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Article Info ABSTRACT

Lithium ferro phosphate (LiFePOa) has a promising battery technology with
high charging/disc ng behaviours make it suitable for electric vehicles
és) application. Battery state of charge (SOC) is a vital indicator in the
battery management system (BMS) that monitors the charging and
discharging operation of a battery pack. This paper proposes an electric

circuit model for LiFePOs battery by using particle filter (PF) method to

Keywords: determine the SOC estimation of batteries precisely. The LiFePO4 battery

model 1§ is carried out using MATLAB software. Constant discharge test
Battery management system T) 18 performed to measure the usable capacity of the battery and pulse
Current discharge test discharge test (PDT) is used to determine the battery model parameters.
Particle Filter Three parallel RC battery models have been ch for this study to achieve

high accuracy. The proposed PF impleme ecursive bayesian filter by
Monte Carlo sampling which is robust for non-linear and/or non. ssian
distributions. The accuracy of the developed electrical bauery model is
compared with exgflmental data for verification purpose. Then, the
performance of the model is compared with experimental data and extended
Kalman filter (EKF) method for validation purposed. A superior battery SOC
estimator with hig| ccuracy compared to EKF method has been obtained.
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1. INTRODUCTION 41

Burning of fossil fuels causes environmental problem such as glol aming, acid rain and urban
population [1]-[3]. By energy conversion, the resource of energy such as fossil fuel (coal, oil and natural
gases) and nuclear can be extended to many years from getting totally exhausted [4], and this challenge
be tackled by the deployment of emission control systems. The transformation of energy technology, for
example, electric vehicle (EV) and hybrid electric vehicle (HEV) are one of the efforts for improvement of
traffic and healthier environment. Batteries technologies are the best choice and popular renewable energy
than kinetic energy in flywheels, high capacity capacitors and high pressure compressed air [5] in term of
higher efficiency, safe and recyclable. LiFePO, battery is popular in EV applications for storage of energy
ch can deliver higher capacity over longer time since it is environment-friendly to the users [6], [7].
Therefore, an accurate battery model is crucial to simulate the charging and discharging characteristic and
detalilecmllysis. Furthermore, battery management system (BMS) can cstim;lteall parameters accurately
such as state of charge (SOC) and runtime in order to optimize the performance of battery.

SOC is defined as the percentage of ining capacity that is present inside of battery [8]. SOC
cannot be measured directly in a battery and there are several methods to determine the SOC of battery.
Particle filter (PF) is one of the methods that has been used for estimation of SOC with an improved degree
of accuracy. PF is an iterative implementation of the Monte Carlo based on statistical signal processing
application [9]-[11]. Pm:: | shows the basic idea of PF, as introduced by Gordon [11]-[13], which shows
relationship between posterior probability density function (PDF) and the number of samples which is
particles [14], [15]. PF method gained popularity in the mid-1990s due to technology development and this
method was used for nonlinear state estimation. The researcher’s development in PF over recent years with
successfully applications such as model of statistics, learning of machine, processing of signal, econometrics,
computer graphics, automation, communications, and others [16]-[18].
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Figure 1. Basic idea of PF

In [19], the paper proposed PF method to estimate the state of vector with three degree of freedom
(DOF) industrial robot by the measurement of fusion obtained from sensor. PF is more convenient for highly
nonlinear systems and non-Gaussian noise system where EKF method doest not work well on these systems.
ides, marker-less tracking is technology broadly used in robot control method. The paper [20] introdu
a marker-less human-robot interface using PF and Kalman filter (KF) methods. It was used for dual robot to
track the human movement by a sensor. KF and PF are broadly used in robotics and control systems to
integmleat robot orientation and position.

A new atic calibration method based on the extended Kalman filter (EKF) and PF alg()rithnm
presented in [21] to improve the robot position. The priori value is being provided by EKF algorithm and PF
algorithm was useao successfully calibrate the parameter of robotic kinematic. In [22], the authors present a
éth()d for SOC estimation of LiFePOs batteries at dynamic curan and temperatures using PF, whereas
Thevenin model is pr()p()secm this paper [23] to modelling of NMC cell for different aging levels and
operating states. The double particle filter (D-PF) and double ada]a.'e particle filter (D-APF) are developed
for online parameters and SOC estimation of lithium-ion batteries to reduce computational cost and improve
the accuracy of the SOC ation [24].

In this paper, PF 1s applied to the electrical circuit model of LiFePOy cell to csmlte the lithium cell
SOC. The research methodology and procedure to estimate the SOC by the PF method are discussed in detail
in Section 2. Then, the method is verified by C()mpilrisou@ analysis of simulation results with experimental
data of dynamic behaviors of lithium cell in Section 3. In this section, the performance of the model is not
only compared with real expentall data but also to the same electrical circuit model using the EKF
method for validation purposes. Finally. the conclusion is presented in Section 4.

2. RESEARCH METHOD

The 3.2V of 18 Ah LiFePOx lithium cell is used for the battery modelling in this research and the
detailed specifications of the battery are shown in Table 1 [26]. The work process is shown in Figure 2. Pulse
discharge test ( ) and random test are performed to investigate the LiFePO. battery dynamic
characteristics in this research. The measurement of voltage and current from the test is collected and stored
in data acquisition system (DAQ) model NI9219. Next, the PF is developed for battery model and
experimental data was obtained from the battery test will to simulate and analyse the PF performance by
MATLAB simulation tool.

2.1. Battery test procedure

Figure 3 shows experimental assembly for test procedure. A 120V programmable electronic load
device model IT8514C from ITECH with specification of 240 A and 1200 W, is used to act as constant
current load in order to discharge the LiFePOy battery; and a DC power supply model SI 8200-70R
from Elektro- Automatik, capable of delivering 70A load with rating of 200 V and 5000 W, T8"tsed to charge
the LiFePO, battery. The ambient temperature of the battery test was monitored by environment chamber
which is JH-KE. The experimental results obtained from the battery test are collect and stored by National
Instrument DAQ model NI9219. NI9219 is interfaced with LabVIEW software to gather the data from
battery test. The experimental data was saved and stored in excel file to easily simulate and analyses the
process using MATLAB software.




Table 1. Specification of LiFePO, battery

Chamctenstics

Dimension

Nominal voltage (V)
Capacity

Charging Method

Charging Termination Control
Operating Temperature (°C)

18mmx 1

mm x 95mm

Rechargeable Lithium Fermo Phﬁhme (LiFePQ.) Prismatic Battery

2V
Min. 1 8Ah at 9A (0.5C) discharge to 2.0V at20°C
9A (0.5C) to 3.65V for 2 5hrs at 20°C
Taper Current 0.05C (0.9A) at 3.65V
Charge:0 °C to 60 °C

Discharge: -30 °C 1070 °C
Storage: -20 °C to 45 °C
Internal R nce (mg2) < 2mid
Maximum Discharge Cumrent (A) 180A (10C)
Cycle life = 1000 cycle
Weight (kg) ~0.62kg
Y
Random
Test
— S
DAQ e ™\
Pulse Estimate SOC
Discharge and compare
Test (PDT) MATLAB simulation
. J Software result with
experiment
data
i Particle ~—
Dettery Filter
PF)

Figure 2. Flow Chart for the estimation SOC using PF
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Figure 3. Experiment and battery test procedure

22. Experimental result

Two tests were performed on the LiFePOy battery to determine the performance of PF, which is
PDT and random test. Figure 4 and Figure 5 represent the experimental measurement of current and voltage.
PDT is conducted, which consists of a sequence of constant discharge current and rest duration as illustrated
in Figure 3. The battery is discharged by 9A load current with a period time of 26980 seconds and six cycles
of pulses for PDT. The battery’s charge and discharge are shown in Figure 4, which is called a random test.
The duration for the random test is 10320 seconds with 12 cycles of charging/discharging pulses.
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Figure 4. Profile of current and voltage for PDT Figure 5. Profile of current and voltage for random
(9A) test

2.3. Battery modelling

Figure 6 illustrates the model which was chosen in this research, as proposed by authors in [25]-
[28]. The parameter of usable capacity (Cemey), open-circuit voltage (OCV), and response of transient (three
RC network with series resistance) are important parameters for dynamic characteristics of battery model.
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Figure 6. Three RC battery model with dynamic characteristic
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The gble capacity is the extracted energy from the battery which presumes gattcry is discharged
from same charge stathtil the equal end-of-discharge voltage [26]. The usable capacity is determined from
experimental result of constant discharge test (CDT) which is performed to measure the battery’s capacity in
a specified state. Figure 7 shows the experimental result for 9A CDT test and the equation of usable capacity
expressed as (1) where the equation gets from the curve fitting tool by MATLAB software. The usable
capacity (CN), can be expressed as:

CN = 4559exp™04932X 1L 13 44exp=0001729x 1, )

OCV-50C relationship is crucial for bat modeling since it represents the terminal voltage level
in three parallel RC battery model. The battery’ V-SOC relationship is shown in Figure 8, which is an
important parameter in nonlinear relations where the value of OCV is directly dependent on the value of SOC
[29],[30]. OCV for a certain SOC can be identified based on PDT when the battery is at rest condition until
it reaches a new edgelibrium state shown in Figure 8 [31]. A fifth-order polynomial equation can be
formulated by using curve fitting tool in MATLAB present the OCV- SOC relationship as expressed in
(3). Thus, the parameters can be lermined by transient voltage response for discharge and rest, as
illustrated in Figure 9, where the terminal voltage of the battery is derived as (4). Finally, the battery
parameters that have been extracted from (4) are tabulated in Table 2.

SoC(t) = S0C(0) — =——— [ I (t) (2)




0CV(SoC) = (4.513 x 10~19)S0C5 — (1.295 x 10~7)SoC* + (1.505 x 10~5)SoC? —

0.0008927S0C? + 0.02764S0C + 2918 (3)
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Figure 7. Experimental result for 9A CDT test
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Figure 8. OCV-S0C relationship Figure 9. Transient voltage response for PDT

Table 2. Battery model parameters based extracted from CDT and PDT tests

Battery Parameters

R1=0.0238 Q C1=171.6878 Farad RS=68.896 nQ
R2=0.0173 Q C2=4583.3 Farad
R3=0.0165 Q C2=46879 Farad

24. Particle filter (PF) algorithm

PF algorithm is applied in this research to achieve high accuracy of the OCV estimation. This value
is used to determine SOC by zing SOC-0OCV relationship curve as shown in Figure 7. The relation
between SOC and OCV varies based on the type of battery and it is usually given by the manufacturer. The
Recursive Bayesian estimation and importance sampling (IS), which is the general methods or technique for
estimate properties of a particular distribution are used in PF algorithm as basic framework.

In this research, Monte Carlo is implemented based on IS to remove the particle from the posterior
probability density (PDF) and weights of each particle. After that, the particles are filtered and updated
according to their pdf wcighl. The OCV estimation can be computed based on pdf and weight of the
updated particles. PF is not restricted by the assumption of linear ratl and Gaussian noise at the same time
compared Kalman filter (KF) algorithm. As a result, PF become a ular method to solve the nonlinear and
non-Gaussian state estimation problem [22]. The PF algorithm is explained in detailed in this section [32].

(a) Initialization k=0.
nerate initial particles within minimum voltage and maximum voltage with a uniform probability.
Suppose the numbcﬂf particles is N, the variance of measurement noise is v, and the variance of
process noise is wy . These particles are denoted by X} (i = 1,2, .., N) for SOC.
(b) Prediction.

Generate N particle , last sampled particle Xli(_l and get output estimation Yli according to (5) and (6):




[xk+1=AXk+Buk +Wk (5]
Vi = Cxy+ Duy + v
S()Ck+1 SDCk
VRC1k+1 VRC'lk
=A.x B x1 W
Vrez g k7 Vrezy, + By wie (6)
Veespa Vreay,
Vik = OCV = Vieqy — Vrezy — Veesg — IX Rs + Vi
‘Where,
ﬁk _ GI'(SoCk,V;(;;(,:VRcz ,Vncs)l (7
k S0Cy=SaCy +
1 0 0 0
dt
R 0 1- e 0 0
A = o (8)
0 0 1 e 0
dt
0 0 0 1- e
—dt
CNx 3600
dt
c
By = at )
c,
dt
Cy
_ 2g(SoCy Vre1 Vrez Vrea) | -1 -1 _1]
G = 9SoCy S0C= S50 - (10)
% =5x (4513 x 10710)S0C* — 4 x (1.295 x 10-7)S0C3 + 3 x (1.505 x 10~5)S0C2 —
2x0.0008927S0C + 0.02764 (11)
Dy = Ry (12)
(c) Evaluate importance weight )
Calculate the maximum q; of the particles X}, according to the measurement y  represented as (6):
i 1 (ye—yl 2L
i = Py i[Xk) = =g VM) = (13)

Normalized the importance weight as follow q; = qi,’E-IL qj

(d) Resampling
Generate a set of posterior particles XL based on their weights q; by multinomial resampling method,
i=1,2,....,N

(e) Output
The state variables (OCV) after completion of the algorithm are obtained by Xy = E{quxi{. Take
XL into OCV-S0C curve to obtain SOCy

3. RESULTS AND DISCUSSION
The experimental result and the estimation of SOC from PF algorithm are presented and discussed
in this section. The outcome for this research is presented in two different parts: i) PDT, and ii) random test.




The initial SOC(x,) error covariance measurement update (P), process noise (wj,) and sensor noise () are
assumed in (14) to (17). The initial SOC is set to 90% for PF method for analysis.

Xp=[90000]" (14)
19000 0 0 O
0 10 0 0

P=1 0 0 10 0 {s)

01 0 0 0
0 001 0 0

k=10 0 001 0 (16)
0O 0 0 001

Vi = [0.01] (17

3.1. Validation of terminal voltage

Figure 10 and Figure 11 show the comparison of the terminal voltage of the of LiFePO. battery for
9A PDT test and random test. The red line represents experimental voltage while the blue line represents
estimated voltage by PF algorithm. As a result, the terminal voltage for both tests is nearly same between
experimental and simulation result. However, noise is observed in simulation result of the PF estimated
terminal V()llza due to the existence of noise measurement in PF algorithm.

The mean absolute error (MAE), mmsquan: error (MSE) and root mean square error (RMSE) are
three types of error defsfl for analysis of the performance of the model for terminal voltage of the battery in
this research. MAE 1s the average ?.hc difference between estimated and measured value in the test or
model as expressed in (18). MSE is the avc squared difference between estimated and measured value in
the test or model as defined as (19). While RMSE is defined as the square root of the MSE in (20).

MAE = % N IMeasured value — Estimated value| (18)
MSE = %Z{L(Measured value — Estimated value)? (19)
RMSE = J% YN (Measured value — Estimated value)? (20)

Table 3 shows the error analysis between experimental voltage and PF estimated voltage for both
tests. The MAE, MSE and RMSE of terminal voltage in 9A PDT test are 0.0091V, 0.0014V and 0.0373,
respectively, which are 0.284%, 0.044% and 1.166% to the nominal voltage of LiFePOybattery. Whereas the
MAE, MSE and RMSE ()f\f()\ee in random test are 00456V, 0.0184V and 0.1357V respectively which are
1.425%, 0.575% and 4.241% to the nominal voltage of LiFePO, battery, respectively. It shows that PF has
good performance to determine the terminal voltage during relaxation time even though the noise appear
across PF estimated voltage especially during transient; both in PDT and random test. The proposed model
by PF proves that PF algorithm can estimate the terminal voltage precisely.
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Figure 10. Comparison between experimental voltage and PF estimated voltage for PDT test
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Figure 11. Comparison between experimental voltage and PF estimated voltage for random test

Table 3. Error analysis between @rimemal voltage and PF estimated voltage for PDT and random test.

Test ean Absolute Error Mean Square Emror Root Mean Square Error
(MAE) (MSE) (RMSE)
Pulse Discharge test (9A) 00091V 0.0014 V 00373V
Random test 00456 V 0.0184 V 01357V
32. Validation of SOC estimation 23

The Coulomb counting method is used to measure the discharging current of the LiFePOy battery
and integrates the discharging current over time with the purpose of estiféfiting Real SOC. The Real SOC
from Coulomb counting for PDT of 9A and the random test is illustrated in Figure 12 (a) and Figure 13 (a),
respectively. While Figure 12 (b) and Figure 13 (b) show the comparison between Real SOC (red line), EKF
estimated SOC (yellow line) and PF estimated SOC (blue line). Both methods are able to track and estimate
the battery SOC accurately, especially when the SOC is higher than 20 %. However, when battery S@s
less than 209, both estimators are departing from real data. RMSE, absolute error, and relative error are used
as a tool to validate and compare the performance of PF and EKF with real SOC. The RMSE and error
analysis are denoted as (20) to (24).

Average measured value, Vi = %E{il Measured value 21)
Average estimated value, Vi = %E{‘ﬂ Estimated value (22)
Absolute error = |[Vg — Viy | (23)
Relative error = “E x 1009 (24)

M

17

The absolute error is defined as the difference chcn the estimated value and the measured value.

The relative error is the ratio of absolute error to the measured value. Table 4 tabulates the error analysis of

the SOC estimation algorithm for PDT of 9A and random test. For PDT of 9A, the absolute error and

percentage error for EKF estimated SOC 15 0.0219% and 0.05%, respectively. Whereas the absolute error and

percentage error for PF estimated SOC is 0.0184% and 0.04%, respectively. The difference in relative error

for the PDT test between PF and EKF is 0.01%. For PDT of 9A, the RMSE for EKF and PF estimated SOC
154.6153% and 4.9648%, respectly.

For the random test, the absolutcamr and relative error of SOC estimation by PF are 1.0622% and

2.58%, respectively. In comparison, the absolute error and relative error of SOC estimation by EKF are

1.2099% and 2.94 9, respectively. The difference in relative error for the random test between PF and EKF

1s 0.36%. For the random test, the RMSE for EKF and PF estimated SOC 1s 2.3830% and 1.0657%,

respectively. The Table 4 shows that the PF method has a lower absolute error and relative error in both tests.

For RMSE, EKF is more accurate than PF, leaving it with a small marginal error in PDT while PF is superior




to EKF in random tests. Thus, it can be summarised that the performance of PF is comparable to the
performance of EKF.
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Figure 13. SOC form random test, (a) Real SOC (b) Comparison between real SOC, EKF and PF for random
test

TablgglError analysis of SOC estimation

Methods solute Error (%) Relative Error (%) Root Mean Square Error (%)
Pulse Discharge EKF 00219 005 46153
test (0A) PF 00184 0.04 49648
Random test EKF 1.2099 294 23830
PF 1.0622 258 10657
4. %NCLUSION 2

This paper presents battery modeling and development of particle filter a) algorithm to estimate
the state of charge (SOC) of 18Ah LiFePO. battery. At tt?rst stage, constant discharge test (CDT) and
pulse discharge test (PDT) are performed to investigate the characteristics of the LiFePOy battery. Then, the
performance of the PF-SOC estimation method is assessed by comparing it with experimental data of
dynamic behaviors of LiFePOy lithium cell. Additionally, the performance of PF and extended Kalman filter
(EKF)-SOC estimation is compared by error analysis. From the analysis, the PF is more accurate than EKF
due to a robust procedure to undertaa:l}:rence for non-linear or non-Gaussian models as compared to the
EKF. From PDT and random test, n be concluded that the PF method is accurate to determine the
terminal voltage of the battery with an average error of less than 5% even though the noise appears across PF
estimated voltage. Absc)lutea()r and relative error, which represent as error analysis of SOC for PDT test
and the random test, show that the performance of PF-SOC estimation is more accurate and more precise
than EKF-S0C estimation of battery. H()w, slow responses of the filter, particularly over relaxation time
and the dynamic characteristics in terms of the open-circuit voltage (OCV)-SOC relationship of the LiFePO4
battery, may restrict the performances of PF as shown in PDT. In general, it can be concluded that the PF
performance is on par with EKF and worth applied for battery SOC estimation.
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