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We introduce the dual notions of §(N)-weakly prime submodules, that is, S(0)-weakly
second submodules in a commutative ring with identity. We investigate the properties of
S(0)-weakly second submodules and obtain some related useful characterizations of this
dualization. Moreover, we also prove some properties of S(0)-weakly second submodules
related to multiplication and comultiplication modules.
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1. Preliminaries

Dauns introduced the notion of prime modules in his paper [6]. This primeness
has been generalized into weakly prime module in [3][2][1]. If M is an R-module,
P is a maximal ideal of K, then we obtain a multiplicative closed set T = R\ P.

Moreover, by these situations, we can construct the ring of fraction of R denoted

by Kp and the module of fraction Mp over Rp. For any submodule N of M, we

can extend it to a submodule in Mp and denote it by Np. Moreover, in his paper,

Jabbar [7] showed the relationship between the primeness of module M and its

*Corresponding author.
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module of fraction Mp, where P is a maximal id@Bof R. Naturally, any prime
submodule N of M implies Np is also a prime submodule of Mp, but the converse
is not always true. Yassemi in [8] has defined mcoﬁsubmodules as the dual of
prime submodules. Furthermore, second submodules@ithve been intensively studied
by Ceken et al. in [4][3]. Some authors also call the second submodules as coprime
submodules.

Assume that R is a commutative ring. Then, a proper submodule N of M is

-

said to be weakly prime if for any r, s € R and submodule K of M with rs K C N
implies either rK' € N or sK' C N. Equivalently, a proper submodule N of M is
said to be a weakly prime submodule if for any submodule K of M, where N C K,
Annp(K/N) is a prime ideal. Moreover, Ansari and Toroghy |1] introduced the dual
notion of weakly prime submodules over a commutative ring with identity, that is
weakly second submodules. A nonzero submodule N of M is called a weakly second
submodule if for each r, s € R and submodule & of M such that rsN C K, implies
either rN € K or @ C K.

e relationship between the weakly secondness and its module of fraction is
interesting to be considered. The combination of the ideas of Jabbar [T] and Yassemi
[8] obtains a dualization of S{N )-locally prime submodules as 5(0)-locally second
submodules. We introduce the notions of 5(0)-weakly second submodules over com-
mutative rings. We completa’ds work by giving example S(0)-weakly second sub-
modules which is not a weakly second submodule, characterizing the S{0)-weakly
second submodules and proving some properties of S(0)-weakly second submodules
related to multiplication and comultiplication modules.

2. 5(0)-Weakly Second Submodules

Throughout this paper, rings mean associative connmutative rings with unit and
modules mean left R-modules. We consider first the following notions. Let R be a
ring, N a submodule of a left R-module M. Denote

S(N)={re R|rme N for some m € M\N}.
If N =0, then we have
S(0) = {r € R|rm = 0 for some m € M\0}.
Lemma 2.1. Let N be a nonzero submodule of M, P a mazimal ideal of R with

S(0) € P, and Np is a submodule of Mp. Then Np # (.

Proof. Suppose that Np = 0. Let 0 # n € N, then it is clear that 0 = > € Np.
Then there exists ¢ € P such that gn = 0p = 0. Since S(0) € P, we obtain q¢ € S5(0).
Consequently, we get n =0, a contradiction. Therefore, Np # 0. 0

Lemma 2.2, Let M be an R-module, P a mazimal ideal of R satisfying S(0) C P,
and N a weakly second submodule of M. Then Np is a weakly second submodule
of Mp.
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Proof. Since N # 0, we get Np # 0. Let P’—l ﬁ € Rp and a submodule Kp in Mp
such that ﬁﬁzi\’p C Kpor (rsN)p C Kp. Consequently, 7sN C K. Since N is a
second submodule of M, rN € K orsN C K. Thus, (rN)p C Kpor (sN)p C Kp.
Equivalently ﬁi\’p C Kpor ii\’p C Kp. We prove that Np is a second submodule
of Mp. O

There exists a submodule N which is not a weakly second submodule in M but
the Np is a weakly second submodule in Mp as given in the example below.

Example 2.1, The Z-submodule 2Z is not a weakly second submodule, since
27, /8% ~ Zy and Anng(2Z/8Z) = 4Z is not a prime ideal in Z. We consider
the prime ideal P = {0} of Z, the multiplicative closed set in Z is Z\{0} and
Zp = () is the fraction of module of Z. Moreover, (2Z)p = (8Z)p = (J and
Anng((2Z)p/(8Z)p) = 1, a prime ideal in () itself. Thus, (2Z)p is a weakly second
submodule of (Z)p = ().

The definition of S(0)-weakly second submodules is given below.

Definition 2.1. Let M be an R-module and P a prime ideal of R satisfying S(0)
P. A nonzero submodules N of M is called an S(0)-weakly second submodule if
Np is a weakly second submodule.

Now weg@ive a proposition about the sufficient and necessary condition for a
nonzero sulodule to become an S(0)-weakly second submodule.

Proposition 2.1. Let M be an R-module, N a nonzero submodule of M, and P
a mazimal ideal R where S(0) € P. N is a S(0)-weakly second submodule of M if
and only if for all r,t € R, rtN =tN or riN =rN.

Proof. (=) Since N is a S(0)-weakly second submodule of M, Np is a weakly
second submodule of Mp. Let =, L € Rp with =L Np € =L Np. We obtain
p1’ opz 1Pz Pl opz

L L

AL T AT tar_ o~ r AT P . AT - AT A I
EJ\P _ EPE 1\-}3 or El\P - EPZ J\JD. I:-qmvalently (?"1\ )p - (?"fi\ )p or (fl\ )p -
(rtN)p. Since Np is a weakly second submodule of Mp, we have (rtN)p C (rN)p
or (rtN)p C (tN)p. Thus, (rtN)p = (rN)p or (rtN)p = (tN)p. Hence rtN = rN
or rtN = tN for all r,t € R.

(<) Let ;;_1.% c Rp and a submodule Kp in Mp such that ﬁiN‘D C Kp. It
implies (rtN)p € Kp or rtN C K, for all r,t € R. Based on the hypothesis then
we get tN C K orr N C K. Then, (tN)p € Kp or (rN)p € Kp. Hence, we obtain
pizi\"p C Kpor P’—'li\-"p C Kp. Thus, Np is a weakly second submodule of Mp. Then

N is a S{0)-weakly second submodule of M. 0

As direct consequences, we obtain the following.

Corollary 2.1, Let M be an R-module, N a nonzero submodule M, P a prime
ideal of R where S(0) C P. N is an S(0)-weakly second submodule of M if and only
if for mn'demf I and .J of R, IJN=IN or IJN=JN.
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Corollarygih2. Let M be an R-module, N a nonzero submodule M, P a prime
ideal of R e S(0) C P. N s a S(0)-weakly second submodule of M if and only
if for any ideal I..J of R and a submodule K of M wnth IJN C K, IN C K or
INCK.

Now, we give the characterization of S(0)-weakly second modules.

Proposition 2.2, Let M be an R-module, N a nonzero submodule M, P a prime
ideal of R where S(0) C P. Suppose Anng,.(Np) is a prime ideal of Rp. The
following assertions are equivalent:

(a) N is a S(0)-weakly second submodule of M;

(b) For any ideal I in Rp, INp = Np or INp is a product of Np and a prime
ideal of Rp;

(c) INp = Np for any ideal I in Rp which is not prime;

(d) INp = Np for any ideal I in Rp which containing a proper prime ideal.

Proof. (2) = (3) = (4) are clear.

(1) = (2) Since N is a S(0)-weakly second submodule of M, then Np is a weakly
second submodule of Mp. Moreover, we have INp = Np or INP is a product of
Np and a prime ideal of Rp.

(4) = (1) Take any proper submodule Kp of Np and we set C' = Aung,.(Np/Kp).
We will show that C' is a prime ideal of Bp. Then Anng,.(Np) € C and CNp C
Kp # Np. Suppose that Amng, (Np) C C. Based on the hypothesis, ' contains a
proper prime ideal. We have CNp = Np, a contradiction since CNp C Kp # Np.
Thus, Anng,.(Np) = C. Hence, C' is a prime ideal of BEp and N is a S(0)-weakly
second submodule of M. m|

The other characteristics of S{0)-weakly second submodules are given below.

Propositi2.3. Let M be an R-module, N a nonzero submodule M, P a prime
ideal of R where S(0) € P. N is a S(0)-weakly second submodule of M if and only
if for any submodule K C N of M, Anng(N/K) is a prime ideal of R.

Proof. (=) Since N is a S(0)-weakly second submodule of M, Np is a weakly
second submodule of Mp and Anng, JKp) is a prime ideal of Rp. Let z,y €
Amng(N/K) with zy € Anng(N/K). It implies zyN € K or (zyN)p € Kp. Thus,

pi'lf;Np C Kp. Since Anng,.(Np/Kp) is a prime ideal, we obtain 7+ Np C Kpor
ﬁ’;i\’p C Kp. Consequently, we get (zN)p C Kp or (yN)p C Kp. Thus, zN C K
or yN C K. Hence Anng(N/K) is a prime ideal of E.

-~

(<) Let ﬁ;—‘; € Aung, (Np/Kp) with ﬁ;—; € Amng,.(Np/Kp). It means
r o

EE'\’p C Kpor (zyN)p C Kp. We get zyN C K. Since Anug(N/K) is a

prime ideal, N C K or yN C K. Therefore, (zN)p € Kp or (yN)p € Kp.
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So ii\"p C Kp or };'-";1\"33 C Kp. We obtain ,ﬁ € Anng.(Np/Kp) or ;}"; =
Anng,.(Np/Kp). Hence Anng, (Np/Kp) is a prime ideal of Rp. Thus, Np is a
weakly second submodule of Mp or N isa §(0)-weakly second submodule of M. O

Proposition 2.4, Let M be an R-module, N a nonzero submodule M, P o prime
tdeal of R where S(0) C P. If N is an S(0)-weakly second submodule of M then
Amng(N) is a prime ideal of R.

Proof. Let r,t € R satistying rt € Anng(N), then rtN = 0. Therefore, we obtain
(rtN)p = 0. Since N is an S(0)-weakly second submodule of M, then we obtain
(rN)p =0or (tN)p = 0. Consequently, rN = 0 or t N = 0, so we get r € Anng(N)
or t € Anng(N). Hence Anng(N) is a prime ideal of R. O

Proposition 2.5. Let M be an R-module and P a mazimal ideal of R where
S(0)C P.If M is an S(0)-weakly second module then M /L is also an 5(0)-weakly
second module, for each proper submodule L of M.

Proof. Let L be a proper submodule of M. We will show that Mp/Lp is a weakly
second module. Let PJ—I i € Rp and submodule Kp of Mp with Lp € Kp and
J_;—IIJ%J‘.'EPILP C Kp/Lp. Then (rtM)p/Lp € Kp/Lp. So, (rtM)p C Kp. Since
Mp is a weakly second module, (rM)p € Kp or (tM)p € Kp. Therefore, (rM +
L)p/{Lp f_: .Kp/Lp or (fﬂ.’f e L]p/fp f_: I\’prp. Therefore_. ﬁi‘fprp f_: .Kp/'/Lp
or iﬂ.‘fp/i,p C Kp/Lp. Hence M/L is an S(0)-weakly second module. O

Proposition 2.6. Let M be a nonzero R-module and P a prime ideal of R where
S(0)C P. If Mp 1s a comultiplication Rp-module and N is an S(0)-weakly second
submodule of M, then Np is a second submodule of Mp.

Proof. Since N is an S(0)-weakly second submodule of M, then Np is a weakly
second submodule of Mp. Let s e lr and L p is a completely irreducible submod-
ule of M p satistying leNp C Lp. Since M p is a comultiplication module, then there
exists an ideal Ip in Rp such that Lp = (Op ', Ip). Thus, o Ve C© (0P v, Ip)
or equivalent to say p’—'lfpi\"p = 0p. Since Np is a weakly second submodule of Mp,
Anng,.(Np)is a prime ideal of Rp. Thus, leNp =0p or IpNp = 0p. Equivalently,
L~ Np =0p or Np C(0p :a, Ip) = L. Hence, Np is a second submodule of Mp.

P
Thus, N is an S(0)-locally second submodule of M. O

Proposition 2.7. Let M be a nonzero R-module and P a prime ideal of R where
S(0) C P, If Mp is a multiplication Rp-module and M is weakly second R p-module,
then M 1s an S(0)-weakly prime R-module.

Proof. Let ﬁ ﬁ € Rp. Since M is an S(0)-weakly second R-module, then Mp is a

weakly second Rp module. So, we get s M = =M. Since Mp is a multiplication
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module, this implies that

ros ros
)= —— ((ﬂ M ——) ‘Rp JUP) Mp
P op2 P1pz
s r
= ((ﬂ M ——) ‘Rp iifp) —ﬂfp
P1p2 mn

r A i
= (O ‘Mg ——) -
Pip2) p

It follows that (0 : J‘fpﬁ i) =(0:pr, ﬁ). Thus, M p is a weakly prime Rp-module,

Le. M is an S(0)-weakly prime R-module. |

Proposition 2.8. Let M be a nonzero R-module and P a prime ideal of R satis-
fying S(0) C P. If Mp is a comultiplication Rp-module and M 1s an S(0)-weakly
prime R-module, then M is an S(0)-weakly second R-module.

Proof. Let oo, € fip. Since M is an S(0)-weakly prime R-module, then Mp is

a weakly prime Rp module. So, we get (0 : Mp;—'”;—”'z] =(0:np VL]]. Since Mp is a
comultiplication module, this implies that

ros ros
Mp = ((ﬂ Mp ——) Mp Aung, (——ﬂi’p))
P1Lp2 P1pe
r ros
= ((0 ‘Mp _) ‘Mp Annﬁ‘p (__4'11}3))
" P P2

ros r
=|——Mp iy — .
P1 P2 P1

It follows that VL] J;izM = Jj—']M. Thus, Mp is a weakly second Rp-module. 0
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