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Abstract. Let R and S be commutative rings and M be an (R, S)-module. In this paper,
we present the dual notion of jointly prime (R,.S)-submodules, that is called jointly
second (R, S)-submodules, and we investigate some properties of them. We give a
necessary and sufficient condition for an (R, S)-submodule being jointly second (R, S)-
submodules. Moreover, we present the definition of jointly second (R, S)-modules
and present a condition for jointly prime (R, S)-modules being jointly second (R, S)-
modules and vice versa.

Keywords: Second submodules; Coprime submodules; Jointly prime; Second modules.

1. Preliminaries

Throughout this article, R and S will denote commutative rings and M be an
additive Abelian group. Furthermore, Z will denote the ring of integers.

Let M be a left R-module. Based on [5], a proper submodule N of M is
called prime if for each r € R and m € M such that rm € N implies either
m € M or rM C N. This definition has been generalized by [9]. Based on [9], a
proper submodule N of M is called prime if for each r € R, the homomorphism
gr: M/N — M/N is either injective or zero. M is said to be second modules if
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the zero submodule of M is prime.

Moreover, [9] also introduced the dual notion of prime submodules, that is
called second submodules. A non-zero submodule N of M is said to be second
if for each r € R, the homomorphism f. : N — N is either surjective or zero.
Further, [9] also provided some properties of second submodules. Several re-
searchers have studied this second submodule, among of them are [1], [2], [3],
[4], [8], and [6].

On the other hand, [7] defined the structure (R, S)-modules as a generaliza-
tion of (R, S)-bimodules. Further, [7] also introduced the definition of jointly
prime (R, S)-submodule, when R and S are arbitrary rings (not necessary com-
mutative). A proper (R, S)-submodule P of M is called jointly prime if for any
left ideal I of R, right ideal J of S, and (R, S)-submodule N of M such that
INJ C P implies either IMJ C P or N C P. When R and S are commuta-
tive rings, we have a proper (R,S)-submodule P of M is called jointly prime
if for any ideal I of R, ideal J of S, and (R, S)-submodule N of M such that
INJ C P implies cither IMJ C P or N C P. Morcover, the research about
(R, S)-modules have been developed in [10] and [11].

The main purpose is to provide some information concerning the dual notion
of jointly prime (R, S)-submodules. We will call this dual notion as jointly
second (R, S)-submodules.

In Section 2, we give the definition of jointly second (R, S)-submodules and
some examples of them. Moreover, we also provide some properties of jointly
second (R, S)-submodules. Among of them are the necessary and sufficient
condition for an (R,S)-submodule being jointly second; every simple (R, .S)-
submodule is jointly second; the annihilator of jointly second (R, S)-submodules
is prime; and every jointly second (R, S)-submodule contained in maximal jointly
second (R, S)-submodule.

In [9], a left R-module M is called second if M is second submodules for itself.
In Section 3, we give the definition of jointly second (R, S)-modules. Moreover,
we provide some properties of them. At the end, we present a condition for jointly
prime (R, S)-modules being jointly second (R, .S)-modules and vice versa.

2. Some Properties of Jointly Second (R, S)-Submodules

In this section we present the definition of jointly second (R, S)-submodule and
some properties of them. However, it should be noted earlier the definition of
jointly prime (R, S)-submodules, which was introduced by [7] as follow.

Definition 2.1. Let R and S be arbitrary rings. A proper (R, S)-submodule P
of M is called jointly prime if for any left ideal I of R, right ideal J of S,
and (R, S)-submodule N of M such that INJ C P implies either IMJ C P or
N CP.
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When R and S are commutative rings, we have the definition of jointly prime
(R, S)-submodule as follows.

Definition 2.2. A proper (R, S)-submodule P of M is called jointly prime (R, S)-
submodule if for any ideal I of R, ideal J of S, and (R, S)-submodule N of M
such that INJ C P implies either IMJ C P or N C P.

The definition of jointly second (R, S)-submodule is given as follows.

Definition 2.3. An (R, S)-submodule N of M is called jointly second (R,S)-
submodule if N # 0 and for each r € R, the homomorphism (R,S)-module
fr @ N — N with definition f.(n) = rnS for each n € N, is an epimorphism
or zero homomorphism.

Note that if f, is an epimorphism, we have Im(f,) = N. However, if f, is
a zero homomorphism then for each n € N satisfies f,.(n) = 0, so S = 0.
Because it applies to every n € N, then we have rN.S = 0.

Next, we give an example of jointly second (R, S)-submodule.

Ezample 2.4. Cousider the (Z,Z)-module Zi,.
(1) The (Z,Z)-submodule N = {0,6} of Z2 is a jointly second (Z, Z)-submo-
dule of Z13. For m € Z, we construct an (Z,Z)-module homomorphism
fm with:

fm:N — N
n— [m(A) =mnZ YA € N.

If m € 2Z, then we obtain f,,(N) = {0}.
If m ¢ 2Z, then we have f,,(N) = N.
Thus, f,, is a zero homomorphism or an epimorphism. Hence, it is proved
that N is a jointly second (Z,Z)-submodule of Z15.

(2) The (Z,Z)-submodule K = {0,4,8} of Zi2 is a jointly second (Z,Z)-
submodule of Zi3. For m € Zi2, we construct an (Z,Z)-module homo-
morphism f,, with:

fm K — K
F s fu(R)=mkZ VEeEN.

If m € 3Z, then we have f,,,(K) = {0}.

If m & 3Z, then we get fr(K) = K.

Thus, f,, is a zero homomorphism or an epimorphism. Hence, it is proved
that K is a jointly second (Z,Z)-submodule of Z15.

Now, we give an example of (R, S)-submodule which is not jointly second.



564 D.A. Yuwaningsih and I.LE. Wijayanti

Example 2.5. Let 2Z be an (Z,Z)-module. An (Z,Z)-submodule 4Z of 2Z is not
a jointly second (Z,Z)-submodule of 2Z. For any element m € Z, we construct
an (Z,Z)-module homomorphism f,,, with:

fm 147 — A7,
a — fm(a) =maZ ,Va € 4Z.

If m = 0, then we have f,,(4Z) = {0}.
But, if m # 0 then not necessary f,,(4Z) = 47Z.
For the example, let any element m = 2 € Z. Then we have:

fm(4Z) = 2(4Z)Z C 8Z C 47

but f,,(4Z) # 4Z. So, we get 47 is not jointly second (Z, Z)-submodule of 27Z.
According to [7], for each (R, S)-submodule N of M, let the set

(K:gM)={reR|rMSCK}.

In general (K :gp M) is only an additive subgroup of R. But if we have the
condition S? = S, clearly that (K :zg M) is an ideal of R. We may also say that
(K :g M) is the annihilator of quotient (R, S)-module M/K over the ring R.

Now, we present some properties of jointly second (R, S)-submodules.

Proposition 2.6. Let M be an (R, S)-module with S*> = S. An (R, S)-submodule
N of M is a jointly second (R, S)-submodule if and only if (0:g N) = (K :g N)
for each proper (R, S)-submodule K of N.

Proof. (=). Let N be jointly second (R, S)-submodules of M. Then, N # 0
and for each r € R, the (R, S)-module homomorphisms

fri N — N
n+— fr(n)=rnS, VYneN

is an epimorphism or zero homomorphism. Let any z € (K :p N). Then
NS C K C N. If the homomorphism f, is an epimorphism then fx(N)= N,
so we get tNS = N C K. A contradiction with K C N. So, f, is a zero
homomorphism. Thus, we obtain f,(N) = 0 or zNS = 0, so x € (0 :g N).
Thus, we obtain (K :g N) C (0 :g N). Moreover, let any y € (0 :g N).
Then yNS = 0. Since K is an (R, S)-submodule of M, yNS =0 C K. Thus,
y € (K :p N). Hence, we obtain (0 :r N) C (K :g N). Thus, it is proved that
(0 ‘R N) = (K ‘R N)

(«<). Let any proper (R, S)-submodule K of N satisfy (0:g N) = (K :g N).
For any r € R, we construct an (R, S)-module homomorphism

fri N — N
n — fr(n)=rnS, VYne€N.
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Assume that f,. is not an epimorphism. We will show that f, is a zero homo-
morphism. Since f. not an epimorphism, Im(f.) # N, so that rNS # N.
Suppose Im(f,) = K. Then rNS = K, so that r € (K :z N). Since
(0:g N) = (K :g N), r € (0:g N), so that rNS = 0. Consequently, we
get f.(N) = 0. Thus, it is proved that f, is a zero homomorphisms. Hence, N
is a jointly second (R, S)-submodule of M. |

An (R, S)-module M is said to be simple if the (R, S)-submodule of M is
only zero submodule and M itself.

Proposition 2.7. Let M be an (R,S)-module with S*> = S and N a simple
(R, S)-submodule of M. Then, N is a jointly second (R, S)-submodule of M.

Proof. 1t is known that N is a simple (R, S)-submodule of M, so N only con-
tains (R, S)-submodule {0} and N itself. Since {0} is the only proper (R,S)-
submodule of N, we can form (R, S)-module factor N/{0} = N. Based on
Proposition 2.6, we have (0 :g N) = ({0} :g N). Thus, N is a jointly second
(R, S)-submodule of M. ]

Proposition 2.8. Let M be an (R, S)-module with S* = S and (R, S)-submodule
N of M with N # 0. Then the following statements are equivalent:

(1) N is a jointly second (R, S)-submodule of M.

(2) For any ideal A of R, ANS =0 or ANS = N.

(3) ANS = N for any ideal A of R not contained in (0 :r N).
(4) ANS = N for any ideal A of R properly containing (0 :r N).

Proof. (1) = (2). It is known that N is a jointly second (R, S)-submodule,
meaning it fulfills (0 :g N) = (K :g N) for each proper (R, S)-submodule K
of N. We will show that ANS = 0 or ANS = N. Let any ideal A of R and
assume that ANS # N. We will show that ANS = 0. Since ANS # N, ANS
is a proper (R,S)-submodule of N, so that we can form (R,S)-module factor
N/ANS. Suppose that B = (0 :g N/JANS). Then, we have

BNS = {Xk:bims |b; € B, n; € N}.
i=1

Since B = (0 :g N/JANS), BNS C ANS, so that for each s € S satisfy
bns = a'n’s’ where @’ € A, b € B, n,n’ € N, and s € S. As a result, we
obtain

l
BNS = a;n;S |a; € A, nj € Ny =ANS.
(> }
=

Since N is a jointly second, we obtain B = (0 :g N/JANS) = (0 :g N), so that
BNS = 0. Thus, it is proved that ANS = 0.
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(2) = (3). Let any ideal A of R with A ¢ (0:g N). Then, ANS # 0. Based
on the hypothesis we get ANS = N.

(3) = (4). Let any ideal A of R with (0 :zp N) C A. That means A ¢ (0 :z
N). Based on the hypothesis we have ANS = N.

(4) = (1). Let any proper (R,S)-submodule K of N. Suppose that X =
(K :g N). We Have (0 :g N) C X and XNS C K # N (since (0 :g N) is
not proper subset of X). Because the only one that satisfied N # X NS and
XNSCKis XNS =0, we have X = (0:g N). So, (0:g N) = (K :g N) for
each proper (R, S)-submodule K of N. Hence, it is proved that K is a jointly
second (R, S)-submodule of M. |

Proposition 2.9. Let M be an (R, S)-module with S*> = S and N be jointly second
(R, S)-submodule of M. Then, (0:r N) is a prime ideal of R.

Proof. Let any ideal I and J of R such that IJ C (0:p N). We will show that
either I C (0 :g N) or J C (0:g N). Since IJ C (0 :g N), we have IJNS =
0. Since N is a jointly second (R, S)-submodule, we have either JNS = 0 or
JNS=N.If JNS =N, then INS=IJNSS CIJNS =0, so that INS = 0.
From here, we get I C (0 :g N). Moreover, if JNS # N then JN.S = 0, so that
J C (0 :g N). Thus, we have either I C (0 :g N) or J C (0 :g N). Hence,
(0 :g N) is a prime ideal of R. [

Proposition 2.10. Let M be an (R, S)-module with S*> = S and (N;)ier be a
chain of jointly second (R, S)-submodule of M. Then N = |J,.; N; is jointly
second (R, S)-submodule of M.

icl

Proof. Since (N;);er is a chain of jointly second (R, S)-submodule of M, N =
Uier Ni is a non-zero (R, S)-submodule of M. Suppose formed P; = (0 :r N;)
for each 2 € I. Let any ¢,57 € I. Then N; C N; or N; C N;, so we get either
P; C P; or P; C P;. Moreover, let any ideal A of R with ANS # 0. We will
show that ANS = N. Since ANS # 0, there exist n € Ny, a € A, and k € I
such that anS # 0. Consequently, we have AN.S # 0. Since N is a jointly
second (R, S)-submodule, AN,S = N, C ANS. If P, C P, and AN.S # 0 then
A ¢ Py. As aresult, A Z P; so we have N; = AN;S C ANS. If P, C P;, that
means N; C Ng. Since Ny = AN,S C ANS, we have N; C ANS. Thus, we
have N; C ANS for each i € I. Clearly that ANS C N, so ANS = N. Hence,
N = U, Ni is jointly second (R, S)-submodule of M. ]

Proposition 2.11. Let M be a non-zero (R,S)-module with S?* = S. Then
every jointly second (R, S)-submodule of M contained in mazimal jointly second
(R, S)-submodule of M.

Proof. Let N be jointly second (R, S)-submodule of M. We construct the set
J={P| P jointly second (R, S)-submodule of M with N C P}. It is obviously
that J # 0 since N € J. By using Zorn’s Lemma, we will show that J has a
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maximal element. Equivalently showing that every non-empty chain € of J has
an upper bound in J. Let any non-empty chain € € J and form the set Q =
Uxee K- Based on Proposition 2.10, @ is also jointly second (R, S)-submodule
of M. Since N C @, Q € J and @ is an upper bound of €. Thus, it is proved that
every non-empty chain J has an upper bound in J. Therefore, based on Zorn’s
Lemma there exist a jointly second (R, S)-submodule N* € J that maximal
between all jointly second (R, S)-submodules of J. Thus, it is proved that every
jointly second (R, S)-submodule N contained in maximal jointly second (R, S)-
submodule N* of M. ]

3. Jointly Second (R, S)-Modules

In this section, we present the definition of jointly second (R, S)-module and
their properties. The definition of jointly second (R, .S)-modules is given below.

Definition 3.1. An (R, S)-module M is called a jointly second (R, S)-module if
M is a jointly second (R, S)-submodule for itself.

Now, we give some properties of jointly second (R, S)-modules. These prop-
erties based on the properties of jointly second (R,.S)-submodule which was
presented in the previous section.

Proposition 3.2. Let M be a non-zero (R, S)-module with S* = S. Then, M
is a jointly second (R,S)-module if (0 :p M) = (N :g M) for every proper
(R, S)-submodule N of M.

Proof. Obviously from Proposition 2.6. ]

Proposition 3.3. Let M be a non-zero (R, S)-module with S? = S. The following
statements are equivalent:
(1) M is a jointly second (R, S)-module.
(2) For any ideal A of R, AMS =0 or AMS = M.
(3) AMS = M for any ideal A of R not contained in (0 :p M).
(4) AMS = M for any ideal A of R properly containing (0 :g M).

Proof. Clearly from Proposition 2.8. [ ]

Proposition 3.4. Let M be an (R, S)-module with S* = S and N be jointly second
(R, S)-submodule of M. Then, (0 :g M) is a prime ideal of R.

Proof. Evidently from Proposition 2.9. [ ]

Proposition 3.5. Let M be a simple (R, S)-module with S?> = S. Then, M is a
jointly second (R, S)-module.
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Proof. Obviously from Proposition 2.7. ]

Before proceeding to the next properties of jointly second (R, S)-modules,
the following is given one of the properties of (R, S)-modules. This properties
will be used in proving the necessary and sufficient conditions of jointly second
(R, S)-module.

Let M be an (R, S)-module M and I an ideal of R that satisfy I C Annp(M).
We defined the scalar multiplication operation:

__x_ R/ IXMxS —M

(@,m,s) — a-mx*s:=ams

for each @ € R/I, m € M, and s € S. Clearly that this scalar multiplica-
tion operation is closed. Moreover, we can show that this scalar multiplication
operation is well-defined. Let any @,a’ € R/I, m,m’ € M, and s,s' € S
with (@,m,s) = (a/,m’,s’). This means that @ = a/, m = m’, and s = 5.
Since @ = a/, we have a —a’ € I. Since I C Anngr(M), (a — a’)ms = 0 so
ams = a’ms = a'm’s’. Thus, we have @-m* s = a’ -m’ * 5. Hence, it is proved
that this scalar multiplication operation is well-defined.

Furthermore, we will show that an (R,.S)-module M is an (R/I,S)-module
over the scalar multiplication operation which is defined above. Let any a,a’ €
R/I, m,n € M, and s,s" € S. Then we have:

(1) a-(m+n)xs=a(m+n)s=ams+ans =a-mx=s—+a-nx*s.

(2) (a+d')-mxs = (a+ a')-m*s = (a+a’)ms = ams+a’'ms = a-mxs+a’-m*s.

B) a-mx*(s+s)=am(s+s)=ams+ams’ =a-m*s+a-mxs.

(4) a(a’-mx*s)s’ = a-(a’'ms)xs’ = a(a’ms)s’ = (aa’)m(ss') = (aa’) - mx*(ss').
Thus, it is proved that M is an (R/I,S)-module.

Proposition 3.6. Let M be an (R, S)-module with S*> = S and A be ideal of R
with AMS = 0. Then, M is a jointly second (R, S)-module if and only if M is
jointly second (R/A, S)-modules.

Proof. (=). Since M is a jointly second (R, S)-module, M # 0. Let any ideal B
of R with A C B. Since M is a jointly second (R, S)-module, either BMS = 0
or BMS = M. Morecover since AMS = 0 for any ideal A of R, we obtain
(BJAYMS = M or (B/A)MS = 0. Based on Proposition 3.3, it is proved that
M is a jointly second (R/A, S)-module.

(«<). Since M is a jointly second (R/A, S)-module, M # 0. Let any ideal
C of R. Since AMS = 0 for any ideal A of R, A C (0 :g M) so that we
obtain CM S = ((C’—l—A)/A) MS. Since M is a jointly second (R/A, S)-module,
we have either ((C + A)/A) MS = M or <(C’ + A)/A)MS = 0. So, we have

CMS = M or CMS = 0. Based on Proposition 3.3, it is shown that M is a
jointly second (R, S)-module. |
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Before we give the next properties, the following we give a property about
jointly prime (R, S)-submodule.

Proposition 3.7. Let M be an (R, S)-module with S*> = S and P be jointly prime
(R, S)-submodule of M. Then (P :zg M) is a prime ideal of R.

Proposition 3.8. Let M be an (R, S)-module with S*> = S and a € RaS for
all a € M. Then, a proper (R, S)-submodule X of M is a jointly prime (R, S)-
submodule if and only if for any non-zero (R, S)-submodule K/ X of M /X satisfy
()(:}g]{) ::()(;R Af).

Proposition 3.9. Let R be a ring such that every prime ideal is maximal. An
(R, S)-module M with S? = S is a jointly prime (R, S)-module if and only if M
is a jointly second (R, S)-module.

Proof. (=). Let M be a jointly prime (R, S)-module. It means that (0 :p M)
is a prime ideal of R and M # 0. For any proper (R, S)-submodule N of M,
we form (R, S)-module factor M /N. Clearly that (0 :r M) C (N :z M). Since
(0 :g M) is a prime ideal of R, (0 :g M) is a maximal ideal, so that we have
(0:p M) = (N :gp M). Thus, based on Proposition 3.2 we have M is a jointly
second (R, S)-module.

(«<). Let M be a jointly second (R, S)-module. Then M # 0. And based
on Proposition 3.4 we have (0 :p M) is a prime ideal of R. Let any non-zero
(R, S)-submodule N of M. Since every prime ideal of R is maximal ideal, we
obtain (0 :g N) C (0 :g M). Furthermore, clearly that (0 :g M) C (0 :g N).
Hence, we have (0 :g M) = (0 :g N). Hence M is a jointly prime (R, S)-module.

]
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