HASIL CEK5_60140768

by 60140768 Pmat

Submission date: 19-May-2022 09:44AM (UTC+0700)

Submission ID: 1839516904

File name: 5 Pendidikan Matematika - 60140768 - JURNAL (SEAMS Bull -terbit).pdf (117.05K)

Word count: 4152

Character count: 16203

On Jointly Second (R, S)-Submodules

Dian Ariesta Yuwaningsih

Department of Mathematics Education, Universitas Ahmad Dahlan, Indonesia

Email: dian.ariesta@pmat.uad.ac.id

Indah Emilia Wijayanti

Department of Mathematics, Universitas Gadjah Mada, Indonesia

Email: ind_wijayanti@ugm.ac.id

Received 26 August 2019 Accepted 26 December 2019

Communicated by Nguyen Van Sanh

AMS Mathematics Subject Classification(2000): 16D10, 16D80

Abstract. Let R and S be commutative rings and M be an (R, S)-module. In this paper, we present the dual notion of jointly prime (R, S)-submodules, that is called jointly second (R, S)-submodules, and we investigate some properties of them. We give a necessary and sufficient condition for an (R, S)-submodule being jointly second (R, S)-submodules. Moreover, we present the definition of jointly second (R, S)-modules and present a condition for jointly prime (R, S)-modules being jointly second (R, S)-modules and vice versa.

Keywords: Second submodules; Coprime submodules; Jointly prime; Second modules.

1. Preliminaries

Throughout this article, R and S will denote commutative rings and M be an additive Abelian group. Furthermore, \mathbb{Z} will denote the ring of integers.

Let M be a left R-module. Based on [5], a proper submodule N of M is called prime if for each $r \in R$ and $m \in M$ such that $rm \in N$ implies either $m \in M$ or $rM \subseteq N$. This definition has been generalized by [9]. Based on [9], a proper submodule N of M is called prime if for each $r \in R$, the homomorphism $g_r: M/N \to M/N$ is either injective or zero. M is said to be second modules if

the zero submodule of M is prime

Moreover, [9] also introduced the dual notion of prime submodules, that is called second submodules. A non-zero submodule N of M is said to be second if for each $r \in R$, the homomorphism $f_r : N \to N$ is either surjective or zero. Further, [9] also provided some properties of second submodules. Several researchers have studied this second submodule, among of them are [1], [2], [3], [4], [8], and [6].

On the other hand, [7] defined the structure (R, S)-modules as a generalization of (R, S)-bimodules. Further, [7] also introduced the definition of jointly prime (R, S)-submodule, when R and S are arbitrary rings (not necessary commutative). A proper (R, S)-submodule P of M is called jointly prime if for any left ideal I of R, right ideal I of S, and (R, S)-submodule N of M such that $INJ \subseteq P$ implies either $IMJ \subseteq P$ or $N \subseteq P$. When R and S are commutative rings, we have a proper (R, S)-submodule P of M is called jointly prime if for any ideal I of R, ideal I of S, and I of S, submodule I of I such that $INJ \subseteq P$ implies either $IMJ \subseteq P$ or I or I Moreover, the research about I of I such that I is a positive I in I in

The main purpose is to provide some information concerning the dual \mathfrak{D} tion of jointly prime (R, S)-submodules. We will call this dual notion as jointly second (R, S)-submodules.

In Section 2, we give the definition of jointly second (R, S)-submodules and some examples of them. Moreover, we also provide \mathfrak{so}_{2} e properties of jointly second (R, S)-submodules. Among of them are the necessary and sufficient condition for an (R, S)-submodule being \mathfrak{j}_{2} 1tly second; every simple (R, S)-submodule is jointly second; the annihilator of jointly second (R, S)-submodules is prime; and every jointly second (R, S)-submodule contained in maximal jointly second (R, S)-submodule.

In [9], a left R-module M is called some if M is second submodules for itself. In Section 3, we give the definition of jointly second (R, S)-modules. Moreover, we provide some properties of them. At the end, we present a condition for jointly prime (R, S)-modules being jointly second (R, S)-modules and vice versa.

2. Some Properties of Jointly Second (R, S)-Submodules

In this section we present the definition of jointly second (R, S)-submodule and some properties of them. However, it should be noted earlier the definition of jointly prime (R, S)-submodules, which was introduced by [7] as follow.

Definition 2.1. Let R and S be arbitrary rings. A proper (R, S)-submodule P of M is called jointly prime if for any left ideal I of R, right ideal J of S, and (R, S)-submodule N of M such that $INJ \subseteq P$ implies either $IMJ \subseteq P$ or $N \subseteq P$.

When \underline{R} and S are commutative rings, we have the definition of jointly prime (R, S)-submodule as follows.

Definition 2.2. A proper (R, S)-submodule P of M is called jointly prime (R, S)-submodule if for any ideal I of R, ideal J of S, and (R, S)-submodule N of M such that $INJ \subseteq P$ implies either $IMJ \subseteq P$ or $N \subseteq P$.

The definition of jointly second (R, S)-submodule is given as follows.

Definition 2.3. An (R,S)-submodule N of M is called jointly second (R,S)-submodule if $N \neq 0$ and for each $r \in R$, the homomorphism (R,S)-module $f_r: N \longrightarrow N$ with definition $f_r(n) = rnS$ for each $n \in N$, is an epimorphism or zero homomorphism.

Note that if f_r is an epimorphism, we have $Im(f_r) = N$. However, if f_r is a zero homomorphism then for each $n \in N$ satisfies $f_r(n) = 0$, so rnS = 0. Because it applies to every $n \in N$, then we have rNS = 0.

Next, we give an example of jointly second (R, S)-submodule.

Example 2.4. Consider the (\mathbb{Z}, \mathbb{Z}) -module \mathbb{Z}_{12} .

(1) The (\mathbb{Z}, \mathbb{Z}) -submodule $N = \{\overline{0}, \overline{6}\}$ of \mathbb{Z}_{12} is a jointly second (\mathbb{Z}, \mathbb{Z}) -submodule of \mathbb{Z}_{12} . For $m \in \mathbb{Z}$, we construct an (\mathbb{Z}, \mathbb{Z}) -module homomorphism f_m with:

$$\begin{array}{ccc} f_m: N & \longrightarrow N \\ & \bar{n} & \longmapsto f_m(\bar{n}) = \overline{mn\mathbb{Z}} & , \forall \bar{n} \in N. \end{array}$$

If $m \in 2\mathbb{Z}$, then we obtain $f_m(N) = {\bar{0}}$.

If $m \notin 2\mathbb{Z}$, then we have $f_m(N) = N$.

Thus, f_m is a zero homomorphism or an epimorphism. Hence, it is proved that N is a jointly second (\mathbb{Z}, \mathbb{Z}) -submodule of \mathbb{Z}_{12} .

(2) The (\mathbb{Z}, \mathbb{Z}) -submodule $K = \{\overline{0}, \overline{4}, \overline{8}\}$ of \mathbb{Z}_{12} is a jointly second (\mathbb{Z}, \mathbb{Z}) -submodule of \mathbb{Z}_{12} . For $m \in \mathbb{Z}_{12}$, we construct an (\mathbb{Z}, \mathbb{Z}) -module homomorphism f_m with:

$$\begin{split} f_m : K &\longrightarrow K \\ \bar{k} &\longmapsto f_m(\bar{k}) = \overline{mk} \overline{\mathbb{Z}} \quad , \forall \bar{k} \in N. \end{split}$$

If $m \in 3\mathbb{Z}$, then we have $f_m(K) = {\bar{0}}$.

If $m \notin 3\mathbb{Z}$, then we get $f_m(K) = K$.

Thus, f_m is a zero homomorphism or an epimorphism. Hence, it is proved that K is a jointly second (\mathbb{Z}, \mathbb{Z}) -submodule of \mathbb{Z}_{12} .

Now, we give an example of (R, S)-submodule which is not jointly second.

Example 2.5. Let $2\mathbb{Z}$ be an (\mathbb{Z}, \mathbb{Z}) -module. An (\mathbb{Z}, \mathbb{Z}) -submodule $4\mathbb{Z}$ of $2\mathbb{Z}$ is not a jointly second (\mathbb{Z}, \mathbb{Z}) -submodule of $2\mathbb{Z}$. For any element $m \in \mathbb{Z}$, we construct an (\mathbb{Z}, \mathbb{Z}) -module homomorphism f_m with:

$$f_m: 4\mathbb{Z} \longrightarrow 4\mathbb{Z}$$

 $a \longmapsto f_m(a) = ma\mathbb{Z} \quad , \forall a \in 4\mathbb{Z}.$

If m=0, then we have $f_m(4\mathbb{Z})=\{0\}$.

But, if $m \neq 0$ then not necessary $f_m(4\mathbb{Z}) = 4\mathbb{Z}$.

For the example, let any element $m=2\in\mathbb{Z}$. Then we have:

$$f_m(4\mathbb{Z}) = 2(4\mathbb{Z})\mathbb{Z} \subseteq 8\mathbb{Z} \subseteq 4\mathbb{Z}$$

but $f_m(4\mathbb{Z}) \neq 4\mathbb{Z}$. So, we get $4\mathbb{Z}$ is not jointly second (\mathbb{Z}, \mathbb{Z}) -submodule of $2\mathbb{Z}$. According to [7], for each (R, S)-submodule N of M, let the set

$$(K:_R M) = \{r \in R \mid rMS \subseteq K\}.$$

In general $(K :_R M)$ is only an additive subgroup of R. But if we have the condition $S^2 = S$, clearly that $(K :_R M)$ is an ideal of R. We may also say that $(K :_R M)$ is the annihilator of quotient (R, S)-module M/K over the ring R. Now, we present some properties of jointly second (R, S)-submodules.

Proposition 2.6. Let M be an (R, S)-module with $S^2 = S$. An (R, S)-submodule N of M is a jointly second (R, S)-submodule if and only if $(0:_R N) = (K:_R N)$ for each proper (R, S)-submodule K of N.

Proof. (\Rightarrow). Let N be jointly second (R, S)-submodules of M. Then, $N \neq 0$ and for each $r \in R$, the (R, S)-module homomorphisms

$$f_r: N \longrightarrow N$$

 $n \longmapsto f_r(n) = rnS, \quad \forall n \in N$

is an epimorphism or zero homomorphism. Let any $x \in (K:_R N)$. Then $xNS \subseteq K \subset N$. If the homomorphism f_x is an epimorphism then $f_X(N) = N$, so we get $xNS = N \subseteq K$. A contradiction with $K \subset N$. So, f_x is a zero homomorphism. Thus, we obtain $f_x(N) = 0$ or xNS = 0, so $x \in (0:_R N)$. Thus, we obtain $(K:_R N) \subseteq (0:_R N)$. Moreover, let any $y \in (0:_R N)$. Then yNS = 0. Since K is an (R,S)-submodule of M, $yNS = 0 \subseteq K$. Thus, $y \in (K:_R N)$. Hence, we obtain $(0:_R N) \subseteq (K:_R N)$. Thus, it is proved that $(0:_R N) = (K:_R N)$.

(⇐). Let any proper (R, S)-submodule K of N satisfy $(0:_R N) = (K:_R N)$. For any $r \in R$, we construct an (R, S)-module homomorphism

$$f_r: N \longrightarrow N$$

 $n \longmapsto f_r(n) = rnS, \quad \forall n \in N.$

Assume that f_r is not an epimorphism. We will show that f_r is a zero homomorphism. Since f_r not an epimorphism, $Im(f_r) \neq N$, so that $rNS \neq N$. Suppose $Im(f_r) = K$. Then rNS = K, so that $r \in (K :_R N)$. Since $(0 :_R N) = (K :_R N)$, $r \in (0 :_R N)$, so that rNS = 0. Consequently, we get $f_r(N) = 0$. Thus, it is proved that f_r is a zero homomorphisms. Hence, N is a jointly second (R, S)-submodule of M.

An (R, S)-module M is said to be simple if the (R, S)-submodule of M is only zero submodule and M itself.

Proposition 2.7. Let M be an (R, S)-module with $S^2 = S$ and N a simple (R, S)-submodule of M. Then, N is a jointly second (R, S)-submodule of M.

Proof. It is known that N is a simple (R, S)-submodule of M, so N only contains (R, S)-submodule $\{0\}$ and N itself. Since $\{0\}$ is the only proper (R, S)-submodule of N, we can form (R, S)-module factor $N/\{0\} = N$. Based on Proposition 2.6, we have $(0 :_R N) = (\{0\} :_R N)$. Thus, N is a jointly second (R, S)-submodule of M.

Proposition 2.8. Let M be an (R, S)-module with $S^2 = S$ and (R, S)-submodule N of M with $N \neq 0$. Then the following statements are equivalent:

- (1) N is a jointly second (R, S)-submodule of M.
- (2) For any ideal A of R, ANS = 0 or ANS = N.
- (3) ANS = N for any real A of R not contained in $(0:_R N)$.
- (4) ANS = N for any ideal A of R properly containing $(0 :_R N)$.

Proof. (1) \Rightarrow (2). It is known that N is a jointly second (R, S)-submodule, meaning it fulfills $(0:_R N) = (K:_R N)$ for each proper (R, S)-submodule K of N. We will show that ANS = 0 or ANS = N. Let any ideal A of R and assume that $ANS \neq N$. We will show that ANS = 0. Since $ANS \neq N$, ANS is a proper (R, S)-submodule of N, so that we can form (R, S)-module factor N/ANS. Suppose that $B = (0:_R N/ANS)$. Then, we have

$$BNS = \Big\{ \sum_{i=1}^k b_i n_i S \mid b_i \in B, \ n_i \in N \Big\}.$$

Since $B=(0:_R N/ANS),\ BNS\subseteq ANS$, so that for each $s\in S$ satisfy bns=a'n's' where $a'\in A,\ b\in B,\ n,n'\in N,$ and $s'\in S.$ As a result, we obtain

$$BNS = \left\{ \sum_{j=1}^{l} a_j n_j S \mid a_j \in A, \ n_j \in N \right\} = ANS.$$

Since N is a jointly second, we obtain $B = (0 :_R N/ANS) = (0 :_R N)$, so that BNS = 0. Thus, it is proved that ANS = 0.

- $(2)\Rightarrow (3)$. Let any ideal A of R with $A\nsubseteq (0:_RN)$. Then, $ANS\neq 0$. Based on the hypothesis we get ANS=N.
- $(3)\Rightarrow (4)$. Let any ideal A of R with $(0:_RN)\subset A$. That means $A\nsubseteq (0:_RN)$. Based on the hypothesis we have ANS=N.
- $(4)\Rightarrow (1)$. Let any proper (R,S)-submodule K of N. Suppose that $X=(K:_RN)$. We Have $(0:_RN)\subseteq X$ and $XNS\subseteq K\neq N$ (since $(0:_RN)$ is not proper subset of X). Because the only one that satisfied $N\neq XNS$ and $XNS\subseteq K$ is XNS=0, we have $X=(0:_RN)$. So, $(0:_RN)=(K:_RN)$ for each proper (R,S)-submodule K of N. Hence, it is proved that K is a jointly second (R,S)-submodule of M.

Proposition 2.9. Let M be an (R, S)-module with $S^2 = S$ and N be jointly second (R, S)-submodule of M. Then, $(0:_R N)$ is a prime ideal of R.

Proof. Let any ideal I and J of R such that $IJ \subseteq (0:_R N)$. We will show that either $I \subseteq (0:_R N)$ or $J \subseteq (0:_R N)$. Since $IJ \subseteq (0:_R N)$, we have IJNS = 0. Since N is a jointly second (R,S)-submodule, we have either JNS = 0 or JNS = N. If JNS = N, then $INS = IJNSS \subseteq IJNS = 0$, so that INS = 0. From here, we get $I \subseteq (0:_R N)$. Moreover, if $JNS \ne N$ then JNS = 0, so that $J \subseteq (0:_R N)$. Thus, we have either $I \subseteq (0:_R N)$ or $J \subseteq (0:_R N)$. Hence, $(0:_R N)$ is a prime ideal of R. ■

Proposition 2.10. Let M be an (R, S)-module with $S^2 = S$ and $(N_i)_{i \in I}$ be a chain of jointly second (R, S)-submodule of M. Then $N = \bigcup_{i \in I} N_i$ is jointly second (R, S)-submodule of M.

Proof. Since $(N_i)_{i\in I}$ is a chain of jointly second (R,S)-submodule of M, $N=\bigcup_{i\in I}N_i$ is a non-zero (R,S)-submodule of M. Suppose formed $P_i=(0:_RN_i)$ for each $i\in I$. Let any $i,j\in I$. Then $N_i\subseteq N_j$ or $N_j\subseteq N_i$, so we get either $P_j\subseteq P_i$ or $P_i\subseteq P_j$. Moreover, let any ideal A of R with $ANS\neq 0$. We will show that ANS=N. Since $ANS\neq 0$, there exist $n\in N_k$, $a\in A$, and $k\in I$ such that $anS\neq 0$. Consequently, we have $AN_kS\neq 0$. Since N_k is a jointly second (R,S)-submodule, $AN_kS=N_k\subseteq ANS$. If $P_i\subseteq P_k$ and $AN_kS\neq 0$ then $A\nsubseteq P_k$. As a result, $A\nsubseteq P_i$ so we have $N_i=AN_iS\subseteq ANS$. If $P_k\subseteq P_i$, that means $N_i\subseteq N_k$. Since $N_k=AN_kS\subseteq ANS$, we have $N_i\subseteq ANS$. Thus, we have $N_i\subseteq ANS$ for each $i\in I$. Clearly that $ANS\subseteq N$, so ANS=N. Hence, $N=\bigcup_{i\in I}N_i$ is jointly second (R,S)-submodule of M.

Proposition 2.11. Let M be a non-zero (R, S)-module with $S^2 = S$. Then every jointly second (R, S)-submodule of M contained in maximal jointly second (R, S)-submodule of M.

Proof. Let N be jointly second (R, S)-submodule of M. We construct the set $\mathfrak{J} = \{P \mid P \text{ jointly second } (R, S)\text{-submodule of } M \text{ with } N \subseteq P\}$. It is obviously that $\mathfrak{J} \neq \emptyset$ since $N \in \mathfrak{J}$. By using Zorn's Lemma, we will show that \mathfrak{J} has a

maximal element. Equivalently showing that every non-empty chain \mathfrak{C} of \mathfrak{J} has an upper bound in \mathfrak{J} . Let any non-empty chain $\mathfrak{C} \in \mathfrak{J}$ and form the set $Q = \bigcup_{K \in \mathfrak{C}} K$. Based on Proposition 2.10, Q is also jointly second (R, S)-submodule of M. Since $N \subseteq Q$, $Q \in \mathfrak{J}$ and Q is an upper bound of \mathfrak{C} . Thus, it is proved that every non-empty chain \mathfrak{J} has an upper bound in \mathfrak{J} . Therefore, based on Zorn's Lemma there exist a jointly second (R, S)-submodule $N^* \in \mathfrak{J}$ that maximal between all jointly second (R, S)-submodules of \mathfrak{J} . Thus, it is proved that every jointly second (R, S)-submodule N contained in maximal jointly second (R, S)-submodule N^* of M.

3. Jointly Second (R, S)-Modules

In this section, we present the definition of jointly second (R, S)-module and their properties. The definition of jointly second (R, S)-modules is given below.

Definition 3.1. An (R, S)-module M is called a jointly second (R, S)-module if M is a jointly second (R, S)-submodule for itself.

Now, we give some properties of jointly second (R, S)-modules. These properties based on the properties of jointly second (R, S)-submodule which was presented in the previous section.

Proposition 3.2. Let M be a non-zero (R, S)-module with $S^2 = S$. Then, M is a jointly second (R, S)-module if $(0 :_R M) = (N :_R M)$ for every proper (R, S)-submodule N of M.

Proof. Obviously from Proposition 2.6.

Proposition 3.3. Let M be a non-zero (R, S)-module with $S^2 = S$. The following statements are equivalent:

- (2) For any ideal A of R, AMS = 0 or AMS = M.
- (3) AMS = M for any ideal A of R not contained in $(0:_R M)$.
- (4) AMS = M for any ideal A of R properly containing $(0:_R M)$.

Proof. Clearly from Proposition 2.8.

Proposition 3.4. Let M be an (R, S)-module with $S^2 = S$ and N be jointly second (R, S)-submodule of M. Then, $(0:_R M)$ is a prime ideal of R.

Proof. Evidently from Proposition 2.9.

Proposition 3.5. Let M be a simple (R, S)-module with $S^2 = S$. Then, M is a jointly second (R, S)-module.

Proof. Obviously from Proposition 2.7.

Before proceeding to the next properties of jointly second (R, S)-modules, the following is given one of the properties of (R, S)-modules. This properties will be used in proving the necessary and sufficient conditions of jointly second (R, S)-module.

Let M be an (R, S)-module M and I an ideal of R that satisfy $I \subseteq Ann_R(M)$. We defined the scalar multiplication operation:

$$\begin{array}{ccc} _\cdot _*_:R/I\times M\times S \longrightarrow M\\ &(\bar{a},m,s) \longrightarrow \bar{a}\cdot m*s:=ams \end{array}$$

for each $\bar{a} \in R/I$, $m \in M$, and $s \in S$. Clearly that this scalar multiplication operation is closed. Moreover, we can show that this scalar multiplication operation is well-defined. Let any $\bar{a}, \bar{a}' \in R/I$, $m, m' \in M$, and $s, s' \in S$ with $(\bar{a}, m, s) = (\bar{a}', m', s')$. This means that $\bar{a} = \bar{a}'$, m = m', and s = s'. Since $\bar{a} = \bar{a}'$, we have $a - a' \in I$. Since $I \subseteq Ann_R(M)$, (a - a')ms = 0 so ams = a'ms = a'm's'. Thus, we have $\bar{a} \cdot m * s = \bar{a}' \cdot m' * s'$. Hence, it is proved that this scalar multiplication operation is well-defined.

Furthermore, we will show that an (R,S)-module M is an (R/I,S)-module over the scalar multiplication operation which is defined above. Let any $\bar{a}, \bar{a'} \in R/I$, $m, n \in M$, and $s, s' \in S$. Then we have:

- (1) $\bar{a} \cdot (m+n) * s = a(m+n)s = ams + ans = \bar{a} \cdot m * s + \bar{a} \cdot n * s$.
- (2) $(\bar{a}+\bar{a}')\cdot m*s = (\bar{a}+\bar{a}')\cdot m*s = (\bar{a}+\bar{a}')ms = ams+a'ms = \bar{a}\cdot m*s+\bar{a}'\cdot m*s.$
- (3) $\bar{a} \cdot m * (s + s') = am(s + s') = ams + ams' = \bar{a} \cdot m * s + \bar{a} \cdot m * s'$.
- $(4) \ \bar{a}(\bar{a'} \cdot m * s)s' = \bar{a} \cdot (a'ms) * s' = a(a'ms)s' = (aa')m(ss') = (\bar{a}\bar{a'}) \cdot m * (ss').$

Thus, it is proved that M is an (R/I, S)-module.

Proposition 3.6. Let M be an (R,S)-module with $S^2 = S$ and A be ideal of R with AMS = 0. Then, M is a jointly second (R,S)-module if and only if M is jointly second (R/A,S)-modules.

Proof. (\Rightarrow). Since M is a jointly second (R, S)-module, $M \neq 0$. Let any ideal B of R with $A \subseteq B$. Since M is a jointly second (R, S)-module, either BMS = 0 or BMS = M. Moreover since AMS = 0 for any ideal A of R, we obtain (B/A)MS = M or $(B \subseteq M)MS = 0$. Based on Proposition 3.3, it is proved that M is a jointly second (R/A, S)-module.

(⇐). Since M is a jointly second (R/A, S)-module, $M \neq 0$. Let any ideal C of R. Since AMS = 0 for any ideal A of R, $A \subseteq (0:_R M)$ so that we obtain $CMS = \left((C+A)/A\right)MS$. Since M is a jointly second (R/A, S)-module, we have either $\left((C+A)/A\right)MS = M$ or $\left((C+A)/A\right)MS = 0$. So, we have CMS = M or CMS = 0. Based on Proposition 3.3, it is shown that M is a jointly second (R, S)-module.

Before we give the next properties, the following we give a property about jointly prime (R,S)-submodule.

Proposition 3.7. Let M be an (R, S)-module with $S^2 = S$ and P be jointly prime (R, S)-submodule of M. Then $(P :_R M)$ is a prime ideal of R.

Proposition 3.8. If M be an (R,S)-module with $S^2 = S$ and $a \in RaS$ for all $a \in M$. Then, a proper (R,S)-submodule X of M is a jointly prime (R,S)-submodule if and only if for any non-zero (R,S)-submodule K/X of M/X satisfy $(X:_R K) = (X:_R M)$.

Proposition 3.9. Let R be a ring such that every prime ideal is maximal. An (R, S)-module M with $S^2 = S$ is a jointly prime (R, S)-module if and only if M is a jointly second (R, S)-module.

Proof. (⇒). Let M be a jointly prime (R, S)-module. It means that $(0:_R M)$ is a prime ideal of R and $M \neq 0$. For any proper (R, S)-submodule N of M, we form (R, S)-module factor M/N. Clearly that $(0:_R M) \subseteq (N:_R M)$. Since $(0:_R M)$ is a prime ideal of R, $(0:_R M)$ is a maximal ideal, so that we have $(0:_R M) = (N:_R M)$. Thus, based on Proposition 3.2 we have M is a jointly second (R, S)-module.

(\Leftarrow). Let M be a jointly second (R, S)-module. Then $M \neq 0$. And based on Proposition 3.4 we have $(0:_R M)$ is a prime ideal of R. Let any non-zero (R, S)-submodule N of M. Since every prime ideal of R is maximal ideal, we obtain $(0:_R N) \subseteq (0:_R M)$. Furthermore, clearly that $(0:_R M) \subseteq (0:_R N)$. Hence, we have $(0:_R M) = (0:_R N)$. Hence M is a jointly prime (R, S)-module.

References

 H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, *Algebra Colloquum* 19 (1) (2012) 1109–1116.

- [2] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules II, Mediteranian Journal of Mathematics 9 (2012) 327–336.
- [3] S. Çeken, M. Alkan, P.F. Smith, Second modules over noncommutative rings, Communications in Algebra 41 (1) (2013) 83–98.
- [4] S. Çeken, M. Alkan, P.F. Smith, The dual notion of the prime radical of a module, Journal of Algebra 329 (2013) 265–275.
- [5] J. Dauns, Prime modules, Journal f
 ür die reine und angewandte Mathematik 298 (1978) 156–181.
- [6] R.I. Khalaf, Dual notion of prime modules, IBN AL-HAITAM Journal for Pure and Application Sciences 23 (3) (2012).
- [7] T. Khumprapussorn, S. Pianskool, M. Hall, (R, S)-modules and their fully and jointly prime submodules, *International Mathematical Forum* 7 (33) (2012) 1631– 1642

- [8] I.E. Wijayanti, D.A. Yuwaningsih, S. Wahyuni, On weakly second submodules over noncommutative rings, Southeast Asian Bull. Math. 42 (2018) 781–790.
- [9] S. Yassemi, The dual notion of prime submodules, $Arc.\ Math.\ Brno\ {\bf 37}\ (2001)\ 273–278.$
- $[10] \ \ {\rm D.A.\ Yuwaningsih\ and\ I.E.\ Wijayanti,\ On\ jointly\ prime\ radicals\ of\ } (R,S){\rm -modules}, \\ Journal\ of\ the\ Indonesian\ Mathematical\ Society\ {\bf 21}\ (1)\ (2015)\ 25{\rm -}34.$
- [11] D.A. Yuwaningsih, I.E. Wijayanti, P.W. Prasetyo, On (R, S)-modules homomorphisms, IOP Conf. Series: Journal of Physics: Conf. Series 1188 (2019), 012114, 7 pages.

HASIL CEK5_60140768

ORIGINALITY REPORT

13% SIMILARITY INDEX

15%
INTERNET SOURCES

7%
PUBLICATIONS

6% STUDENT PAPERS

PRIMARY SOURCES

www.coursehero.com

5%

www.seams-bull-math.ynu.edu.cn

5%

S. Çeken, M. Alkan, P. F. Smith. "Second Modules Over Noncommutative Rings", Communications in Algebra, 2013

2%

Exclude quotes

On

Exclude matches

< 2%

Exclude bibliography