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Abstract

The major challenges of the high-gain DC–DC boost converters are high-voltage stress on the switch, extreme duty ratio operation, 
diode reverse-recovery and converter efficiency problems. There are many topologies of high-gain converters that have been widely 
developed to overcome those problems, especially for solar photovoltaic (PV) power-system applications. In this paper, 20 high-gain 
and low-power DC–DC converter topologies are selected from many topologies of available literature. Then, seven prospective top-
ologies with conversion ratios of >15 are thoroughly reviewed and compared. The selected topologies are: (i) voltage-multiplier cell,  
(ii) voltage doubler, (iii) coupled inductor, (iv) converter with a coupled inductor and switch capacitor, (v) converter with a switched in-
ductor and switched capacitor, (vi) cascading techniques and (vii) voltage-lift techniques. Each topology has its advantages and disad-
vantages. A comparison of the seven topologies is provided in terms of the number of components, hardware complexity, maximum 
converter efficiency and voltage stress on the switch. These are presented in detail. So, in the future, it will be easier for researchers 
and policymakers to choose the right converter topologies and build them into solar PV systems based on their needs.
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There are six
parameters as the
focus of
comparison, namely:
number of components
(NOC), voltage stress
on switch (Vss), power
handling capability,
complexity, maximum
efficiency, and voltage
gain. It should be
underlined that the
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parameters have
inverse or negative
values
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Introduction
Due to the massive usage of fossil fuels that causes some big 
environmental issues and global-warming problems, the devel-
opment of technology in terms of renewable energy sources is 
increasing rapidly [1–5]. Solar photovoltaic (PV) power sources 
have become the most favourable energy sources due to their 
clean and emission-free energy sources with high reliability and 
low cost [6].

Because of the limitations of PV power sources that have a low-
voltage output of between 12 and 60 V, the high output-voltage 
gain of the DC–DC converter is needed to level up the output volt-
age for some applications [7], e.g. in grid-connected applications. 
Grid-connected power applications are operated at ~375–400 V 
for full-bridge inverters [8] and ~760 V for half-bridge inverters 
[6]. The conventional boost DC–DC converter topology cannot 
achieve that level of voltage gain or it will cause an extreme duty 
ratio and high voltage stress on the power semiconductor device. 
As a result, many researchers have developed and modified the 
conventional boost converter topology in recent years to achieve 
a high voltage gain with higher efficiency and reliability [9–18].

To cope with the direct current (DC) bus voltage for grid-
connected inverters, a conventional solution is normally used by 
connecting the PV panels in series. Due to the large space require-
ments and high cost, the series/parallel combination of PV panels 
is not a viable solution for increasing voltage/current [19–21]. 
Thus, a DC–DC converter with a high-gain voltage-conversion 
ratio is required to achieve high-voltage outputs [22].

In this paper, the modified topology of a non-isolated DC–DC 
converter with a high-gain voltage that is >15 times the size is 
discussed. Other than that, the performance analysis and com-
parison of such a topology are provided. The paper is organ-
ized as follows. Section 1 will outline the major challenge of the 
high-gain voltage of a DC–DC converter; Section 2 will describe 
high-step-up DC–DC converter application on PV power systems, 
step-up DC–DC converter classification for PV application and the 

very-high-step-up DC–DC converter with high voltage gain (>15 
times); Section 3 will provide a discussion and comparisons of 
the selected DC–DC converter topology; and Section 4 will provide 
concluding remarks.

1  DC–DC converter configuration on PV 
power-generation systems
Solar PV power sources have various limitations in terms of 
harvesting power. It is because the energy-conversion process 
by PV panels is greatly affected by the radiation received by the 
panel surface [23]. Therefore, the production of power (current 
and voltage) from PV panels is greatly affected by climate change 
and the effect of shading, especially for PV panel installations in 
urban areas [24]. Due to these problems, a power converter that 
can operate optimally and is able to change the PV varying in-
put voltage level to a fixed or variable voltage level according to 
load requirements is needed. In addition, the output voltage of 
the PV panels only ranges from 12 to 60 V, so a DC–DC converter 
is needed. This can increase the voltage to the level required 
by the grid or load, which is >380 V for single-phase electricity 
needs. The configuration of the solar PV-based energy-conversion 
system using a DC–DC boost converter is shown in Fig. 1.

Basically, the converter needed to increase the DC voltage 
from a low voltage level to a high voltage level is called a DC–DC 
boost converter. The conventional DC–DC boost converter works 
by utilizing active and passive components such as transistors, 
inductors, diodes and capacitors. The task is to produce an out-
put DC voltage that is greater than the input DC voltage. It works 
by varying the duty cycle of the pulse-width modulation (PWM) 
switching on the transistor to charge the inductor and capacitor 
alternately. The equivalent circuit of a conventional DC–DC boost 
converter is shown in Fig. 2.

However, the use of a conventional DC–DC boost converter has 
limitations in terms of increasing the voltage level. Therefore, 

the modification of the basic converter topology and circuit is 
needed. So, the voltage can be raised to the level needed by the 
grid system if performance and efficiency are taken into account.

1.1  Solar PV array power characteristic
The power output from PV can be modelled by Kirchhoff’s current 
law. From Fig. 3, it can be obtained using Equation (1):

Ipv = npIL − Id −
Vd

Rsh
 (1)
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Fig. 1: PV array configuration to the load.
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Fig. 2: Conventional boost DC–DC converter circuit.
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where Id represents the current on the diode, IL represents the 
light-generated current from the PV panel, nP represents the num-
ber of cells connected in parallel, Rsh represents the resistance of 
the shunt and Vd represents the voltage of the diode.

Then the current on the diode can be written as Equation (2):

Id = npIos

ß
exp

ï
q(v+ IcellRs

nsAKT

ò
− 1} (2)

Fig. 3a shows the equivalent circuit of a PV cell and Fig. 3b 
shows the I–V characteristics of solar/PV cells with a load line.

1.2  Maximum power point tracking controller
Maximum power point tracking (MPPT) is a technique that is 
commonly used in wind turbines and in PV power-generation 

systems. It is extensively used to maximize power extraction 
under various environmental conditions [25, 26]. MPPT im-
plementation uses an algorithm that takes a sample of the 
output voltage and current from the PV panel and then ad-
justs the duty ratio as needed. A  microcontroller is usually 
used to implement the algorithm. Modern applications often 
use high computer requirements for their analytic and load-
forecasting needs. In general, the MPPT controller algorithm is 
implemented in power-converter systems from PV to storage 
or load systems. The most commonly used power converter in 
PV systems is the DC–DC converter. Much research has been 
conducted in recent years to implement the high-gain DC–DC 
converter for MPPT applications, which can be found in the lit-
erature [27–33].
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Fig. 3: (a) Equivalent circuit of PV model, (b) I–V characteristics of solar cell with load line.

1 -Three level boost converters

2 - Multilevel switched capacitor (SC) technology

3 -Voltage multiplier cells (VMC)

4 - Voltage doublers

5 - Coupled inductor (CI) based converters

6 - Switched Capacitor (SC)

7 - Converters with Cl and SC

8 - Converters with switched capacitor (SC)
      and switched inductor(SI)

9 - Three state switching cell based converters

10 - Flying capacitor converter
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Fig. 4: Various topologies of the boost DC–DC converter classified based on voltage gain and rated power level.
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1.3  DC–DC converter
The DC–DC converter converts a DC source into the desired 
voltage level at the output [34]. The range of converted power 
varies widely, from very low power (i.e. battery) to very high 
power (high-voltage power transmission). Basically, the DC–DC 
converter is divided into two main topologies, namely isolated 
and non-isolated DC–DC converters. On the isolated DC–DC 
converter, the transformer is used to step up or step down the 
input voltage, whereas on the non-isolated DC–DC converter, 
semiconductor components are used to convert the voltage so 
it has a more compact size, higher efficiency and lower produc-
tion costs.

In PV applications, a non-isolated DC–DC converter is used as 
an input voltage converter that varies from a range of 12–60 V to 
a fixed output voltage with a range that varies between 24 V (for 
batteries, lighting applications, etc.) and 760 V (for power-system 
line-transmission applications) [12]. A high-step-up DC–DC boost 
converter is required due to the high-output-voltage requirement 
with very limited input voltage.

1.4  Various topologies of the high-voltage-gain 
DC–DC converter
Conventional boost DC–DC converters have limitations in 
increasing the voltage to a high level, where the level is the grid 
voltage level. Many studies have been carried out by modifying 
the conventional DC–DC converter boost circuit into a variety of 
new topologies [12, 35]. These can increase the voltage to very 
high levels while maintaining high reliability and efficiency. The 
changed topology of the boost DC–DC converter circuit can be 
divided into four different plans:

 (i) low-gain low-power (LGLP);
 (ii) low-gain high-power (LGHP);
 (iii) high-gain low-power (HGLP);
 (iv) high-gain high-power (HGHP).

Out of the four gain and power ranges of the modified top-
ology, the HGLP topology group has been used in PV systems 
the most.

A general classification of the modified DC–DC boost converter 
topology is shown in Fig. 4. In the HGLP converter group, there 
are many developed topology modifications by researchers, 
including: (i) three-level boost converters [36–39]; (ii) multilevel 
switched-capacitor (SC) topology [40, 41]; (iii) voltage-multiplier 
cells (VMCs) [42–50]; (iv) voltage doublers [51–56]; (v) coupled-
inductor (CI) converters [52, 57–65]; (vi) SC converters, also known 
as charge pumps [66, 67]; (vii) combination of CI and SC convert-
ers [57, 68–76]; (viii) combination of SC and switched-inductor 
(SI) converters [71, 77–82]; (ix) three-state switching converters 
[83–85]; (x) flying-capacitor converters [86]; (xi) non-magnetic 
flying-capacitor (FC) converters [87]; (xii) multilevel modular 
capacitor-clamped DC–DC converters [88]; (xiii) cascading tech-
niques [89–92]; (xiv) two-inductor topologies [93]; (xv) converters 
with dual inductors [94]; (xvi) dual CIs [95]; (xvii) winding-cross-
coupled inductors [96, 97]; (xviii) built-in transformers [98–100]; 
(xix) multiphase converters [101–103]; and (xx) voltage-lift (VL) 
techniques [104–109].

From all the topologies in the HGLP group that we have studied 
in this paper, we will discuss in more detail the HGLP topology 
group, which has a voltage gain of >15 times the input voltage. 
The topologies include: (i) VMC with 9.5–15.8 times the voltage 
gain; (ii) voltage doubler with 7.9–19 times the voltage gain; (iii) 
CI-based boost converter with 5.55–16.66 times the voltage gain; 
(iv) CI- and SC-based boost converter with 5.68–16.66 times the 
voltage gain; (v) SI- and SC-based boost converter with 9.1–20 
times the voltage gain; (vi) cascading technique with 20 times the 
voltage gain; and (vii) VL technique with 9.5–15.3 times the volt-
age gain.

1.5  Major challenges of a DC–DC converter for a 
PV system with high voltage gain
Besides minimizing current ripple at the input port and keeping 
the switch from operating at an extreme duty ratio, it is worth 
noting that the high voltage stress on the switch followed by high 
peak currents at the low-voltage port are the main concerns in 
high-step-up conversion systems [12]. Several DC–DC converter 
topologies that inherit the capability of high voltage gain are also 
reviewed. However, on the other hand, those converters are suf-
fering from too much voltage stress to increase the voltage from 
a very small source [65]. Furthermore, the efficiency of some of 
these converters is also drastically reduced if the conversion ratio 
voltage is too high.

Table 1: Various modified topologies of high-voltage-gain DC–
DC converters (refers to Fig. 4)

Topology 
number 

Reference Voltage-gain range (×) Component count

Minimum Maximum Minimum Maximum 

1 [36–39] 4 [37] 12 [36] 13 [38] 18 [39]

2 [40, 41] 9 [41] 12 [40] 10 [40] 20 [41]

3 [42–46, 110] 9.5 [43] 15.8 [44] 10 [45] 22 [42]

4 [51–54] 7.9 [52] 19 [51] 8 [52] 12 [51]

5 [59, 111–116] 5.55 [115] 16.66 [114] 8 [115] 15 [116]

6 [66, 67] 5 [67]  10.8 [66]  10 [67] 16 [66]

7 [57, 68–71] 5.68 [70] 16.66 [68] 8 [69] 18 [70]

8 [71, 77, 78] 9.1 [77] 20 [71] 5 [77] 18 [71]

9 [83–85] 7.91 [85] 8.33 [83] 14 [84] 20 [85]

10 [86] 5 [86] – 7 [86] –

11 [87] 5 [87] – 15 [87] –

12 [88] 6 [88] – 8 [88] –

13 [117] 20 [117] – 10 [117] –

14 [93] 12.66 [93] – 12 [93] –

15 [94] 8.33 [94] – 15 [94] –

16 [95] 11.1 [95] – 8 [95] –

17 [96, 97] 8.44 [97] 9.5 [96] 7 [96] 15 [97]

18 [98–100] 9.5 [98] 9.5 [100] 14 [99] 16 [100]

19 [101–103] 5 [101]  9.5 [102] 9 [101] 26 [103]

20 [104–109] 9.5 [104]  15.3 [105] 12 [104] 15 [105]

–, data not available.
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Fig. 5: Basic circuit of DC–DC boost converter with VMC [110].
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2  Low-power boost DC–DC converter for 
PV application with very high gain
Based on the literature, 20 variations of the topology modifica-
tion of the DC–DC converter circuit have been selected and cat-
egorized as high-gain DC–DC converters. The technical variations 
and topologies are presented in Table 1. It is found that out of 20 
converters, 7 of them give an outstanding conversion ratio of >15. 
This voltage gain is unusual for a non-isolated DC–DC converter 
and, in some literature, it is also regarded as a ‘very high-gain 
DC–DC converter’.

2.1  VMC
The structure of the boost converter circuit with the VMC cir-
cuit consists of the basic components that construct the boost 
converter and the VMC circuit [12]. Fig. 5 shows the basic circuit 
of the VMC structure applied to the boost DC–DC converter cir-
cuit, while Fig. 6 shows the VMC circuit with the multiplier factor 
‘M’.

There are several VMC topology variants determined based on 
the combination of several passive components consisting of cap-
acitors and inductors, which also consist of semiconductor de-
vices such as metal-oxide-semiconductor field-effect transistors, 
insulated-gate bipolar transistors and diodes. The combination 
of these components creates a multiplier circuit with distinctive 
characteristics. Some topology variations of this VMC circuit can 
be seen in Fig. 7. Table 2 presents a comparison between each 
cell’s topology.

The main features of the VMC circuit are modularity, simpli-
city and the switches’ low-voltage stress. However, this type of 
converter has several issues, including (i) poor voltage regulation, 
(ii) excessive component counts, (iii) low voltage gain and (iv) 
a reasonable trade-off between gain selection and desired effi-
ciency [42].

Previous researchers have developed and improved the high-
gain DC–DC converter based on the VMC circuit for smart grid 

and renewable-energy applications [12, 13, 43, 47–50, 118]. These 
converters are very much suited for PV applications due to their 
capability to step up the low-voltage input from the PV to the de-
sired output voltage on the grid system.

2.2  Voltage doublers
A voltage doubler can be described as a converter that has an 
output voltage that is twice its input value. Most voltage-doubler 
circuits (cells) consist of a diode and an inductor [51], while others 
have additional capacitors [119]. The voltage doubler works by 
charging the capacitor at the input side and transferring the 
stored energy to the load at exactly twice the input voltage. By 
classifying the identical levels of the doubler, a larger voltage 
multiplier is obtained with a larger component count, excessive 
losses and a decrease in efficiency.

The equivalent circuit of a DC–DC boost converter with a volt-
age doubler can be seen in Fig. 8 [54]. In this circuit, the three-
level boost converter proposed in [119] is added together with the 
voltage-doubler cell proposed in [77]. The two inductors, L1 and 
L2, are coupled, which results in a smaller inductor size under a 
similar switching frequency. In general, a voltage-doubler circuit 
for DC–DC converters has a simpler topology, fewer components 
and relatively higher efficiency than VMC. However, the voltage 
doubler has limitations on the gain voltage that can be generated.

This voltage-doubler topology is very popular in universal 
power supplies, which receive an AC input voltage ranging from 
90 to 265 Vrms. This is because it can make the rectified 90-Vrms in-
put voltage go up to twice as high when it needs to.

2.3  CI-based DC–DC converters
The CI is the component of non-isolated DC–DC converters that 
works by storing energy in one cycle and powering the load in an-
other cycle [5]. Since many applications do not need electrical iso-
lation, the use of CIs provides a useful alternative enhancement 
technique in DC–DC converters. It can be achieved by tapping or 
simply combining the inductors.

In general, CIs are used to increase the voltage gain as well as 
to reduce the overall size of the inductor [120, 121]. This method 
can achieve high voltage gain and high efficiency by changing 
the turn ratio of CIs and energy recovery from the leakage in-
ductance. In addition, a low off-state voltage can be provided by 
this method for the main switch [119]. High input current ripple 
and  a  large input filter are visible to most of these converters. 

VMC 1
S Co Ro

Do
Lin

Vin

VMC 2 VMC n

Fig. 6: DC–DC boost converter with ‘M’ VMC [110].
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As a result, the application of this method is limited. In addition, 
there is a delay in the reverse-recovery diode due to the leakage 
inductance of the CI. Another drawback is that it is more costly 
compared to other methods [122].

Fig. 9 shows the general configuration of a boost DC–DC 
converter with a CI. While the variant of the CI circuit is shown 
in Fig. 10a. In the boost converter with a CI, the other winding, 
which is connected in series with the voltage source, assists in 
supplying additional voltage to the circuit. The two clamping de-
vices, namely the clamp capacitor (CC) and clamp diode (DC), are 
specifically used to recover the leakage energy. It is also noted 
that the clamping circuit works similarly at any point in the cir-
cuit to achieve its purpose in the leakage energy [123].

The soft-switching technique eliminates voltage spikes in the 
active clamp assist circuit shown in Fig. 10b, which improves over-

all efficiency and reduces voltage stress on the switch [124]. Aside 
from the soft-switching technique, a snubber circuit is capable 
of utilizing the energy due to leakage inductance and increasing 
efficiency [125], as illustrated in Fig. 10c. It is also clear that the 
charge pump (CP) and clamp circuits are capable of increasing 
the voltage gain in the basic boost CI converter while also sup-
pressing the main switch voltage stress, as shown in Fig. 10d [126].

A CI in a circuit with a CP and switch capacitor method is pro-
ven to provide high voltage gain, especially when implemented 
in a distributed generation system [68]. As shown in Fig. 10e, this 
technique employs two capacitors, which are connected in paral-
lel and series to charge and discharge the CI, respectively. On the 
other hand, the CIs with three windings are beneficial when high 
voltage gain is required. Fig. 10f shows the application of this type 
of circuit. The switch conduction time in [127] is reduced using 
this method with high-boost capability, which is beneficial in re-
ducing the conduction losses as well. In addition, energy leakage 
is transferred to the output while the delay time can be adjusted 
to solve the reverse-recovery problem. It can be acquired by 
designing the primary and secondary coupler inductor currents 
such that they will flow in the opposite direction.

An amplifier circuit based on a triple-switch CI integrated with 
a CP is depicted in Fig. 10g. The voltage and current stress in this 
circuit are reduced by channelling the energy between the top 
and lower parts with the two switches. The active clamp method 
is implemented here to improve the efficiency with zero voltage 
switching (ZVS) at the switches [128]. As previously stated, the 
leakage inductor causes high-voltage ringing and surging in most 
magnetic coupling DC–DC converter switches. However, this can 
be improved to reduce the switching losses by adding a resonant 
capacitor in series with any winding of the CI and acting as a res-
onant circuit that further provides zero current switching (ZCS) 
and/or ZVS [45, 129, 130].

2.4  Converters with CI and SC
An SC and a CI operate with a wide voltage-conversion range in 
this type of converter [57, 68]. In addition to that, the leakage in-
ductance of the CI is utilized to suppress the reverse-recovery 
problem of the output diode. The soft-switching technique is also 
applied to eliminate the switching losses during turn-on with ZCS 
operation. In [69], the passive clamp circuit is found to be imple-
mented in other circuits that reduce voltage stress at the switch 
by recycling leakage energy [70, 71, 131].

Seo et al. [72] combined the advantages of SC, CI and VMC. The 
addition of an SC cell reduces stress on the semiconductor com-
ponents and devices while at the same time raising the voltage 
gain. When the circuit is coupled with a VMC, the leakage energy 
from the CI is recirculated to the output terminals with lossless 
passive clamping performance. For high-voltage amplification, CI 
and SC combinations are most widely used. Its common feature is 
that the PWM technique is used to control the voltage-conversion 
ratio with the least-active switches and magnetic components. 
For instance, in [52, 129, 132], only one CI controlled by one active 
switch is used to obtain a high voltage gain. Fig. 11 shows the DC–
DC converter circuit using a combination of CI and SC.

2.5  Converters with SC and SI
In the SI-based converters proposed in [71, 77, 78], the switches 
are operated in such a way. Hence, the inductors are connected 
in parallel and in series during charge and discharge operations. 
However, the voltage stress on the power switch of this type of 
converter is relatively higher [65].

Table 2: Comparison of various VMC cells

VMC type Voltage-gain  
ratio (Vout/Vin) 

Passive 
component 

Semiconductors 

Fig. 7(A) 1+D
1−D

2 C 2 D

Fig. 7(B) 1+D
1−D

2 C 2 D

Fig. 7(C) 1+D
1−D

2 C  
1 L

2 D

Fig. 7(D) 1+D
1−D

1 C  2 D  
1 S

Fig. 7(E) 2+D
1−D

2 L 2 D

Fig. 7(F) 1
1−D

1 C  
1 L

2 D

*C, capacitor; L, inductor; D, diode; S, switch.
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Fig. 8: Typical circuit of step-up DC–DC converter with voltage doubler 
[54].
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It is found that the SI and SC networks can provide an almost 
similar high voltage gain, but unfortunately the conduction will 
be slightly higher [77]. On top of that, if the negative terminal 
of the input and output sides is not connected properly, it can 
cause the earth leakage current to falsely flow in the system that 
is connected to the network if the connection between the input 
and output terminal is not properly made. The size and weight of 
these converters are relatively large [71, 78]. Fig. 12 shows a typ-
ical circuit of an SI- and SC-based DC–DC converter.

2.6  Cascading technique
The multistage converter connection is the simplest approach to 
increasing the voltage gain. The schematic of a cascaded DC–DC 

converter is shown in Fig. 13 [134]. As can be seen from the sche-
matic, the family of this converter is built based on cascading 
several types of boost-type converter (quadratic type) or other 
high-gain converter (hybrid type).

2.6.1 Quadratic boost
As depicted in Fig. 13a, this converter is built by cascading two 
boost converters [135]. With this type of circuit configuration, it 
is found that the voltage stress at the first boost is lower com-
pared to the preceding boost. Thus, the first boost converter is 
capable of operating at a high frequency, which is suitable for 
low-power-density applications. On the other hand, the second 
boost circuit operates at a relatively lower switching frequency 
and further reduces the switching losses. A  multistage version 
of this converter with multistage boost converters is presented 
in [136]. To reduce the complexity of the circuit, the multistage 
boost converter switches can be integrated into a single switch in 
a structure called the quadratic boost converter [137].

The configuration of the quadratic boost converter is shown 
in Fig. 13b. Unlike the cascaded boost converter, the operation of 
this quadratic boost converter must be controlled with two PWM 
signals, which are generated in a more complex way. However, 
this problem is mitigated by the multistage version, which only 
requires one switch to control several boost modules [138]. The 
converter in Fig. 13c has a high voltage gain and is based on a 
modified three-level DC–DC converter [139]. Fig. 13d–g shows sev-
eral other structures that belong to the quadratic boost converter 
families. One of the advantages of the quadratic boost converter is 
its capability to allow its duty cycle to have very narrow changes 
while giving significant changes in the voltage gain. Thus, it shows 
that the design procedures are simpler yet give high performance 
on the converter itself [140]. This feature is almost unavailable in 
conventional PWM boost converters. Lastly, the quadratic boost 
converter can operate in the absence of the complex magnetic 
design in the circuits.

Another quadratic boost converter is shown in Fig. 13d 
[141], which performs admirably in terms of reducing switch 
voltage stress. Two quadratic boost converters are shown in 
Fig. 13e and f, with the only difference being the connection 
of the buffer capacitors [142]. Several other modifications to 
the conventional quadratic boost converter scheme have been 
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proposed in other literature, such as in [80], which improves 
the efficiency, and in [143], which reduces the switching volt-
age spikes.

2.6.2 Hybrid cascaded
This section describes two types of hybrid cascaded converters: 
the quadratic boost converter cascaded with the multiplier mod-
ule shown in Fig. 14a and the cascaded DC–DC converter shown 
in Fig. 14d. For the first type, as discussed in [117] and [144], the 
DC–DC converters are cascaded with a quadratic multiplier in the 
first stage, while the second stage at the output consists of a CI 
module. Other topologies in [51, 145] and [146] combine the CI 
and VMCs, which gives high gain for the overall circuit. In [118, 
147, 148], the quadratic boost converter is cascaded with various 
types of VMC, again for high-gain application. All these converters 
are depicted in Fig. 14b and c, respectively.

The second type of converter, which is shown again in Fig. 14d, 
clearly shows two converters cascaded. Several papers on this 
topic have been published, including [149], which summarized a 
method for determining several types of DC–DC converters that 
use ZVS and PWM techniques. In other literature, the quadratic 
multiplier converter is cascaded with the Zeta converter, which 
is reported in [148]. The circuit in Fig. 14e proposed by [101] 
 combines the three-level converter discussed earlier with an 
interleaved multistage hybrid connection. Another converter, as 
illustrated in Fig. 14f, has developed multistage boost cascading 
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with a buck-boost converter [102]. It can be summarized that the 
hybrid cascading method can be implemented throughout sev-
eral topologies to achieve the main objective, which is high volt-
age gain. However, the drawback of this topology is the increasing 
number of total components, which can further increase the 
losses and costs.

2.7  VL technique
As its name implies, this converter, which is used to lift up or in-
crease the output-voltage value of a DC–DC converter, is known 
as the VL technique. The energy in this capacitor will be used to 
lift a voltage at any point in the circuit that is required, which is 
normally the output voltage [150–152]. Using the same method, 
higher voltage gain can be achieved by increasing the number of 
charged capacitors that are connected in such a way that they 

result in a voltage that is twice or greater than the value obtained 
using just one charged capacitor. Fig. 15 illustrates the general-
ized schematic circuit of a DC–DC boost converter with the VL 
technique. The variation of the VL topology can be obtained in 
this figure by inserting different types of circuit at the VL cell. 
Several existing VL topologies have been proposed as depicted in 
Fig. 16. In Table 3, a comparison of the number of components 
and corresponding voltage gain for several VL cells is shown.

In terms of performance, the VL technique is one of the best 
techniques to increase the voltage on the DC–DC converter. 
Besides having high efficiency, the VL technique is also capable of 
operating over a wide power range, from low-power applications 
to high-power applications. The energy-storage elements, namely 
the inductor and capacitor, play an important role in the perform-
ance of the VL technique. It is worth mentioning that high effi-
ciency, high power density, low cost, simple structure and small 
output-voltage ripple, especially for high voltage values, are the 
main features of this technique. Many researchers have devel-
oped high-step-up non-isolated DC–DC converters for renewable-
energy applications using the VL technique [104–109].

3  Discussion and comparison for very-
high-gain DC–DC converters with low 
power application
The selection of the appropriate converter can be considered 
based on input and output power requirements needed by the 
system. Based on Table 1, there are 20 modified topologies of 
high-gain DC–DC converters. Then, they are selected into seven 

Table 3: Comparison of various VL cells

VL cell Number of 
semiconductors 

Number 
of passive 
components 

Voltage gain 

Basic SL cell 3 D 2 L 1+D
1−D

Elementary-lift cell 1 D 1 L  
1 C

2−D
1−D

Self-lift cell 4 D 2 L  
1 C

2
1−D

Double self-lift cell 4 D  
1 S

2 L  
2 C

3−D
1−D

Table 4: Categorization of each topology

Category Number Topology 

VMC 1 Basic VMC [110]

 2 Interleaved converter with voltage-multiplier module [43]

 3 A high-step-up converter with a voltage-multiplier module [46]

 4 Improved multiplier cell for single-phase high-step-up converter [44]

 5 Built-in transformer voltage-multiplier cell for single-switch high-step-up converters [45]

Voltage doubler 6 Interleaved converter with voltage-doubler cell [153]

 7 Combination of CI and voltage-doubler circuits [57]

 8 Single-phase active clamp CI-based converter with extended voltage-doubler cell [52]

CI-based 9 Interleaved high-step-up converter with CI and blocking capacitor [111]

 10 Basic CI for high-gain boost converter [154]

 11 CI and switched clamp capacitor techniques [155]

 12 CI with soft-switching techniques [112]

 13 Multi-CI and VMC [116]

CI- and SC-based 14 Basic SI and SC [80]

 15 CI and switched clamp capacitor techniques [155]

 16 CI and resonant SC [156]

 17 Integrating CI and diode–capacitor techniques [51]

SI- and SC-based 18 Modular, extendable and high-gain DC–DC converter with SI and SC [157]

 19 SI- and SC-based high-gain hybrid DC–DC converter [158]

 20 Modified active SI and SC cells [80]

 21 Active SI and passive SC networks [159]

Cascaded techniques 22 Cascaded boost converters with sliding-mode control [160]

 23 Cascaded high-step-up DC–DC converter with single switch [117]

 24 Conventional cascaded boost converter design for solar energy systems [161]

 25 Cascade synchronous boost DC–DC converter with zero-voltage switching [162]

VL techniques 26 Coupled inductor and VL technique [152]

 27 Combination of VL, clamp mode, CI and VMC [105]
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topologies of high-voltage-gain DC–DC converters with a conver-
sion ratio of >15. These topologies include VMCs, voltage doub-
lers, CI, CI and switch capacitor, SI and SC, cascaded converter 
and VL techniques. Each technique and topology of the selected 
very-high-gain DC–DC converter has its own characteristics, ad-
vantages and disadvantages.

Further studies have been carried out on the seven topologies. 
There are 27 references, which were elaborated to support an 
in-depth discussion about the seven topologies, related to their 
modification and development. Table 4 shows the categorization 
of these topologies with references that justify them. Table 5 pre-
sents the comparison of each topology based on the number of 
components, voltage stress on the switch, maximum efficiency, 
voltage gain, tested frequency and tested load power.

The VMC-based DC–DC converter topology has the advantages 
of a simple structure, being modular and having low-voltage 
stress on the switch. However, on the other hand, it also has 
drawbacks such as limited voltage gain (based on the number of 
components), a greater number of components and poor voltage 
regulation. The voltage-doubler-based DC–DC converter topology 
is a variation of the VMC circuit. It has a voltage multiplier of a 
factor of 2. However, the voltage-doubler circuit for DC–DC con-
verters has a simpler topology, fewer components and relatively 
higher efficiency than VMC. Also, compared to VMC, the ratio of 
voltage gain that can be made using a voltage doubler is limited.

The construction of the CI-based DC–DC converter has 
varied, but it is classified as a converter topology, which is 

quite complex. It is because of the need for complicated CI 
manufacturing. While the efficiency level is the highest com-
pared to other converter topologies, the power that can be 
handled is also relatively higher than with other converters. 
The CI- and SC-based DC–DC converter topology has a rela-
tively higher construction and level of complexity. It is because 
this type of converter requires a higher number of switches 
and other components. The advantage of the converter with CI 
and SC topology is that it has high efficiency while the  voltage 
stress is low. The SI- and SC-based DC–DC converter topology 
has the advantage that the voltage stress on the semicon-
ductor components is low, and the efficiency is high. On the 
other hand, the SI- and SC-based converter topologies require 
a relatively large number of switches, so that the system be-
comes more complex.

The cascade-based DC–DC converter topology has various 
variations. The advantage of this topology is its simple and modu-
lar structure, making it easy to apply. However, this causes an 
increase in the number of needed components along with the 
higher voltage-gain requirements. In addition, the efficiency of 
this converter will decrease as more active and passive com-
ponents are used. The DC–DC converter with the VL technique 
topology has advantages from various sides, namely simple 
converter structure, fewer components compared with other 
converter topologies and higher efficiency. The value of the volt-
age increases of the VL-based DC–DC converter is also high and 
the voltage stress is low.

Table 5: Comparison of the various topologies based on each reference

Topology  
number 

Number of  
components

Voltage stress  
on switch 

Maximum  
efficiency (%) 

Voltage gain (×) Tested  
frequency (kHz) 

Tested power 
(W) 

L C S D Total 

1 2 3 1 3 9 N/A 95.0 16.6 50 100

2 4 5 2 5 16 Vo/2(n + 1) 97.1 9.5 40 400

3 4 4 2 4 14 Vo/2(n + 1) 96.8 9.5 40 400

4 2 5 2 4 13 Vout/2 96.5 15.83 100 500

5 3 4 1 3 11 N/A 96.6 10.5 100 500

6  2 3 2 4 11 Vout/2 N/A 13.33 100 133

7  2 2 2 4 10 Vout/2 92.8 8.33 25 250

8 2 3 2 2 9 Vo/(N + 1) 96.9 9.5 100 500

9 4 4 4 4 16 N/A 96.0 7.9 100 1000

10  2 2 1 2 7 Vin*2 95.0 12.9 N/A 300

11 3 5 1 6 15 1/7*Vo 96.2 16.7 50 150

12 5 4 2 2 13 Vin/1 – D 96.4 15.0 100 200

13 6 5 2 6 19 Vo/2(N + 1) 97.2 18.2 50 1000

14 2 5 2 6 15 1/2(1 + N)*Vo 97.6 10.8 100 1000

15 2 5 1 6 14 1/7*Vo 96.2 16.7 50 150

16 1 5 2 4 12 Vin/1 – D 93.6 8.3 50 200

17 2 4 1 5 12 Vout/2 + N 94.0 21.1 40 500

18 4 5 2 7 18 Vout – Vin/2 94.0 12.7 (D = 0.67) 50 250

19 2 2 2 7 13 0.45*Vout 94.0 12.7 (D = 0.67) 50 120

20 4 3 4 7 18 M + 4/8 & M/4 95.0 30 50 200

21 3 3 2 2 10 M/1 + 3D 95.5 13 50 200

22 2 2 2 2 8 N/A 95.0 21 50 1000

23 2 3 1 4 10 Vout/1 + nD 93.3 20 40 280

24 2 2 1 3 8 N/A 92.0 11.8 20 300

25 3 2 2 3 10 N/A 93.0 8.3 50 200

26 3 4 1 3 11 1/1 – D*Vin 93.9 8.3 50 35

27 4 6 1 7 18 1/1 – D2*Vin 96.8 15.4 50 300
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The final comparison of each converter has been discussed. 
There are six parameters as the focus of comparison, namely 
number of components (NOC), the voltage stress on the switch 
(VSS), power-handling capability, complexity, maximum efficiency 
and voltage gain. It should be underlined that the NOC, VSS and 
complexity parameters have inverse or negative values. That 
means the larger the position, the smaller the value appears on 
the graph, so the best converter performance assessment can 
be seen by measuring the total area of the rating parameter val-
ues of each converter. The overall comparison of the converter 
parameters discussed is shown in Fig. 17.

4  Conclusion
In this paper, the performance of several DC–DC converter top-
ologies for PV generation system applications has been studied. 
The main challenges of DC–DC converter topologies for low-
power solar photovoltaic applications are discussed. Twenty 
HGLP DC–DC converter topologies are reviewed and seven pro-
spective topologies are selected. The selected converters have 
voltage gain of >15 times. There are 27 references, which were 
elaborated to support an in-depth discussion about the seven 
topologies, related to their modification and development. The 
comparison among the seven converters is highlighted based on 
the NOC, hardware complexity, maximum coverage efficiency 
and voltage stress on the switch. Finally, the salient features 
of the converters are also summarized. The comparison results 
from this paper are expected to be a reference for researchers 
or practitioners to select and integrate the right converter top-
ology for the needs of solar PV-sourced power-conversion appli-
cations. In the future, it will also be easier for policymakers to 

think about the topologies of converters based on their needs 
and circumstances.
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