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Abstract

Direct torque control (DTC) of induction|
control structure. However, this scheme has two maj

&chines is known to offer El instantaneous torque and flux control with a simple
sadvantageous, namely, a variable inverter switching frequency and a

high torque ripple. These problems occur due to the use of hysteresis comparators in conventional DTC schemes, particularly
in controlling the output torg“es This paper reviews the utilization of constant frequency torque controllers (CFTC) in DTC to
solve these problems while retaining the simple control structure of DTC. Some extensions of the work in utilizing a CFTC
will be carried out in this paper which can further reduce the torque ripple. This is particularly useful for a system which has a

limite

verified through experimental results.

sampling frequency. The feasibility of a CFTC with an extended carrier frequency in minimizing the torque ripple is
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I. INTRODUCTION .
5

The direct torque control (DTC) of induction motor drives
has gained popularity in advanced motor drive applications
since it offers fast instantaneous torque and flux control with
simple implementation. This scheme is well known for its
robustness in control as it less dependent on machine
parameters, does not require a complex field orientatich block,
a speed encoder and an inner current regulation loop. However,
this scheme, which is based on hysteresis comparators [1],
has major drawbacks namely a variable switching frequency, a
large torque ripple and high sampling requirements for digital
implementation. &2

It makes sense that a reduction in output torque ripple can
be achieved when a lower band of torque hysteresis is used
in order to restrict the ripple within the band. However, this
cannot be realized using a microprocessor or a digital signal
processor, particularly when an extreme torque slope occurs
with an inappropriate band level (which is too small). Ideally,
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hysteresis-based operation is suitable for a discrete system
which has a fast processor such that the bang-bang control
can be performed the same as in analog operation. Instead
of lowerihe hysteresis band with a fast processor, one
can inject high-frequenc ngular waveforms into the errors
in torque and flux [2]. This method is called the dithering
technique, and it is simple and eff e in minimizing torque
ripple. However, it still produces an unpredictable switching
frequency since the torque slopes that determine the frequency
of the torque controller vary depending on the operating
conditions [4].

Several methods have been proposed to overcome this
problem (i.e. an unpredictable switching frequency) [5]-[15].
With consideration of the variations in torque slope, a constant
switching frequency can be provided when the hysteresis
bands themselves are adjusted according to operating condi-
tions [5]. The adjustability of hysteresis bands is established
based on a PI controller and a pulse counter for each of
the torque and flux controllers. This, consequently, increases
the complexity of the DTC drive. Moreover, this technique
does not guarantee a reduction in torque ripple as it the case
with hysteresis-based controllers. To eliminate the inherent
problems of hysteresis-based controllers, it is possible to de-
termine an optimal switching instant for each of the switching
cycles that satisfies the minimum-torque ripple condition [7]-
[9]. In this case, the term called a duty ratio is determined
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that an appropriate active state is switched for some
portion of a switching period, and the zero vector is selected
for the rest of the period. Another method, which is very
popular in solving these problems is the use of sp: ector
modulation [6],[10],[13]-[15]. In this approach, a switching
period is subdivided into three or more states, to synthesize
a desired voltage vector in order to produce the minimum
torque ripple. In both approaches, the application of a fast
processor to compute the duty ratio or the voltage vectors for
every switching period is necessary, particularly when a small
sampling time is required.

Recently, the use of predictive control methods in hysteresis-
based DTC has gained a c@iflderable amount of attention,
particularly due to its ability to reduce the torque rip nd as
well as the switching frequency [16]-[18]. Although, a reduced
torque ripple is achieved, the switching frequency still varies,
since it depends on the operating conditions as well as the

able applied voltage vectors.

This paper reviews the use of constant frequency torque
controllers (CFTC)Lhc direct torque control (DTC) of
induction machines to reduce the output torque r with a
constant switching frequency as proposed in [11]. However, it
1s possible to further increase switching frequency in [11]
which will result in a further reduction of the torque ripple,
particularly when DTC is performed with a limited sampling
frequency, i.e. a low speed processor. Some extensions of the
work in utilizing CFTC in DTC will be highlighted in this
paper to show that:

1) A high switching frequency to further reduce the output
torque ripple can be established with a CFTC, by extend-
ing the triangular carrier frequency up to one-quarter of
the maximum sampling frequency achieved by a DSP.

2) With suitable PI-controller gai xcellent control of
the output torque as well as a significant reduction
in the torque ripple can be achieved at the maximum
triangular carrier frequency. A simple linear relationship
between the input-output of the triangular carrier model
(as obtained in [11]) can still be assumed and the output
torque can still be regulated if an appropriate cross-over
frequency is selected based on the maximum switching
frequency.

An extension of the constant switching frequency is partic-
ularly useful for a sy which has a limited/low sampling
frequency. Moreover, this paper also presents a quick guide
for the design of CFTC to simplify the detailed description
in [11]. The feasibility of the use of a CFTC in DTC in
reducing torque le (at three different carrier frequencies) is
verified through experimentation as well as a comparison with
a conventional DTC scheme. In section II of this paper, the
basic principle of DTC is briefly discussed. DTC with a CFTC
is briefly explained in Section III. Section IV plants a quick
guide of the design procedures for a CFTC in DTC. Section
V presents the ipZllementation and experimental results of a
CFTC in DTC. Finally the conclusions are given in Section
VL
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Fig. 1. Structure of basic DTC-hysteresis based induction machine.
II. Basic PRINCIPLE OF DTC
The behavior of induction machines in DTC drives can be
described in terms of space vectors by the following equations
written in the stator stationary reference frame:

.ood

Vg = Fgly ::S (1)
v,

0=rir—jory, +—— (2)

dt
Y = Lsis + Liniy 3)
W = Lty + Linis (4
3 .
I, = EP|WS||"S|51“5 (5)

where P 1s the number of pole pairs, @, is the rotor electric
angular speed in rad./s, L,, L, and L, are the motor induc-
tances and & is the angle between the stator flux linkage and
the stator currempacc vectors. Based on (1) the d°- and g*-
axis stator flux in the stationary reference frame can be written
as:

W' = [’ —isafre)i (62

Vi = [ =iy r)dr. (6b)
In terms of the switching states Sq, Sp. and S¢ (which can
be either 0 or 1) the voltage vectors in (6) are given by:

1
=Y l"](f(.‘ ( 25(!

3 - S!J - S()

(7a)

s _
Ved =

1
—= Ve (Sp = Sc).

V3

The electromagnetic torque given in (5) can be rewritten in
the d*-q* coordinates as:

(7b)

s
Vog =

3
T =— (',Vs.dsfs.qs - Ws.qsfs.ds)- (8)

Fig. 1 shows the structure of the DTC hysteresis-based
control as initia proposed by [1]. The output stator voltage
is applied based on the selection of the switching states (S, Sp.
Se) fraed a look-up table. These switching states are selected
based on whether the torque and the stator flux need to be
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Fig. 2. Selection of the optimum inverter output voltage vectors. (a) Each
sector indicates the appropriate voltage vectors. (b) Eight possible switches
configuration in the three-phase VSI.

TABLEI
Look-up TABLE (VOLTAGE VECTOR SELECTION)
Stator Torque Sec. Sec. Sec. Sec. Sec. Sec.
flux error error l 11 m v v VI
status, status,
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increased or decreas§fefland also on the stator flux position.

The decisions as to whether the torque and/or the flux need
to be increased or decreased comes from the three-level and
two-level hysteresis comparators for the torque and stator
flux, respectively. Fig. 2 illustrates the two optimized voltage
vectors in every sector, which are sele from the eight
possible switch configurations, using the look-up table given
in Table I [1].

Notice that in order to control the flux, two active voltage
vectors arem]uircd, On the other hand, to control the torque,
one active voltage vector is used to increase the tor hile a
zero voltage vectol sed to reduce it. By limiting the torque
and flux errors to within their hysteresis bands, a de-coupled
control e torque and flux is achieved.

It is well-known that the main drawbacks of hysteresis-
based schemes are their variable inverter switching fre-
quency, high sampling requirement for digital implementation
and high torque ripple. To highlight these problems, some
experimental results showing output torque ripples obtained in
hysteresis-based DTC at different applied sampling frequen-
cies and/or torque hysteresis bands are presented as shown in
Fig. 3.

For each case, the control of the torque at 6 Nm was
performed under the same load torque condition so that the
rotor speed operated at around 400 rpm. The nominal level of
the torque hysteresis band is HBp. (0.9 Nm) and the minimum
sampling time achievable using DSP is DT (55us) (more
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Fig. 3. Experimental results of control of output torque utilizing three-
level hysteresis comparator (in hysteresis based-DTC). (a) Hysteresis band =
2HBr,. sampling time=2DT, (b) hysteresis band = HB-., sampling time=DT.
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information on the values Ethc machine and the control
system parameters will be presented in Section V). From Fig.
, as expected, the output torque ripple is high when the
torque hysteresis band is set to twice the HBr. Thus, the
torque ripple of the hysteresis-based can be reduced by
reducing the hysteresis band. Fig. 3(b) shows the results of the
output torque control when the torque hysteresis band ces
to HBt.. However, due to the sampling time used mn Fig.
3(b) (and also in Fig. 3(a)) it is twice of the nominal DT
(i.e. 110us). This leads to incorrect voltage vector selections
(where Ty, = —1) which caa rapid decreases in the output
torque and hence increases m the torque ripple, as can be
seen in Fig. 3(b). Therefore, to eliminate the incorrect voltage
vector selections, the sampling time needs to be reduced, as
demgggtrated in Fig. 3(c) whereby the sampling is set to
DT. As can be seen in 3((:), the output torque ripple is
decreased and no active voltage vector is selected to reduce
the torque.

III. DTC WITH CONSTANT FREQUENCY TORQUE
CONTROLLER

An attempt has been made to provide a constant switching
frequency and reduced the torque ripple in DTC by replacing
the torque hysteresis controller with a constant frequency
torque ccnrollcr (CFTC) as depicted in Fig. 4 [11]. The
constant frequency torque controller (as shown in Fig. 4)
consists of two triangular generators, two comparators and a
proportional-integral (PI) controller. In principle, the function
of the torque error status Ty, generated from the CFTC is
similar to that of a three-level hysteresis comparator [1], which
can be in one of three states; —1, 0 or 1. Note that, no
modification of the original look-up table is required. As a
ll, the decouple control structure as well as the simple
control structure of hysteresis-based DTC can be retained.
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Fig. 5. Typical waveforms of
Fig. 5 shows the typical waveforms of a constant frequency
torque controller. The torque error status Ty, generated from
the constant frequency torque controller can be described by
the following equation:

t(s)

constant frequency torque controller.

I for T.> Cupper
Tiar =40 for Ciower <Tc < Cuppcr 9
=1 for T. < Cower

where T; is output of proportional-integral (PI) control while
Cupper and Cjgyer are the upper and lower triangular wave-
forms, respectively. Note that, the two triangular waveforms
guppcr and Cjgyer) are 180° out of phase with each other.
n order to establish a constant switching frequency, the
frequency and peak to peak of the upper and lower triangular
waveforms are set to fixed values. It is desirable to set a
high triangular wave@n frequency in minimizing the output
torque ripple. For a PI torque controller, the gain values of
K, and K; are restricted to ensure that the absolute slope of
the output signal, 7. does not exceed the absm: slope of the
triangular waveform. This is to ensure the proper operation
of the torque control at a constant switching frequency and
to avoid the selection of incorrect voltage vectors, for a wide
range of operating conditions.

IV. DESIGN PROCEDURE FOR A CONSTANT FREQUENCY
TORQUE CONTROLLER IN DTC
This section presents a quick guide to designing a proper
constant frequency torque controller in the DTC of induction
machines. Briefly, there are three steps to obtaining the proper
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Fig. 6. Generated upper triangular waveform using DSP (sampled at DT us).

operation of a CFTC. A detailed explanation on how the
related equations (as shown later) were derived and how some
of the assumptions made, can be found in [11].

Step 1: Select an appropriate frequency for the triangular
waveforms

It is desirable to have a large triangular frequency in order
to acquire a large torque loop bandwidth and hence a faster
torque response. Moreover, with a higher triangular frequency
the output torque ripple will be reduced. The triangular wave-
forms are generated by software sampled at the maximum
sampling rate to execute the algorithms (i.e DTC including
a CFTC) but limited by the DSP speed. For example, the
upper triangular waveform produced by the DSP is depicted
in Fig. 6, whereby DT is the sampling period of the DSP.
In this particular example, a complete triangular waveform is
completed in a DSP sampling time of eight.

Step 2: Determine rhe.'u value of K
18 P

It must be ensured that the absolute slope of T does not
exceed the absolute slope of the triangular waveforms, which
are mainly rmined by the proportional gain (K) of the PI
controller. The absolute slope of the triangular waveform (as
shown in Fig. 6) can be simply obtained as:

<absolute slope of the triangular waveform>

Cp—p| (10)

4DT

According to [10]; for a positive slope of Te, the following
condition must be satisfied:

<absolute slope of the triangular waveform>

i 11
(oo (S ;"

meanwhile, for a negative slope, the following condition must
be satisfied:

<absolute slope of the triangular waveform>

- (12)
> |-AT, - K o, |KP
where,
1 1

A= + — (13)

oT; OT

6Py
B=—— 14
IoLL, W (14)
3P L

K = = (yyy) (15)

2 oL,L,
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Fig. 7. Averaged and linearized torque loop (as in [11]).
AT, — K| wy;
d= eiwalhp (16)
B‘!G- 5

In (13)-(15), o is the total leakage factor, given by (1 —
Lﬁi;’ (LyLs)). Tr and g are the rotor and stator time constants,
respectively. The term V¥ (11) and (16) is the voltage vector
magnitude, given by (2V,./3).

It should be noted, that the occurrence of an extreme
slope of T, (either positive or negative slope) depends on
the operating conditions. Considering that the motor operates
under the worst-case conditions, (i.e. the torque and flux are
operated under the rated conditions), it is therefore, according
to (11) (or (12)), the maximum K; (or K;) that limits the
slope of T, (or absolute slope of T,) to its maximum. This is
assumed to occur at a zero rotor speed (or at the base rotor
speed) and at the rated slip. That is, @, =0 for (11) and @, is
set at the base speed for (12). Thus, to ensure proper operation
the proportional gain (K) is obtained as:

K, :min{K;,K;}. (17

Step 3: Determine the gain value of K;

Fig. 7 depicts a block diagram of the linearized torque loop
proposed in [10]. The dashed box in Fig. 7 represents the
constant frequency t controller (CFTC). To select the
gain constants of the PI controller in the torque loop, which
results in a phase margin of 65° (or higher), the zero of the
PI controller is chosen to be the same as the pole of the open-
loop gain (or the pole in the torque slope transfer function).
Under this condition, the integral gain K; is calculated as:

K = K,A. (18)

In this way, an infinite dc gail-: to the presence of an
integrator in the PI controller will reduce the steady state error
to zero. Based on the linear control theory, the obtained values
for K, and K; (from (17) and (18)), must be adjusted such that
the torque loop gain crossover frequency is much smaller than
the carrier frequency. For a clearer picture, the determination
of the PI controller’s gain, presented in section V, will use
numerical values based on the actual motor parameters given
in Table IL

54
V. IMPLEMENTATION QD EXPERIMENTAL R TS
The feasibility of the CFTC in DTC, in providing stant
switching frequency and a reduced torque ripple has been
realized with a complete drive system as shown in Fig. 8. The
control algorithm is implemer on a DSPACE 1102 and an
Altera FPGA (APEX20KE). Some of the main tasks of the
DTC (i.e. the look-up table and the blanking time) are imple-
mented utilizing the FPGA. As a result, the DSP (DSPACE
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1102) is able to execute the DTC algorithm including the
CFTC operation in the minimum sampling period which is
55 ps.

Based on the previous discussion, mn order to obtain the
maximum reduction in the torque ripple, the switching fre-
quency needs to be increased. Normally this can be achieved
by using a high-speed DSP system. For example, the Lm
of the SVM technique in DTC requires a fast processor to
calculate the duty cycles or the voltage vectors for every
sampling period. With a small sampling period, a reduction of
the output torque ripple is accomplished since more switching
states are applied within a switching period [6][10][13]-[15].
This paper, on the other hand, suggests a simple method
for utilizing CFTC to extend the switching frequency. By
using this method, an increase in the triangular frequency can
be established without requiring a reduction in the sampling
period of the DSP.

To verify this, a comparison of the output torque ripple
obtained from three schemes was carried out; where each of
schemes performed at three different “triangular’ frequencies
but at the same sampling period, DT=55us. For ease of
identification, these schemes are referred as:

1) DTC-CSF1-DTC with CFTC at 2.2727 kHz,

2) DTC-CSF2 - DTC with CFTC at 3.0303 kHz,

3) DTC-CSF3 - DTC with CFTC at 4.5454 kHz.

The generated upper triangular waveforms for each scheme
can be illustrated as depicted in Fig. 9. For example, if we
consider the case of DTC-CSFI, eight steps per cycle of
the triangular are used, that is for 100 units peak-peak the
corresponding vertical resolution of the triangular waveform
1s 25 units per step, as can be seen in Fig. 9(a). From the
figure, it can also be seen that the frequency of the triangular
waveform is about 2.2727 kHz and the slope of the triangular
is BJual to 454545.455 "

The acf#il parameters of an induction motor are shown in
Table II. r safety reasons, the DC voltage was limited to
240V,afhich means that the base speed is reduced to 570
rpm. With the values of the machine parameters listed in
Table II, the suitable values for K, and K; for each scheme,
were determined as explained in section IV. The open-loop
Bode plots with the PI controllers” gains for each scheme, are
shown in Fig. 10. The gains for the PI controllers and the
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Fig. 9. Generated upper triangular waveforms sampled at 55 ps. (a) DTC-
CSFI1, (b) DTC-CSF2 and (c) UpCSFS.
A

BLEII

INDUCTIONT MACHINE PARAMETERS.
Stator resistance 550
Rotor resistance 445 0Q
Stator self inductance 3139 mH
Rotor self inductance 3139 mH
Mutual inductance 299 mH
Number of poles 4
Stator flux rated 0.892 Wb
Torque rated 9 Nm
Voltage vector magnitude, Al 160 V
Slip rated, oy, 9.4248
Base speed 570 pm.

approximated crossover frequency (as shown in Fig. 9) for
each scheme, are given in Table IIL

Fig. 11 depicts the frequency spectrum of the phase current
obtained from the experimental results for basic D TC-
CSF1, DTC-CSF2 and DTC-CSF3 at speeds of 20 rad/s, 30
rad/s and 55 rad/s while the output torque was controlled to 2
Nm. It can be seen that the phase currents in schemes for DTC
with CFTC (i.e. DTC-CSFI, DTC-CSF2 and DTC-CSF3)
contains dominant harmonics at their respective triangular
frequencies regardless of speed, unlike the hysteresis-based
DTC which has a frequency spectrum that is spread (nand
depends on the operating speed. From this figure, it can
also be seen that, a higher torque is obtained in the DTC
with a proper CFTC (DTC-CSF1, DTC-CSF2 or DTC-CSF3)
than that obtained in the basic DTC. Moreover, the output
torque ripple in the DTC with a proper CFTC can be reduced
further when a higher triangular frequency is applied. Fig.
12 shows a comparison he of output torque ripple, from
the experimental results, when a step change in the torque
reference is applied, in the basic DTC, DTC-CSF1, DTC-CSF2
and DTC-CSF3. To makﬁ]e comparison fair, the step torque
change for each scheme was performed under the same load
torque conditions so that rotor speed operated at around
370 rpm. From the figure, it can be seen that the largest torque
ripple is produced with the hysteresis-based DTC.

To reduce the torque ripple, the CFTC is utilized, and as

TABLE II1
PI CONTROLLER GAINS AND CROSSOVER FREQUENCY.

Schemes PI Controller gains Crossover freq.
K P KJ f ( LkH-Z)
DTC-CSF1 29 9937.5 0.719
DTC-CSF2 349 11925 0.86
DTC-CSF3 523 17887 1.3
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torque for 1l sic DTC, DTC-CSF1, DTC-CSF2 and DTC-CSF3 at the
speed about (a) 20 rad/s (b) 30 rad/s and (c) 55 rad/s.

mentioned earlier, the output torque can be reduced further
when a higher triangular frequency is applied. Obviously, the
output torque ripple in the DTC-CSF3 is greatly reduced with
a constant and the highest switching frequency. The generated
waveforms of the upper triangular for each different frequency
(as shown in Fig. 12) can be clearly seen by using a larger
scale as depicted in Fig.13.

Finally, to verify the pr operation of the CFTC in
regulating the output torque, a square-wave speed command is
applied to the basic DTC and the DTC-CSF2. The waveforms
of the output torque, the rotor speed (measured frma speed
sensor) and the d-axis stator flux for each scheme are as shown
in Fig. 14. From this figure, it can be seen that, the dynamic
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Fig. 12. Experimental results for step response of torque in (a) DTC-hysteresis
based. (b) DTC-CSFL. (¢) DTC-CSF2 and (d) DTC-CSF3. (1) is output torque,
(2) is reference torque, (3) is torque error, (4) is output of PI controller, (5)
is upper tdangular waveform, (6) is torque error status. (X-axis or time scale:
2 ms/div.)
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Fig. 13. The zoomed image (zoomed area indicated by “++) of the waveforms
of upper triangular and output of PI controller for (a) DTC-CSF1, (b) DTC-
CSF2 and (c) DTC-CSF3, corresponds the results obtained in Fig. 12 (b),ic)
and (d). (Time scale: 1 ms/div.)

torque and the speed profiles are comparable to those of
hysteresis-based DTC, but, with the added advantages of a
reduced torque ripple and a constant switching frequency.

VI. CONCLUSIONS
Thinaaper suggests a simple way to provide a high con-
stant switching frequency and hence reduce torque ripple,
by replacing the torque hysteresis controller with a CFTC
in the basic DTC structure. The paper showed that with a
limited sampling frequency, the carrier frequency utilized in
a CFTC can be increased further to its maximum (which is
at one-quarter of the maximum sampling tency), Some
experimental results were presented to show that a significant
reduction in the output torque ripple can be achieved with
the proper Pl-controller gains and the proper selection of a
triangular frequency in CFTC.
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