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ABSTRACT

The fuzzy number is one of the alternatives to maximize solving a quadratic model
programming problem. Based on that statement, this paper provides one of the
methods to solve the quadratic model programming problem. It started with a
general discussion on quadratic model programming and continued by transposing
a basic form into a fuzzy quadratic programming equation and giving a reference
to solve that problem. Finally, a few examples are provided to analyze how accurate
this method works.
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A. INTRODUCTION

Optimization is a branch of mathematics learning which has an essential function in
mathematical modeling. In general, optimization is classified into two aspects, which are
constrained and unconstrained optimization. Based on that classification, the main component
in optimization are objective function and constrained function. Meanwhile, if we look into the
result which wanted to find, optimization also could be divided into two, whether looking for
maximum value or minimum value.

On many aspects, optimization involves non-linear function equations, whether in its
objective function or constrained function. Therefore, the optimization problem needs to be
solved by using transformations in quadratic form.

Quadratic programming has an essential role in non-linear programming. The non-linear
problems become easier to solve if they can be brought into qffddratic programming. The non-
linear optimization probl@in is maximizing or minimizing the @bjective function in the form of
a quadratic function. The objective function depends on the linear constraint function and non-
negative variablef) constraints (Peressini et al, 1988). Problems and tests for quadratic
programming are found in (Floudas et al., 1999; Gould a#d Toint, 2000; Hock and Schittkowski,
1981; Maros and @leszaros, 1997; Schittkowski, 1987). Examples of this problem can be found
in game theory, economic problems, location problems and facility allocation, engineering
mofpling, design, and control. Portfolios, logistics, and others (Silvia et al,, 2009).

Quadratic programming problem is mostly used in a real problem. Besides, ambiguity and
uncertainty are mostly presented in such an optimization problem. Therefore, the applicable
fuzzy set theory is used to model. Fuzzy quadratic programming became interested in
researchers as Abbasi Molai in 2012 (Mahdavi-Amiri et al, 2009), and then In 2017,
Mirmohseni (Mirmohseni and Nasseri, 2017) carried out a program-related development. This
research focuses on quadratic programs with fuzzy triangular numbers.

This paper is composed of 5 parts. In the next section, it contains basic definitions regarding
quadratic programming and arithmetic fuzzy number problems. Section 3 contains the
optimization of fuzzy quadratic programming. Section 4 contains numerical examples to




illustrate how to apply and solve problems. The last section, namely section 5, contains the
conclusions of this paper.

B. THE BASIC DEFINITION
1. Q@Adratic Programming
The optimization problem can be written as follows:

Min f(x)
s.tgi(x)<0 (1.1)
xeCc R"

where the function f: R™ — R function is a real value function, which is the minimum value.
Eq. 1.1 is called the cost function. The vector x is an independent variable with n- vector. The
variables x4, x,, ..., X, it is decision variables.

The above problem is a decision problem to find the "best" x value from all possible factors’
decision variables. The minimization vector of the function f is the best vector. The point
x € C, which satisfies all the constraints of equation (1.1), is called the feasible point, and the
set F of all feasible points for equation (1.1) is the feasible regiof

As previously explained, the objective function of a non-linear function can be transformed
into a quadratic form, which is contained in the function xf and x;x; (i # j) and is defined as
follows:

Definition 2.1 (Chong and Zak, 2001) A quadratic form f: R"™ — R is a function

fx =x"Qx (1.2)
where Q is a real matrix n X n.
This does not reduce generality if it is assumed that Q is a symmetrical matrix, namely Q =

Q". If Q is not symmetrical, it will be converted to a symmetrical matrix using the following
equation,

1
Q=52 +0D. (13)
So for an asymmetrical
T r (1 1.7
XQx=x (EQU +EQU)X. (1.4)

The most typical forms of quadratic program problems are as follows:

m

n 1 n
Min Z = chxj +EZunx1xj

=1 i=1j=1
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Z?:l ax;<bi=12..,m (1.5)
s.t. Xj = 0, j=123,..n
Using vector and matrix notation, equation (1.5) can be modeled as follows:

MinZ = cx +x”

& (L6)
stAx<b

x>0

10]
where x = (x;j=1,..,n) is the vector variable and ¢ = (¢;; j = 1,..,n) , b =
(b;; i = 1,..,m) is a cost coefficients row vector right- hand side vector, Q is asymmetric
and positive semi-definite, and A is the constraint coefficient matrix.

. Arithmetic Fuzzy and Numbers

This section shares some of the rfjuired definitions of fuzzy set theory (Mirmohseni and
Nasseri, 2017; Schittkowski, 1987; Mahdavi-Amiri et al., 2009; Nasseri and Ebrahimnejad,
2010; Nasseri and Mahdavi-Amiri, 2009).

@efinition 2.2.1 (Mirmohseni and Nasseri, 2017) (Mirmohseni and Nasseri, 2017) IfR is
a real line, then the fuzzy set A in R is defined as the set of ordered pairs A =
{(x, uA(n)| X € R}, where p,(x) it is a fuzzy set membership function that maps each R
element to a membership value between 0 and 1. Mathematically it can be written as follows:

pa(x) : X - [0,1] (2.1)

Definition 2.2.2 (Wang, 1997) The concept of support, height, a — cut, convex,
triangular fuzzy nunffJer, and Arithmetic in Triangle Fuzzy Numbers are defined as below.
a. Support for the fuzzy set 4 in the universal set U is a crisp set consisting of all elements
of U that have non-zero membership value in 4, namely

supp(4) = {x € Ulua(x) > 0} (2.2)

b. The largest member@lip value achieved at any point is called the height of the fuzzy set.
If hgt uy = 1, then A is called normal; otherwise, eating A is called subnormal.

c. A crisp set A, consisting of all U elements with a membership value in A greater than
orequalto « iscalledaslice @ — cut ofthe fuzzy set A. In mathematics, it can be written
as follows:

Ay = {x € Ulpa(x) = a}
(2.3)




d. Fuzzy setAin R is convexifforanyx, x,y € Rand A € [0,1] meet
Ha(Ax + (1 = D)y) = min{u, (x), s (¥)}- (2.4)

A fuzzy number @ on R is called a form of the triangular fuzzy number if there exist

e.
real numbers [, = 0 such that
£+I_—S xX€[s—15s] (2.5)
5 E E » »
o _J_ ¥
a(x) _x+s T,xE[s,s+r]
r r
0, 0.w

Where x is the capital value of fuzzy numbersandl < x <r.,d =<s,l,r >.

f.  ArithEtic in Triangle Fuzzy Numbers
Let @ = (¥, 1, r,) and b = (%, 1,,7,) Are fuzzy triangular numbers and x € R. Addition,

subtraction, and multiplication can be defined as follows:

a+b=(%, + Ty ly+ L7, + 1) (2.6)
ia-b= (fu = Xpla — 1p, Ty _Tb) [27]
(2.8)

il = { (i, xlg,xr,), x=0
(xxXy, —x1y, —x1,), x <0

3. Opti tion Fuzzy Numbers Quadratic Program
adratic programming problem (1.5), if some or all the parameters were fuzzy

a
The
numbers, the problem can be fuzzy quadratic programming, so the general form of fuzzy

quadratic programming as follows:

q ~ 1 ~
Min Z = ¥7_; G +;Eﬁ1 Yo Gupxix;
3.1)

n oo~ h i —
Ej':l a,-jxj = bil L= 1, W, m

s.t sz(}, j=1..,n

where ¢, §;;, d;;, and b, they are fuzzy numbers.
In this study, the fuzzy numbers used are fuzzy triangular numbers. Thus, in fuzzy

quadratic programming (3.1), it can be written as follows:
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. 1
Min Z = Y7 1(c.p), t)x; + 5 X1 Xjoaldij Sijs Wiy )xi%;

st Xio{ay Lpmi < (b w,vy), i=1,..,m 32)

The optimization programming above consists of an objective function and a constraint
function. In @hadratic programming (3.1), both functions contain fuzzy triangular numbers.
SofBly using addition and multiplication in fuzzy triangular numbers, the objective function
in the fuzzy quadratic program (3.2) can be written as follows:

Z 6% + ZZZ%
i=1 j
Min { z, — Z; —E(cj pj)xj ZZZ(Q” su)x‘xj (3.3)
i= 1;
Zm +2, = E(c +t))x; +ZZZ(q” + wyj )x;x;
i=1 f=1
Meanwhile, the constraint function can be written as
- n
Z a;jx; < b, i €Ny,
j=1 (3.4)

s.t. < Z(au I),)x < (b;—u;), i €N,

Z(au+ru)x < (b;+v), i EN,

The solution Eq (3.4) changes in the objective function with fuzzy parameters in the
quadratic program (3.1) into three objective functions with firm number parameters in
equation (3.2). Each of these functions is then optimized with some of the same function
constraints, namely equation (3.4). Thus, the fuzzy quadratic program in equation (3.1) can
be converted into three simple quadratic programs as follows,

a. Quadratic Program |

1
: p— n n n
Min z, = X7, ¢jx; +;E;‘=1 2i=1 XX

n

Zauxj = b;‘, (S Nm

=1

n
st 4 Z(a,-j — 1) < (b — ), i€ N,




Displayed equation (3.5)

b. Quadratic Program II
. 1
Minz,, —z = E?:l(cj - pj)xj + ;Zil Z?:l(‘i’u - Sij)xixj

n

Z a;xj < by, i€ Ny
= (36)

n
s.t. < Z(au - IU)XJ < (bt - uj); i€ Nm
j=1

n
Z(au‘ +1y)% < (b +v0), 1€ Ny

=1

c. Quadratic Program III
. 1
Minz,, +z, = Z}izl(cj + tj)xj + 52?:1 Z}i:l(qu + Wjj)xl-xj

- n

Zauxj <b, i€N,

j=1

n
st ¢ Z(a[j = ljj)xj < (b —w), 1€ Ny (3.7)
=

n
Z(au +Tu)xj < (b;+v), i €N,

The quadratic program in equations (3.5), (3.6), and (3.7) is a simple quadratic
program. Therefore, to solve three quadratic programs above , we can use Karush-Kuhn-
Tucker method.

The results obtained from this method are in the form of three optical values, namely
Zm, (Zm — 21), and (z,,, + z,-). The three values are components of the triangular fuzzy
number from Z = (z,,, z;, z,.).

C. RESPLT AND DISCUSSION
In this section, the applicability of our proposed method for demonstrated by solving

numerical examples.

MinZ = (=5,1,1)x; + (1.5,0.5,0.5)x,
1 : 3
+5(6,22)x] +(~4,2.2)x,x; + (4,2.2)x])

x; +(1,0.5,0.5)x, < (2,1,1)
5.t4(2,1,1)x; + (—1,1,0.5)x, < (4,1,1)

P 2 Y
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Displayed equation (4.1)

Then the quadratic fuzzy (4.1) can be converted into three simple programs as follows:
a. Quadratic Program |

Min z,, = —5%; + 1.5x, + 3x% — 2x,x, + 2x2

X, +x, £2
x;+05x; <1
x; +1.5x, £3
st 2x;—x,<4
x, —2x, £3
3x; —0.5x, <5
X1,%, =0

(42)

b. Quadratic Program Il

Min z,, — z; = —6x; + X, + 2x7 — 3x,x, + X2

X t+xy = 2
x1+05x; <1
x1+ 1.5x; <3 (4-3)
s.t. 2x, —x; < 4
X1 — 2% <3
3x; —0.5x, <5
X,%, =0

¢. Quadratic Program IlI

Min z,, + z, = —4x; + 2x, + 4x? — x,x, + 3x7

Xy +x; €2
x, +05x, <1
xy+15x, <3
s.t. 2%, —x, < 4
X —2x, <3 (4.4)
3x; —05x, <5
xX,%, =20




The three quadratic programs above generate results z, = —2.0875, z,, — z
—4.0833, and z,, + z, = —1. So that the optimal objective function value obtained is Z

(z,.,2,,2,) = {(—2.0875,1.9958, 1.0875).

D. CONGRUSION

Quadratic programming problem is a very important field in operation research and
is mostly used for the optirfllzation problem.

This study proposes a new method to provide a solution to fuzzy quadratic
programming using the triangular fuzzy number approach for the objective and cost
functions. The Karush-Kuhn-Tucker method is used to solve any simple quadratic
program. The results obtained from three simple quadratic programs are three optimal
values in fuzzy triangular numbers.
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