solve the problem of mathematical logic. In this case, researchers are planners, data collectors, analysts, data interpreters, and research conclusion makers. The task sheet instruments used in this study is shown in Figure 1.

Show whether the following statement is tautology or not without using the truth table!
Write the answer that you think is the shortest!

$$
(x \Rightarrow y) \Rightarrow((z \Rightarrow x) \Rightarrow(z \Rightarrow y))
$$

Figure 1. The task sheet instruments
The problems raised as follows [19]. (1) The question faced subject must be understood. The concept needed to solve the problem is the concept of the truth table of implication. (2) The question given must be a challenge for the subject to answer it. The challenge of the problem is the subject must be able to determine the truth value of one single statement at the beginning so that the resulting step becomes shorter. (3) The question requires the subject to answer using the nonroutine procedure, that is without using the truth table. Subjects required using Polya's steps in solving the problem of mathematical logic material [20]. Polya's steps are an understanding problem, planning the steps in
solving the problems, implementing the strategies to solve the problems, and doing verification (see in Figure 2).

Figure 2. Thinking Structure in Solving Mathematical Logic Problem
Table 1. Encoding and Explanation of Thinking Structure in Completing Mathematical Logic Problem

Code	Explanation
Z	Being able to understand the main problem, that is mathematical logic
a_{1}	Being able to understand what is known from the problem: a compound statement in the form of implications, the antecedents is $(x \Rightarrow y)$, the consequence is $(z \Rightarrow x) \Rightarrow(z \Rightarrow y)$
a_{2}	Being able to understand what is asked from the problem: whether a compound statement is a tautology or not without using the truth table
B	Being able to make a plan: using two possibilities from the concept of true value in implication briefly, what is the implications are true if the value of antecedents is false without regard to the consequent truth value or if consequents are true regardless of the truth value of the antecedents.
c_{1}	Being able to implement the plan, by assuming z is false so $(z \Rightarrow x)$ is true and $(z \Rightarrow y)$ is true. So that $(z \Rightarrow x) \Rightarrow(z \Rightarrow y)$ is true. As consequence is true, then the implications of compound statements are true.
c_{2}	Being able to implement the plan, by assuming z is true and y is true, then $(z \Rightarrow y)$ is true, so that $(z \Rightarrow x) \Rightarrow(z \Rightarrow y)$ is true. As consequence is true, then the implications of compound statements are true.
c_{3}	Being able to implement the plan, by assuming z is true, y is false, and x is false, then $(z \Rightarrow x)$ is false, so that $(z \Rightarrow x) \Rightarrow(z \Rightarrow y)$ is true. As consequence is true, then the
C_{4}	implications of compound statements are true. Being able to implement the plan, by assuming z is true, y is false, and x is true, then $(x \Rightarrow y)$ is false. As antecedents are false, then the implications of compound statements are true.
k	Conclusion: the compound statements is a tautology
d_{1}	Checking answer, by assuming y is true, then $(z \Rightarrow y)$ is true, so that $(z \Rightarrow x) \Rightarrow(z \Rightarrow y)$ is true. As consequence is true, then the implications of compound statements are true.
d_{2}	Checking answer, by assuming y is false and z is false, so that $(z \Rightarrow x) \Rightarrow(z \Rightarrow y)$ is true.
d_{3}	As consequence is true, then the implications of compound statements are true. Checking answer, by assuming y is false, z is true, and x is false, so that $(z \Rightarrow x) \Rightarrow(z \Rightarrow y)$ is true. As consequence is true, then the implications of compound
	statements are true.
d_{4}	Checking answer, by assuming y is false, z is true, and x is true, so that $(x \Rightarrow y)$ is false. As antecedents are false, then the implications of compound statements are true.

Table 1 is the description of Figure 2. Based on the three reasons stated in Table 1, the researcher believes that the task sheet given to the subject is a problem-solving type. The task sheet instrument was validated by a senior lecturer in the field of mathematics education. Validation is directed to the problem-solving process and the suitability of the language used. Data collected by giving the problem to the subject. In the problem-solving process, the subject is asked to convey verbally what is thought. In this case, the method used is thought aloud. Interviews conducted are only used to clarify the thinking process delivered by students. The data analysis process is carried out by 1) reduce data, which means to summarize, choose the main things from the results of the interview, and focus on important things that show the existence of a pseudo-thinking process; 2) presenting data, which means describing the cognitive structure of the subject's thinking based on problem-solving activities; 3) draw conclusions, which means giving an explanation of the meaning of the data that has been presented [21].

3. Result

3. 1. Description of The Pseudo-thinking Process in Male Subject (S1)

In the thinking process, it appeared that S 1 has understood some of the known variable from the problem. This is indicated by the statement from S1 shown in Figure 3.

S1: This problem is about logic ... about tautology, compound statements. ... This question is asked to show whether a compound statement is tautology or not without using the truth table.

Figure 3. S1's statement of some known variables
The first time S1 faced a problem, S1 could understand that what is known from the problem is a compound statement. Even though S1 did not say that compound statement was an implication, S1 understood that what is asked of the problem is to show the compound statement is a tautology or not without using the truth table.

Furthermore, in planning problem-solving, S1 did not realize that the initial concept needed to show whether the compound statement is a tautology or not are two possibilities of the concept of implication in true value (see in Figure 4).

S1:	The implication is false if antecedent is true and consequent is false. The implication is true if the antecedent is true and the consequent is true, or the antecedent is false and the consequent is true, or the antecedent is false and the consequent is false.

Figure 4. S1's statement of the concept of implication
Based on the statement said by the S1, S1 only repeated the statement from the truth table. S1 has not carried out an analysis of the implication concept of true value, that implication will be true value if the antecedent is false or consequent is true. This concept is urgently needed to determine which single statement will be chosen to show whether the compound statement is tautology briefly. On the other side, the implication concept of false value was needed if, through the implications concept of true value, the compound statement cannot be shown the truth value.

S1 started to implement the planning by writing down the truth value of one of a single statement. The first step, S 1 supposed z is true and x is false, so that $(z \Rightarrow x)$ is false. Then, suppose y is false, so that $(z \Rightarrow y)$ is false. It can be concluded that the implication of the compound statement is true. The second step, S 1 supposed x is true and y is true, so that $(x \Rightarrow y)$ is true. Then, supposed z is false, so that the implication of the compound statement is true. The completion produced by S 1 is presented in Figure 5.

Figure 5. S1' answer
The problem-solving steps that have been written by S1 are incomplete (see in Figure 5). Showing what is a compound statement is a tautology, not only seen from the two examples written. There are still six other possibilities, which can be shortened to four steps through the implications concept of true value. In addition, S 1 is not consistent in writing his single statement. In addition, S1 was not consistent in supposing the truth value of a single statement. First, S1 supposed that the value of z is true, but S 1 did not assume how if the value of z is false. To get a short answer, if S1 started by assuming z is false, then it can quickly be shown that the implication of the compound statement is true. However, S1 did not aware that S1 written incomplete problem-solving steps. This can be seen in Figure 6.

```
R : Does this answer enough to show that compound statement is tautology?
S1 : Yes.
R : Do you think there is a lack of steps?
S1 : No. It is enough.
```

Figure 6. S1's statement of compound statement
After solving the problem based on the plan made, S 1 did not re-check the answers found. S 1 is in the pseudo-thinking process because in solving problems do not control what is thought [12, 20]. Because there are some errors on the assumptions given, so the answers got is wrong. It is possible, S1 has not used the thinking process optimally because the concepts stored in memory are not well connected.

Based on these incorrect answers, the researcher gave the intervention to S 1 to use the implication concept of true value. However, S1 is still cannot understand the intent of the researcher. So when the researcher gave intervention again by mentioning two possibilities of the implication concept of true value, S1 started to realize that the steps are written are incomplete. S1 was in the pseudo-thinking process because, after the reflection, S1 started to realize its mistakes in solving the problem [15]. An intervention that researchers gave to S 1 was seen in Figure 7. While Table 2 is the description of Figure 8.

R : State the terms so that the implication is true!
S1 : The implication is true if the antecedent is true and the consequent is true, or the antecedent is false and the consequent is true, or the antecedent is false and the consequent is false.
R : Yes, based on this it can be concluded that two possibilities of the true value of implication. First, if the antecedent is false, regardless of consequent, then?
S1: Then the implication is true.
R : Next?
S1 : If the antecedent is true, there are two possibilities.
R : Yes. If the consequence is true, then?
S1 : Then ... Implication is true.
R : Well, let z is false.
S1: If z is false, then $(z \Rightarrow x)$ is true, $(z \Rightarrow y)$ is true, so that implication is true.
R : What a statement that has been assumed?
S1 : Only z.
R : How about your answer?
S1 : I was assuming all of the truth value of the statement.
R : So.. try to let if z is true!
S1: I should assume the truth value of x dan y.
R : Okay, what do you think about your answer?
S1: This should be checked one by one.
R : Is there lack of steps?
S1: Yes.
Figure 7. S1's statement of some known variable from the problem

Figure 8. S1 Thinking Structure in Solving Mathematical Logic Problem

Table 2. Encoding and Explanation of S1 Thinking Structure in Completing Mathematical Logic

Code	Explanation
z	Being able to understand the main problem, that is mathematical logic. a_{1} a_{2}
Being able to understand what is known from the problem: a compound statement. Being able to understand what is asked from the problem: whether a compound statement is a tautology or not without using the truth table.	
b_{1}	Being able to make a plan: stating the four possibilities from the concept of true or false value in implication.
b_{2}	Not being able to make the other plan: stating two possibilities from the concept of true value in implication briefly. Pseudo 1: did not analyze the truth table of implication.
c_{1}	Being able to implement the plan: determining the truth value of implication by assuming the truth value of z, x, and y.
c_{2}	Being able to implement the plan: determining the truth value of implication by assuming the truth value of x, y, and z.
c_{3}	Not being able to make other probabilities of implication which true value. Pseudo 2: incomplete in showing that implication of the compound statement is a tautology.
c_{4}	Did not make an assumption for z is false, after making an assumption for z is true. Pseudo 3: inconsistent in making an assumption.
d	Did not check the answers that have been written. Pseudo 4: no controlling/reflection.

3. 2. Description of The Pseudo-thinking Process in Female Subject (S2)

In the thinking process, it appeared that S2 has understood all of known from the problem. S2's statement of known variables is shown in Figure 9.

S2: The keyword is implication ... this is antecedent (S2 appoint $x \Rightarrow y$), and this is consequent (S2 appoint $(z \Rightarrow x) \Rightarrow(z \Rightarrow y)$). ... This question is asked to show whether a compound statement is tautology or not without using the truth table.

Figure 9. S2's statement about known variable
S2 could understand that what is known from the problem are a compound statement and its implication. S2 knew which one antecedent and which one consequent. S2 understood that what is asked of the problem is to show the compound statement is a tautology or not without using the truth table.

Furthermore, in planning problem-solving, S2 aware that the initial concept needed to show the compound statement is a tautology or not are two possibilities of the implication concept of true value. S2's statement about the concept of implication is shown in Figure 10.

S2: The implications are true if the value of antecedents are false without regard to the consequent truth value or if consequents are true regardless of the truth value of the antecedents.

Figure 10. S2's statement about the concept of implication
Based on the statement said by the $\mathrm{S} 2, \mathrm{~S} 2$ has carried out an analysis of the implication concept of true value, that implication will be true value if the antecedent is false or consequent is true. This concept is urgently needed to determine which single statement will be chosen to show whether the compound
statement is tautology briefly. However, when researchers asked which single statement would be chosen, S2 said the weak reason. S2's statement of a single statement is shown in Figure 11.

R : Which single statement would be assumed its truth value?
S2 : If we want to show it quickly, we should assume the false value first.

Figure 11. S2's statement about the concept of a single statement
The initial process in problem-solving carried out by the S 2 shows that S 2 is experiencing a pseudo-thinking process. This is due to the reason given by S2 that "if we want to show it quickly, we should assume the false value first" is influenced by the habit of solving a tautology problem that is by assuming one of single statement is false. In fact, the subject can assume one of a single statement with true value. This depends on the single statement that will be taken, if as an antecedent. it is assumed to be false value, it is consequent, it is assumed to be a true value. According to Subanji, S2 used superficial similarities [4]. S2's statement of a single statement is shown in Figure 12.

S2 : So, if x is false, whatever the truth value of y means the antecedent is true. If x is false and z is true, then $(z \Rightarrow x)$ is false. If z is true and y is true, then $(z \Rightarrow y)$ is true, means the consequent is true. Antecedent is true and consequent is true, then the implication is true. It means tautology.
R : Can it be concluded that tautology?
S2 : Not yet, we have to test for x is true. If x is true, y is false, z is false, then the implication is true. Because for x is false, the implication is true, and for x is true, the implication is also true. It means the compound statement is tautology.

Figure 12. S2's statement about the concept of tautology
S2 started to solve the problem by writing down the truth value of one of a single statement. The first step, $\mathbf{S} 2$ supposed x is false, so $x \Rightarrow y$ is true. Then S 2 supposed z is true, then $(z \Rightarrow x)$ is false and supposed y is true so that $(z \Rightarrow y)$ is true. It could be concluded that the implication of the compound statement is true. The second step, S 2 supposed x is true, y is false, and z is false so that the implication of the compound statement is true. The solution produced by S2 is presented in Figure 13.

Figure 13. S2' Answer
The solution steps that have been written by S2 are incomplete (see in Figure 13). S2 has not supposed that x is false and y is false. In addition, in the second step, S 2 also supposed x is true, y is false, and z is false. If S 2 has supposed z is false, it is not necessary to suppose another single statement. Without supposing the truth values of x and y , and only by assuming z is false, the implication of the compound statement is true.

After writing down the problem-solving steps, S2 did not re-check the answers found. This can be seen in Figure 14.

R	: Is this like enough?
S 2	: Yes.
R	: Are there other possibilities?
S 2	: Nothing, Mom.

Figure 14. S2's statement about the concept of similarities of the statement
S2 was in the pseudo-thinking process because in solving problem did not control what is being thought [22]. When the researchers asked questions, S2 answered with inappropriate reasons (see in Figure 14). This was because the concepts stored in S2 memory are not well connected, so the answers got were still wrong. Researchers asked to S2, the conversation can be seen in Figure 15. While Table 3 is the description of Figure 16.

R : If taken x is false, y is true, and z is false, already in your answer sheet?
S2 : Not yet.
R : Is it needed?
S2 : No. Because whatever the truth value, z is true or z is false, the implication is certainly true.

Figure 15. S2's statement about the concept of implication

Figure 16. S2 Thinking Structure in Solving Mathematical Logic Problem

Table 3. Encoding and Explanation of S2 Thinking Structure in Completing Mathematical Logic Problem

Code	Explanation
z	Being able to understand the main problem, that is mathematical logic. a_{1}
$\mathrm{~B}_{2}$	Being able to understand what is known from the problem: a compound statement and its Being able to understand what is anded from the consequent.
B	is a tautology or not without using the truth table. Being able to make a plan: stating two possibilities from the compound statement implication briefly
c_{1}	Being able to implement the plan: determining the truth value of implication by assuming one of a single statement that true value. Pseudo 1: assume that in order to show tautology, it should presuppose that a single statement is false
c_{2}	Being able to implement the plan: determining the truth value of implication by assuming x is false, y is true, and z is true
c_{3}	Not being able to make other probabilities of implication which true value. Pseudo 2: incomplete in showing that implication of the compound statement is a tautology
c_{4}	Being able to implement the plan: determining the truth value of implication by assuming x is true, y is false, and z is false. Pseado 3: presupposing the other single statement even though had been presupposing z is false
d	Did not check the answers that have been written. Pseudo 4: no controlling/reflection.

4. Discussion

Based on the results of the research described, the thinking structure of false-pseudo in solving mathematical logic problem occurred because: (1) the lack of initial knowledge that will be used to plan problem-solving, (2) superficial similarities: the habit of completing the previous practice makes the subject consider the many similarities in the problem-solving process, and (3) there is no reflection on the answers given.

This becomes additional evidence of other research that the thinking structure of false-pseudo of student in solving the problem of inequality is because (1) begins with students' errors in making assumptions when understanding the problem, (2) incompleteness of the students' thinking structure when understanding the problem, and (3) incompleteness of students' thinking substructure in planning ways of completion [23]. Subanji also conducts research, the results show that the pseudo-thinking process of covariational reasoning occurs from incomplete assimilation process, incomplete accommodation process, or both. They are 3 components of the occurrence of the pseudo covariational reasoning thinking process: (1) the existence of imperative thinking structure used in generalizing the solution, (2) the reflection process is not maximized, (3) the existence of the awareness up to the straightening the wrong solution process out [17, 24].

Furthermore, several facts related to students and teachers who were in problem-solving situations, namely (1) students often did not control when solving a problem, (2) students only thought to give the right answer, and (3) students know what can be given to the teacher and how to get it only for teacher satisfaction, and (4) the teacher only expects learning to get the right answer [14]. This causes students to experience pseudo-thinking. Students do not really control what they have done. The biggest motivation is only to give the right answer to the teacher, not to be an important thing for himself as a process of constructing knowledge through right reasoning [15]. On the other hand, students' mistakes in constructing mathematical concepts so that the pseudo-thinking process occurs because students only memorize the material, spontaneously answer the question or rush in understanding things and focus on remembering the procedure [25].

5. Conclusion

The results indicated that (1) in understanding problem: male subjects were able to understand some components of the problem, women could understand each element of the problem; (2) in planning problem-solving: male subject unaware of the initial concepts needed to solve problem, while female subject aware of it; (3) in implementing the plan: both male and female subjects used incomplete knowledge structures to solve problem; and (4) both subjects did not re-check the answers found.

References

[1] Walle J A Van de, Karp K S and Bay-Williams J M 2012 Elementary and Middle School Mathematics: Teaching Developmentally, Student Value Edition (Upper Saddle River, N.J.: Pearson)
[2] Rohana R 2015 Peningkatan Kemampuan Penalaran Matematis Mahasiswa Calon Guru Melalui Pembelajaran Reflektif Infin. J. 4105
[3] Ruggiero V R 1995 Beyond Feelings: A Guide to Critical Thinking (Mayfield Publishing Company)
[4] Subanji S 2009 Berpikir Pseudo Penalaran Kovariasi dalam Mengkonstruksi Grafik Fungsi Kejadian Dinamik: Sebuah Analisis Berdasarkan Kerangka Kerja VL2P dan Implikasinya pada Pembelajaran Matematika J. Ilmu Pendidik. Univ. Negeri Malang 13
[5] Yost D 2008 Integration: Reversing traditional pedagogy Aust. Sr. Math. J. 2237
[6] Kiat S E 2005 Analysis of students' difficulties in solving integration problems Math. Educ. 9 39
[7] Dorko A and Speer N M 2013 Calculus students' understanding of volume Investig. Math. Learn. 648
[8] Serhan D 2015 Students' Understanding of the Definite Integral Concept. Int. J. Res. Educ. Sci. 184
[9] Wibawa K A, Nusantara T, Subanji S and Parta I N 2018 Defragmentasi Pengaktifan Skema Mahasiswa Untuk Memperbaiki Terjadinya Berpikir Pseudo Dalam Memecahkan Masalah Matematis Prima J. Pendidik. Mat. 293
[10] Ngilawajan D A 2013 Proses Berpikir Siswa SMA dalam memecahkan masalah matematika materi turunan ditinjau dari gaya kognitif field independent dan field dependent Pedagog. J. Pendidik. 271
[11] Setyawan F 2015 Conceptual Understanding Profile of LEOV Junior High School Students Based on Kolb's Learning Style International Conference on Mathematics, Science, and Education (ICSME) (Semarang: Universitas Negeri Semarang) pp 61
[12] Setyawan F 2017 Profil Representasi Siswa SMP terhadap Materi PLSV Ditinjau dari Gaya Belajar KOLB J. Medives 182
[13] Subanji 2013 Proses Berpikir Pseudo Siswa Dalam Menyelesaikan Masalah Proporsi J-TEQIP J. Peningkatan Kualitas Guru 4207
[14] Vinner S 1997 The Pseudo-Conceptual and the Pseudo-Analytical Thought Processes in Mathematics Learning Educ. Stud. Math. 3497
[15] Adi Wibawa K 2015 Karakteristik Berpikir Pseudo Dalam Pembelajaran Matematika (Universitas Mataram)
[16] Subanji and Nusantara T 2013 Karakteristik Kesalahan Berpikir Siswa Dalam Mengkonstruksi Konsep Matematika J. Ilmu Pendidik. 19208
[17] Subanji S and Nusantara T 2016 Thinking Process of Pseudo Construction in Mathematics Concepts Int. Educ. Stud. 917
[18] Moleong L J 2014 Metodologi Penelitian Kualitatif Edisi Revisi (Indonesia: Remaja Rosdakarya)
[19] Musser G L, Peterson B E and Burger W F 2013 Mathematics for Elementary Teachers: A Contemporary Approach, 10th Edition (Wiley Global Education)
[20] Rahman A and Ahmar A 2016 Exploration of mathematics problem solving process based on
the thinking level of students in junior high school Int. J. Environ. Sci. Educ. 117279
[21] Anon 2008 Metode penelitian pendidikan:(pendekatan kuantitatif, kualitatif dan R \& D) (Alfabeta)
[22] Wibawa K A 2016 Defragmenting Struktur Berpikir Pseudo dalam Memecahkan Masalah Matematika (Deepublish)
[23] Susanti D 2016 Defragmenting Struktur Berpikir Pseudo Siswa melalui Pemetaan Kognitif dalam Menyelesaikan Masalah Pertidaksamaan Kuadrat Diss. Progr. Pascasarjana, Univ. Negeri Malang
[24] Widodo A, Purnami A S, Charitas R and Prahmana I 2017 Team Accelerated Instruction , Initials, and Problem-Solves Ability i n Junior High School Int. J. Emerg. Math. Educ. 1 193-204
[25] Anggraini D, Kusmayadi T A and Pramudya I 2018 Construction of the mathematical concept of pseudo thinking students Journal of Physics: Conference Series vol 1022 (IOP Publishing) p 012010

SERTIFIKAT

Nomor : 021/SENDIKMAD/XI/2018

Diberikan kepada

Rima Aksen Cahdriyana

sebagai

PEMAKALAH

dengan judul

Pseudo Thinking Process in Solving Matheatical Problem

Seminar Nasional Pendidikan Matematika Ahmad Dahlan (SENDIKMAD) 2018 dengan tema "Mengembangkan Kemampuan Literasi dan Keterampilan Berpikir Tingkat Tinggi [HOTS] melalui Pembelajaran Matematika Inovatif di Era Revolusi Industri 4.0"

Sabtu, 3 November 2018 di Kampus IV Universitas Ahmad Dahlan

$$
\text { Yogyakarta, } \frac{25 \text { Shafar } 1440 \mathrm{H}}{3 \text { November } 2018 \mathrm{M}}
$$

Dekan AFakultas Keguruan dantimu Pendidikan

De. Trikinasih Handayani, M.Si NIP 195909071985032002

Kaprodi
Pendidikan Matematika

Drs. H. Abdul Taram, M.Si
NIY 60900070

NIY 60160936

