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ﬁ!mct—ﬂn‘s paper presents a simple dynamic overmodula-
tion method to obtain a fast dynamic torque response in direct
torque control (DTC) of ind n machines with constant-
switching-frequency controller. st dynamic torque response
can be obtained by switching only the most optimized voltage
vector during torque dynamic condition. The optimized voltage
vector can be identified by comparing the rate of change of torque
produced between applications of two possible active voltage vec-
tors, according to the flux position. The selection of the opti d
voltage vector can be simply implemented by modifying the Mux
error status before it is being fed to the lookup table. It will be
shown that the proposed switching strategy facilitates the DTC
to perform under sixVitep mode to achieve the fastest dynamic
torque response. The effectiveness of the proposed dynamic over-
modulation to obtain the fast torque response is verified with some
expesimental results.

ndex Terms—Direct torque control (DTC), dynamic overmod-
ulation, hysteresis controller, induction machine.

I, !NTROD UCTION

VER THEERt vears, the direct torque control (DTC)
O scheme for induction motor drives has received enormous
attention in industrial motor drive applications. The main rea-
son for its popularity is due to its simple structure [1], partic-
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ularly when compared with the field-oriented control (FOC)
scheme, which was introduced a decade earlier. Since DTC
was first introduced, several variations to its original structure
(which we referred to as hysteresis-based DTC) were proposed
to overcome the inherent disadvantages in any hysteresis-based
controller such as variable switching frequency, high sampling
requirement for digital implementation, and high torque ripple
[2]-[7]- %

The most p{)[q variation of DTC of induction motor drives
@1@ one that 1s based on space vector modulation (SVM),
which is normally referred to as DTC-SVM [6]-[10]. The major
difference between hysteresis-based DTC and DTC-SVM is the
way the stator voltage is generated. In hysteresis-based DTC,
the applied stator voltage depends on voltage vectors, which
are selected from a lookup table. The selections are based on
the requirement of the torque and flux demands obtained from
the hysteresis comparators. On the other hand, in DTC-SVM,
a stator voltage reference is calculated or generated within a
sampling period, which is then synthesized using the @:C vec-
tor modulator. The stator voltage reference vector is calculated
based on the requirement of torque and flux demands. Due to
regul;lr sampling in SVM, the DTC-SVM produces constant
switching frequency (CSF) as opposed to the variable switching
frequency in hysteresis-based DTC however, at the expense of
more complex implementation. Various methods to estimate the
voltage reference vector had been reported; these include the
use of proportional-integral (PI) current controllers [11], stator
flux vector errors [7], PI torque and flux controllers [8], and
predictive and dead-beat controllers [6], [9], [10].

During large torque demand, it is inevitable that this
reference exceeds the voltage vector limits enclosed by the
hexagonal boundary. Under this condition, the SVM has to be
operated in what is termed as dynamic overmodulation mode.
The voltage reference vector has to be modified such that it will
lie on the hexagonal boundary. For example, some modified
reference voltages vy (e.g., when i = 1, proposed in [1]) with
respect to the ()rigina'l' voltage reference vector vs rer (Which is
beyond the hexagonal boundary of the voltage vectors) were
proposed to minimize the voltage vector error and obtained
a fast torque response [6], [9], [10]. [12], [13], as shown in
Fig. 1. However, the l@il_\’ of them do not guarantee the
fastest torque response. It can be seen that (from Fig. 1) v
and w;2) switch only a single voltage vector which is Vk-;-z‘
during' dS*nalmic overmodulation. This single selection of vector

(0093-9994/526.00 © 2011 IEEE
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Fig. 1. Variations of modified voltage vectors applied during torque dynamic.
shows the occurrence of a six-step operation that produces the
fastest dynamic torque control as will be discussed later in
this paper, while the other methods result in slower dynamic
torque response since two active states are altemately switched
during the dynamic condition. For example, Habet] al. [9]
used two active states utilizing dead-beat control 1n order to
maintain the magnitude of the stator flux under control for any
condition.

Although the SVM technique has been widely used in many
advanced DTC and FOC of motor drives, it actually compli-
cates the original control and structure of the drive system.
This is due to the fact that more computation involving esti-
mation of verer and approximation of the modified voltage
reference is required as mentioned earlier. One solution to
provide quick torque dynamic control without the use of SVM
was proj d in [14]. In this way, a quick torque dynamic
response 1s achieved by optimizing the selection of active
voltage vectors that gives maximum rate of torque increase.
However, the method does not guarantee to switch exclusively
the most optimized voltage (or to achieve completely the six-
step voltage) during torque dynamic condition, due to the circu-
lar flux operation. Moreover, the method is based on hysteresis
controllers, which have inherent disadvantages as mentioned
previ@ikly.

In this paper, a simple dynamic overmodulation method to
obtain a fast dynamic torque response in DTC of induction
machines with CSF 1s presented. The voltage vector used in this
proposed dynamic overmodulation is similar with that proposed
in [6] and [12]; however, Tripathi et al. [6] used a DTC-SVM
with a complex predictive stator flux control structure, while in
[12], the stator current contains lower harmonic contents at any
operating condition due to the hexagonal shape of the sl.@
flux locus. With the proposed dynamic overmodulation, the
simple structure of hfleresis-based DTC is retained without
the need of SVM. In action I, the basic principle of DTC is
briefly discussed. Section III discusses briefly the DTC with
a constant-fi ncy torque controller (CFTC) as proposed

15]. The dynamic torque control in basic hysteresis-based

C and the proposed dynamic ov ulation method for
DTC with CFTC are also discussed 1n Section IV. Secf§in V
presents the implementation and experimental results of the
proposed method. Finally, the conclusion is given in Section V1.
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Fig. 2. Structure of the basic-hysteresis-based-DTC induction machine.

II. BASIC PRINCIPLE OF DTC

Theghavior of an induction machine in DTC drives can be
described in terms of space vectors by the following equations
written in the stator stationary reference frame:

. AW
v =iy + 2 d (1)
. ) W
0=rddp + jw,. ¥, + dtr (2)
‘l‘s = L.sis - Lmil’ (3)
W, = Lyiy + Liis (4
7, =38 1w i sins (5)
= —— 1| 5111
e 5ol Tslls

wheregis the number of poles, w,. is the rotor electric affifular
speed in radians per second, L., L., and L, are the motor
inductances, and § is the angle between the stator flux linkage
and stator current s vectors. Based on (1), the d*- and
g"-axis stator fluxes 1n a stationary reference frame can be
written as

(6a)

= — & . 5
ll’.s'._ri - ‘/ (i'l.s'._ri - ?'.s'__rir-‘) dt
s & ‘5
Vie= / (1,',,.__” - ?.H__qr,g) dt.

In lcrms of switching states S,,, Sy, and S, (can be either zero
or one), the voltage vectors in (6) are given by

(6b)

Vs g = %Vdc(qu -8, —-8,) (7a)
. 1
Vea = ﬁ‘/ﬂlc(&; - 5.). (7b)

The electromagnetic torque given in (5) can be rewritten in
d* —g® coordinates as

3P 5 as Ear
rr‘-' = 53 (‘Ij.s._ri?'.s._r,l - ‘]‘I.'s._r,l?'.s._ri) : (8)

Fig. 2 shows the structure of hysteresis-based DTC as ini-
tially proposed in [1]. The output stator voltage is applied based
on the selection of the switching states (S., Sp, S¢) obtained
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Elg. 3. Selection of the optimum inverter output voltage vectors. (a) Each
sector indicates the appropriate voltage vectors. (b) Eight-possible-switch
configuration in the three-phase voltage-source inverter.

TABLE 1
LooKUP TABLE ( VOLTAGE VECTOR SELECTION)
ot T Sector Sector Sector Sector Sector Sector
: - I 1 1 v v il
| B B vy Vs Ve v,
{100y (110) (010} (011) (001 ) (101}
| 0 Vi ¥z Vi ¥z Vi Vi
(D0 (1 (D00) (ny {000y {1y
- Vo W Vi Y3 Wy A\
(001} {101y (104} (1) (010} (011
1 Vi Vi Vs Vs Wy Vi
[RALY] (010) (011) (001} (101) (100}
o 0 Vi Va V; Va Vi Va
(111) (D00) (111 {000y (111 (0
1 Vs Va v, V; V; Vi
(011) (001) (101} (10 (110) (101)

from the lookup table. These switching states are selected b
on the requirement as to whether the torque and the stator flux
need to be increased or decreased and @@§o on the stator flux
position. The decisions as to whether the torque or the flux need
to be increased or otherwise come from the three- and two-
level hysteresis comparators for the torque and stator flux,
respectively. Fig. 3 shows the two optimized voltage vectors in
every sector, which are selected from the eight-possible-switch
configuration, the lookup table given in Table I [1].
Notice that, in order to control the flux, two active voltage
vectors an uired. On the other hand, to control the torque,
one active voltage vector is used to increase the torque, while
ro-voltage vector is used to reduce it. By limiting the
ue and flux errors within their hysteresis bands, a decoupled
control of torque and flux is achieved.

ML DTC-W@I-CSF SCHEME (DTC-CSF)

Unlike FOC, the C scheme as n in Fig. 2 offers
simple control structure wherein the mc and flux can be
separately controlled using - and two-level hysteresis com-
parators, respectively. The output of the comparators and the
stator flux angle are used to index a lookup table of optimum
voltage vectof2l proposed by Takahashi and Noguchi [1], to
determine the appropriate voltage vectors to control both torque
and flux. However, the hysteresis torque controller utilized in
the basic DTC structure results in two major disadvantages,
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Fig. 5. Comparson by experiment of torque control operations in
(a) hysteresis-based DTC and (b) DTC-CSF-based induction motors.

namel'\pariable inverter switching frequency and high torque
ripple. Several methods had been proposed to overcome 9
problems. For example, the problems were minimized by

use of variable hysteresis bands [4], dithenng technique [2],
controlled duty ratio cycle technique [3], [5], SVM (DTC-
SVM) [6]-[8]. and, recently, prfflictive control [16].

An attempt has been made to reduce the torque ripple by
replacing the torque hysteresis controller with CFTC as shown
in Fig. 4 [15]. In such a way, the simple control structure
(with decoupled control structure) of hysteresis-based DTC is
retained. For the sake of identification, in this paper, this scheme
will be referred to as DTC-CSE The torque error status Tstat (as
shown in Fig. 4) generated from the CFTC to compensate the
torque error £, can be described by the following equation:

L,
I—Hti\t = 0 p

where T, is the output of the PI controller and C"I‘JI’*’-"' and
Clower are the upper and lower triangular carriers, respectively.
In order to estaf§ish CSF and, hence, reduced torque ripple, the
frequency and peak to peak of thi r and lower triangular
waveforms are set at fixed values. For the P jue controller,
the gain values of K, and K; are reslric!eo ensure that the
absolute slope of the output signal 7' s not exceed the
absolute slope of the ular carrier [15].

Fig. 5 shows the experimental results of torque control
operations for a step change of torque reference from 0.22 to
1.0 p.u. obtained in hysteresis-based DTC and DTC-CSF-based
induction machines. The values of the machine and trol

for T,: 2 Cuppcr
for Clmrcl‘ < T,: < Cuppcr (9)
for T, < Clower

system parameters are given in Table II. From Fig. 5,1
be seen that the output torque ripple in DTC-CSF is reduced

can
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TABLE 11
INDUCTION MACHINE PARAMETERS AND HYSTERESIS-BASED DTC AND
CSF-Basep DTC DrIVES

1. Induction Machine

Rated power 1.5 kW

Stator resistance 550

Rotor resistance 45140

Stator self inductance 306.5 mH

Rotor self inductance 306.5 mH

Mutual inductance 291.9mH

Number of poles 4

2(a). Hysteresis-based DTC 2(b). CSF-based DTC

Flux hysteresis band 0.0045Wb | Flux hysteresis band ~ 0.0045Wh
Torque hysteresis band (0L9Nm Flux rated 0.892Wh
Flux rated 0.892Wbh | Torque rated 9Nm

9Nm Constant freq. torque controller
Proportional gain, K, 34
Integral gain, K; 11925
Carrier frequency 3.03kH

Peak to peak of carrier 90

Torque rated

and the output torque is regulated closer to the reference with a
constant and higher switching frequency.

IV. DYNAMIC TORQUE CONTROL

In practice, a fast dynamic torque control can be achieved
by fully utilizing a dc bus voltage through an overmodulation
strategy. The switching strategy to perform overmodulation
mode during torque transient condition is usually referred to
as dynamic overmodulation.

A. Dynamic Torgue Control in Basic Hysteresis-Based DTC

It is well known that the original DTC scheme proposed by
Takahashi and Noguchi [1] offers fast instantaneous torque and
flux control due to the optimized voltage vector selection in
controlling simultaneously both flux and torque. During large
torque demand, hence large torque error, the hysteresis torque
comparator produces a single status that requires aggacrease in
torque. This means that, under this condition, no zero-voltage
vectors are selected to reduce the torque. At the same time, the
flux hysteresis will regulate the flux to follow the circular path
using two active voltage vectors. This is similar to a condition in
DTC-SVM in which the stator voltage reference vector follows
the hexagonal boundary in overmodulation mode, which is the
reference voltage vig) in Fig. 1. Since no zero-voltage vectors
are applied, rapid changes in the flux vector position and, hence,
a quick dynamic torque response are achieved.

However, this method does not give the fastest dynamic
torque response because one of two possible active voltage
vectors switched duringfSirque dynamic may not be optimum.
To explain this, at first, an equation of torque rate in terms of
applied voltage vector which was derived in [14] will be used.
According to the analysis in [14], the rate of change of torque
at the instant in which a voltage vector is applied is given by

dT.
d; = CW, [Vsin(#; — 0,.4) —wWl, geos(fen —6,.0)] (10)
where ' 1 me constant which depends on the machine

parameters and V' is the magnitude of the applied voltage. ;,
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Fig. 7. Inconsistent torque slope in DTC due to the selecting different

switching under dynamic condition.

fl,. o, and 1 ( are the stator voltage vector angle, initial rotor flux
angle, and initial stator flux angle, respectively. ¥, and W
are the rotor flux magnitude and initial stator flux magnitude,
respectively se parameters are shown in Fig. 6). The second
term in (10) 198ependent of the applied voltage vector. Thus,
the maximum rate of change of torque is determined by the first
term of (10) which can be written as

[—} = max {sin(f; —6,9)}. (1n
df | o i

The rotor flux angle in (11) can be assumed equivalent to the
stator flux angle since the slip angular velocity, in practice,
is too small. Equation (11) indicates that the fastest torque
response is achieved when the voltage angle is 90° with respect
to the stator flux angle. In other words, to obtain the fastest
torque response, a voltage vector that has the largest tangential
component has to be selected.

The behavior of torque dynamic in DTC is investigated
by applying a step change of torque reference at time ¢ = #;
or when the r flux vector is about to enter sector k (at
avi; = () rad), as shown in Fig. 7. The output torque and stator
flux magnitude ($ respect to time) in Fig. 7 correspond
to the trajectory of the stator flux vector in th tor flux
plane. Assume that the space vector of the stator Hux linkage

ing in the counterclockwise direction and the variation
of the stator flux vector is approximately proportional to the
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Fig. 8. Structure of the DTC-CSF-based induction machine with the proposed
“modification of flux error status™ block.

voltage vector applied (ie., viq and vy ). According to
(11), higher torque rate can be achieved when vi41 is switched
during the torque dynamic (as the flux vector moves from angle
v = 0to vy, = /6 rad). Thus, as noticed in Fig. 7, the torque
slope under dynamic condition is steeper when v 1 is used
(or flux increases) than the slope when vy » is switched (or
flux decreases). The figure shows that the basic DTC may not
give the fastest torque dynamic response since v o 1s switched
more often as the flux vector approaches toward the middle of
the sector.

It should be noted that the identification of the optimized
voltage vector (between two possible voltages) to achieve the
fastest dynamic torque response depends on flux position. In
fact, if sector % is subdivided into subsectors, (i) and (i)
based on (12), vector viq will result in a higher torque slope
throughout subsector (i) and vy will give a higher torque
slope throughout subsector (ii)

< ap < w/6rad,
w6 <oy < m/3rad,

for subsector (1)

for subsector (ii).

(12)

B. Proposed Dynamic Torgue Control

In the proposed dynamic overmodulation method, the most
optimized voltage vector that produces the highest rate of
change of torque is switched and held (instead of selecting two
active voltage vectors) during torque dynamic to achieve the
fastest dynamic torque control. As discussed in the previous
section, if sector / is considered, this would be vector v, in
subsector (i) and vector vi 2 in subsector (ii). Fig. 8 shows the
structure of the DTC-CSF-based induction machine with the
proposed modification of the flux error status. Notice that all
components of the hysteresis-based DTC scheme are retained,
except for the inclusion of the “modification of H? error
status” block which is responsible to perform the dynamic
overmodulation mode. The selection of the optimized voltage
vector to give the fastest torque response can be simply done by
modifying the flux error status (ll!;!') to a new flux status (W)
before it is being fed to the lookup table. The “modification of
flux error status™ block and, hence, the proposed dynamic over-

Sector

r
11 >
Wy

Wz

Fig. 9. Proposed digital outputs in the modified flux error status correspond
to the optimized voltage vectors for every subsector in each sector.

Hysteresis
band

Hysteresis
band

Hysteresis
band

Sec.
1

(a) (b) (c)

Fig. 10. Difference in stator flux trajectory performed in (a) the basic
hysteresis-based DTC as proposed in [1], (b) the method proposed in[14], and
(¢) the proposed method (as performed in complex DTC-SVM [6] and direct
self-control [12]).

modulation are activated when the torque error Ep,. is greater
than 20% of the rated torque. On the other hand, the proposed
DTC will be deactivated (operated with the conventional DTC
switching operation, i.e., U, = W) when the error of torque
E'r. reduces to zero. In doing so, the current distortion can only
occur during torque transient which is relatively in a very short
period of time.

When the “modification of fl
vated, the output of this block W, depends on the position of the
flux within a sector as shown in Fig. 9. If it is in subsector (i),
W = 0; hence, vy 1s selected. If it is in subsector (11), ¥, =
1; w2 is selected. The border of the sectors and subsectors
can be easily calculated using the threshold values of WE .
denoted as W, 1 and W, 2, which can be calculated as

ror status” block is acti-

"I".sr,l._]. = "II:._rf tﬁ.n(ﬂfﬁ)

(13)

Vg2 =V tan(m/3). (14)

C. Performance Comparison of Torgue Dynamic Control

Fig. 10 shows the difference in flux trajectory performed
in some hysteresis-based DTC schemes (i.e., the basic DTC
[1]. [14] and the proposed method) during torque dynamic
condition. In [14], the controller selects the most optimized
@age that gives maximum torque rate [according to (11)]
when the flux is ifffide the hysteresis band. However, the con-
troller selects the same voltage vector as the basic DTC when
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the flux is outside the hysteresis band. The proposed method,
on the other hand, uses only the most optimized voltage during
the torque dynamic, which can completely perform in six-step
voltage; the flux is no longer constrained to the circular shape
but rather is transformed into a hexagonal shape.

Some simulations were camried out to compare the perfor-
mances of torque dynamic resulted from these schemes. For
comparison, the switching optimization in [14] is only per-
formed during torque dynamic, and each result achieved in [14]
and the proposed method is plotted in a s;u&mph with the
result obtained in the basic DTC as shown 1n Fig. 11. Under
the same test condition, it can be seen from this figure that the
improvement in the proposed method is significant than that
obtained in [14] with almost consistent torque slope. In this
case, a step change of reference torque is applied when the
motor speed is about 0.75 p.u. and the flux position is at oy, =
/4 rad (as defined in Fig. 7). The improvements achieved
in [14] and the proposed method were also verified through
simulation at different cases (i.e., the step change of torque
18 ied as the stator flux is at either one position, a = 0,
ﬂ@i‘r}'ﬁ, /4, 3 rad for different speed operations),
as can be noticed 1 Fig. 12(a) and (b), rcspmcly, In all
cases, the rise time of torque is defined as the ime taken for
the torque to reach its target from the instant the step torque
change 1s applied. Obviously, the proposed method results in
better improvement for every case, and the improvement is
significant particularly at high speeds and when the step change
of torque applied as the stator flux is at around the middle part of
a sector. It should also be noted that the performance of torque
dynamic depends on operating conditions (i.e., dc voltage,
load torque, and speed) [17], [18] and the selection of voltage
vectors (which is influenced by flux position) as discussed
previously.

V. IMPLEMENTA’T‘ION@) EXPERIMENTAL RESULTS

To verify the feasibility of the proposed dynamic overmod-
ulation scheme, a complete drive system as shown in Fig. 13
has bef#lealized. The parameters for the DTC drives and the
actual parameters of an induction motor are shown in Table II.
For safety reason, the dc voltage was limited to 240 V, which
means that the base speed is reduced to 570 r/min. The control
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mance. Comparison on e dynamic performance between (a) the basic DTC
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Effects of ﬁmﬁux positions and speed on torque dynamic perfor-
algorithm is implemented on a dSPACE 1102 and an Altera

-programmable gate array (APEX20KE). The sampling
period of the DTC scheme, including the proposed dynamic
overmodulation, is 55 us.

) investigate the performance of dynamic torque control,

a step change of torque reference from 1.5 to 9.0 N - m has
been carried out for three different schemes. For convenience
of identification, these schemes are referred to as follows:

1) DTCl—conventional hysteresis-based DTC;

2) DTC2—the hysteresis-based DTC with the proposed dy-
namic overmodulation strategy:

3) DTC3—the CSF-based DTC with the proposed dynamic
overmodulation strategy.

Based on W and Wy, a step change in the torque reference
is introduced at oy, = /24 rad (subsector (i) within sector 2)
and at oy = /6 rad (subsector (ii) within sector 2). To
make the comparisons fair, the dynamic torque control in
these three DTC schemes was performed under the same load
torque condition so that the rotor speed operated at around
410 r/min.

The experimental results under these two conditions are
shown in Figs. 14 and 15, respectively. It can be seen that, for
DTCI, two active voltage vectors are selected during the torque
dynamic; this is indicated by the flux status waveform which
switches between one and zero. For the proposed overmodu-
lation (DTC2 and DTC3), a single flux status is held; hence,
only a single vector is selected during the torque dynamic.
The selected voltage vector, as discussed in the previous sec-
tion, provides the fastest torque response. From these figures
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Fig. 14.  Comparison by experiment of dynamic torque performance between
stator flux position is at ey, = m /24 rad (as the flux is about to enter sector 2).

(Figs. 14 and 15), we also notice that the output torque is
regulated closer to the reference with DTC3. Thus, DTC3 is
the best scheme among the three schemes as it offers the fastest
torque @xmse and reduced torque ripple.

The effect of the proposed overmodulation on the stator flux
locus for the two different stator flux positions can be seen from
the experimental results as shown in Figs. 16 and 17. For the
purpose of comparing the effect, only DTCI and DTC2 were
tested as DTC3 is actually performed in the same manner with
DTC?2 in selecting the voltage vector during torque dynamic at
particular flux positions. The shape and, hence, the magnitude
of the stator flux are affected since a single voltage vector is
switched during the dynamic overmodulation. When the torque
dynamic occurs in subsector (i), a single voltage vector that
produces the fastest torque response is selected. This vector
also increases the flux, causing the flux locus to deviate from
the circular locus momentarily as shown in Fig. 16. On the other

(a) DTC1, (b) DTC2, and (c) DTC3, when a dynamic torque control occurs as the

hand, when the torque dynamic occurs in subsector (11), a single
voltage vector that gives the fastest torque response and, at the
same time, reduces the flux is selected. This is indicated by the
stator flux locus shown in Fig. 17. For both cases, the deviation
in the flux locus from the circular locus occurs momentarily
during the torque dynamic.

It is quite interesting to observe the behavior of motor
currents as the flux magnitude 1s suddenly distorted due to the
proposed switching strategy during torque dynamic condition.
Fig. 18 shows the behavior of motor currents in DTC2 when
the torque dynamic control is applied at cvy, = 7/24 rad and
avj, = /6 rad. As can be seen from the figures, the three-phase
stator currents show rapid change during torque dynamic. It can
also be concluded that the possibility of facing overcurrent is
not a problem as the sharp increases in the stator phase currents
occur within a very short period of time and within the peak
value of the stator currents.
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VI. CONCLUSION

A simple dynamic overmodulation to achieve the fastest dy-
namic torque response in a DTC-CSF-based induction machine
has been pr@ed, An optimized voltage vector that produces

highest rate of change of torque is switched and held so
the fastest dynamic torque response can be achieved. The
selection of the optimized voltage vector is simply obtained
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Fig. 18. Behavior of motor currents when the flux magnitude suddenly

distorted due to the proposed switching strategy as the dynamic torque occurs
at (a) oy, = /G rad amﬁ) oy, = w24 rad.

by modifying the Huxfiror status before it is being fed to
the lookup table. The main benefit of the progd method
is its simplicity and, at the same time, is able to reduce the
torque ripple and produce the fastest dynamic torque response
(with six-step mode). The dynamic overmodulation is achieved
without the need of a space vector modulator.
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