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 Signal complexity in lung sounds is assumed to be able to differentiate and 

classify characteristic lung sound between normal and abnormal in most 

cases. Previous research has employed a variety of modification approaches 

to obtain lung sound features. In contrast to earlier research, time-domain 

features were used to extract features in lung sound classification. 

Electromyogram (EMG) signal analysis frequently employs this time-domain 

characteristic. Time-domain features are MAV, SSI, Var, RMS, LOG, WL, 

AAC, DASDV, and AFB. The benefit of this method is that it allows for 

direct feature extraction without the requirement for transformation. Several 

classifiers were used to examine five different types of lung sound data. The 

highest accuracy was 93.9 percent, obtained Using the decision tree with 9 

types of time-domain features. The proposed method could extract features 

from lung sounds as an alternative. 
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1. INTRODUCTION  

Listening to lung sounds can determine the status of the lungs and respiratory tract. They have a distinct 

and distinctive pattern influenced by the respiratory process [1], [2]. A diagnostic instrument available to listen 

to abnormal lung sounds is the stethoscope. Advance technology nowadays makes it a possibility to convert 

lung sound into digital. Those data are analyzing that should be further explored [3]. During the inspiration and 

expiration phases, the airflow in the lungs creates the lung noises heard above the chest wall. Because these 

sounds are non-stationary and non-linear signals, physicians have difficulty detecting any abnormalities. Each 

lung sound is related to each lung disorder. The heart usually sounds have a dominant frequency of less than 

150 Hz, whereas lung sounds have a dominating frequency of between 150 and 2000 Hz. Filtering the heart 

sounds from the lung sounds is easier because of the frequency difference [4]. 

Several scientists have worked to create a variety of algorithms for analyzing lung sounds automatically. 

Some research used CNN as a classifier [5]–[8]. Feature extraction has been included in the architecture layer 

of CNN. Therefore, architecture of CNN is essential to creating a good classifier. Another research classifies 

lung sound with machine learning [3], [9]–[15]. The result of the model classifier also depends on feature extra 

to obtain good accuracy. Therefore, the selection of feature extraction becomes essential to producing a good 

classifier. This study proposed the time-domain method as feature extraction [16]. The time-domain method 

produces lower computational costs and provides more information than the other domains [17]. In some 

applications, the time-domain method works well as feature extraction [18]–[25]. 

Several researchers developed a time-domain method for feature extraction in the classification of lung 

sounds. To categorize crackle and squeak lung sounds, Hadjileontiadis employed a gliding box and lacunarity 

[26]. Rizal et al. classified four categories of normal lung sounds using the LPC coefficient: tracheal, bronchial, 

bronchovesicular, and vesicular. The highest level of precision was 98.3 percent. The AR coefficient was used 

as a feature of three classes of lung sound in another article, and the accuracy was 66-88 percent [27]. Another 

method that directly measures the length of the signal in lung sounds is the measurement of crackle parameters, 

including initial deflection width (IDW) and largest deflection width (LDW). This method is used to identify 
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crackles in lung sounds [28]. Electromyogram (EMG) analysis makes extensive use of time-domain 

characteristics. Direct measurements of EMG signal characteristics are frequently performed because EMG is 

examined directly from the change in signal shape rather than from frequency. This EMG signal's time-domain 

characteristic has never been utilized in lung sound signals. 

The lung sounds were categorized using a time-domain characteristic for feature extraction in this study. 

The time-domain characteristics include Mean Absolute Value (MAV), Simple Square Integral (SSI), Variance 

(Var), Root Mean Square (RMS), Log Detector (LOG), Waveform Length (WL), Average Amplitude Change 

(AAC), Difference Absolute Standard Deviation Value (DASDV), and Amplitude of the First Burst (AFB) 

[16]. The findings of this study are expected to lead to suggestions for time-domain feature extraction 

algorithms that offer excellent accuracy in lung sound analysis and find which one time-domain feature impacts 

creating a good classifier. 

 

2. MATERIAL AND METHODS  

This section explains all proposed methods In this study. That elaborates general process from lung sound 

dataset until produce classification result. The system classifies data into five classification classes: Bronchial, 

Asthma, Crackle, Friction Rub, and Stridor. The next chapter presents the lung sound dataset, feature 

extraction, and classification used in this study. 

 

2.1. Proposed Method 

Fig. 1 is a picture of the method proposed in this study. There are 99 datasets of lung sound with 5 

categories. Those data are preprocessed with amplitude normalization and the DC component elimination [10]. 

The next step, feature extraction, is done on data with the time domain feature. The following time-domain 

features were used in this study: Mean Absolute Value (MAV), Simple Square Integral (SSI), Variance (Var), 

Root Mean Square (RMS), Log Detector (LOG), Waveform Length (WL), Average Amplitude Change (AAC), 

Difference Absolute Standard Deviation Value (DASDV), and Amplitude of the First Burst (AFB) [16]. 

Several classifiers are used with N-Fold cross-validation for the validation method. For the training model of 

the classifier, Classification Learner is used in MATLAB. 

 

 
Fig. 1.  Proposed Method 

 

2.2. Lung Sound Datasets 

Table 1 shows the lung sounds data used in this study, which includes 99 datasets divided into five 

categories: asthma, normal bronchial, crackle, friction rub, and stridor. Sounds are produced during inspiration 

and expiration in normal respiratory respiration, with the inspiration phase being louder [29]. The normal 

breathing sound frequency range is usually between 100 Hz and 1000 Hz. The frequency range for a wheezing 

sound is between 250 and 800 Hz [30][9]. The wheezing sound is created by airway restriction caused by 

bronchitis or chronic obstructive lung disease. Asthma is one example of a wheezing sound [31][32]. Crackles 

are non-musical, discontinuous respiratory sounds that occur more frequently during the inspiratory phase and 

are caused by the airway's opening and secretion [29][33]. Crackles are non-musical, discontinuous respiratory 

sounds that occur more frequently during the inspiratory phase and are caused by the airway's opening and 

secretion within the airway [3][11]. Friction rubs are non-musical, explosive, and usually biphasic sounds that 

are usually heard over the lung's basal parts and are related to pleural inflammation or malignancies [31]. 

Stridor is a type of loud wheezing that occurs when the upper respiratory airways (pharynx and larynx) and the 

upper part of the trachea become partially blocked owing to inflammation in the upper respiratory tract. It 

frequently happens during both inspiration and expiration. Due to the narrow supraglottic area, stridor is more 

common in newborns and babies, with a frequency range of up to 1000 Hz for the stridor components [29]. 

Detail number of each data is presented in Table 1. 

 

2.3. Feature Extraction 

Because time-domain features do not require any modifications and are calculated directly from raw time 

series, it is typically quick and easy to create [12]. Both medical and technical research and practice have 
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extensively used time-domain properties. The signal's non-stationary attribute, which changes in statistical 

qualities with time, is a crucial drawback of features in this group. Time-domain features have become 

increasingly popular in medical and engineering research and practice. The signal's non-stationary quality, 

which changes statistical attributes with time, is a crucial drawback of features in this group. Furthermore, 

because their calculation relies on signal amplitude values, most of the interference acquired while recording 

becomes a disadvantage, especially for characteristics extracted from energy properties [12]. However, features 

in this group have been widely used due to their classification effectiveness in low-noise situations and lower 

computing complexity than features in the frequency and time-scale domains [12]. 

 

Table 1. Lung Sounds Data. 
Data Classes Amount of Data Percentage 

Bronchial 22 22.22% 

Asthma 18 21.21% 

Crackle 21 18.18% 

Friction Rub 18 18.18% 

Stridor 20 20.20% 

 

The following time-domain features were used in this study: Mean Absolute Value (MAV), Simple 

Square Integral (SSI), Variance (Var), Root Mean Square (RMS), Log Detector (LOG), Waveform Length 

(WL), Average Amplitude Change (AAC), Difference Absolute Standard Deviation Value (DASDV), and 

Amplitude of the First Burst (AFB) [16]. The detail of each feature is resumed in Table 2. 

 

Table 2. Features used in this paper 
No Name Equation Definition 

1. 
Mean Absolute Value 

(MAV) 
𝑀𝐴𝑉 =

1

𝑁
∑ |𝑋𝑖|

𝑁

𝑖=1
 

In a segment, the absolute value of the signal 

amplitude is averaged [16]. 

2. 
Simple Square Integral 

(SSI) 
𝑆𝑆𝐼 = ∑ 𝑥𝑖

2𝑁
𝑖=1  

A sum of the signal amplitude's square values 

[16]. 

3. Variance (VAR) 𝑉𝐴𝑅 =
1

𝑁−1
 ∑ 𝑥𝑖

2𝑁
𝑖=1  

The squared deviations from the mean's average 

[16]. 

4. Root Mean Square (RMS) 𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1  

Constant force and non-fatiguing contraction are 

related to an amplitude-modulated Gaussian 

random process [16]. 

5. Waveform Length (WL) 𝑊𝐿 = ∑ |𝑥𝑖+1 − 𝑥𝑖|𝑁−1
𝑖=1  

A measure of the signal's complexity. It is 

defined as the total length of the signal's 

waveform over the time segment [16]. 

6. 
Average Amplitude 

Change (AAC) 
𝐴𝐶𝐶 =

1

𝑁
∑ |𝑥𝑖+1 −  𝑥𝑖|𝑁−1

𝑖=1  
Almost identical to the WL feature, with the 

exception that the wavelength is averaged [16].  

7. 

Difference Absolute 

Standard Deviation Value 

(DASDV) 

𝐷𝐴𝑆𝐷𝑉 =

 √
1

𝑁−1
∑ {𝑥𝑖+1 − 𝑥𝑖}2𝑁−1

𝑖=1  
The wavelength's standard deviation value [16]. 

8. 
The amplitude of the First 

Burst (AFB) 
𝐴𝐹𝐵 = ∑ |𝑥𝑖|2

𝑁

𝑖=0
 

The initial maximum point is retrieved from the 

time function as a result [16]. 

9. Log detector (LOG) 𝐿𝑂𝐺 = 𝑒
1
𝑁

∑ 𝑙𝑜𝑔(|𝑥𝑖|)𝑁
𝑖=1  

The signal was changed based on the logarithm 

[16]. 

 

2.4. Classifier 

This research used several classifiers available in Classification Learner in MATLAB. The MATLAB 

Classification Learner toolbox can be used to train models that use supervised machine learning methods to 

categorize data [34]. A brief description of each classifier is presented in Table 3. This study used N-fold cross-

validation (N-fold CV) with N = 3 to avoid overfitting. 3-fold CV means the lung sound data is split into three 

datasets, each used as test data and testing data in turn [35]. 

 

3. RESULTS AND DISCUSSION  

Fig. 2 and Fig. 3 show the boxplot of each feature for each lung sound class. Generally, the feature values 

from normal bronchial data and asthma have the highest and tend not to overlap with the other three classes. 

Meanwhile, crackle, friction rub, and stridor have relatively lower values and overlap each other. Feature values 

also range in the thousands (AFB, WL, SSI), in the tens (MAV, VAR, AAC), and in units (MS, DASDV). 

Meanwhile, the LOG value is very small, as shown in Fig. 3. The LOG value is very small because the signal 
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is preprocessed, reducing the signal amplitude from -1 to 1. The values between overlapping features indicate 

that 100% accuracy will not be achieved, considering the features produced and not too different visually. The 

effect on accuracy will be seen in the accuracy test, especially for LOG, which has a very small value. 

 

Table 3. Explanation of each classifier [36][37]. 
Classifier Types Classification Description from Classification Learner Toolbox in MATLAB. 

Decision Trees 

Fine tree 

For a very flexible response function, there are many small leaves with hyperparameters are the 

minimum leaf size is 4, the maximum number of splitting is 100, and optimization is based on 

creating a split criterion based on Gini's diversity index. 

Medium tree 

For a less flexible response function, medium-sized leaves are provided with a hyperparameter are 

the minimum leaf size is 12, the maximum number of splitting is 20, and optimization is based on 

Gini's diversity index. 

Coarse tree 

For a coarse response function, a few large leaves with a hyperparameter with are minimum leaf 

size of 36, the maximum number of splits is four, and optimization based on Gini's diversity index 

is used. 

Nearest Neighbour Classifiers 

Fine KNN With the number of neighbours set to 1, it creates highly precise distinctions between classes. 

Medium KNN The number of neighbours set to 10 makes fewer distinctions than a Fine KNN. 

Cosine KNN The number of neighbours is set to 10, and the cosine distance measure is used. 

Cubic KNN The number of neighbours is set to 10, and the distance metric is cubic. 

Weighted KNN The number of neighbours is set to 10, and the distance weighting is used. 

Ensemble Classifiers 

Bagged trees 
It is a fine decision tree ensemble that's been bootstrapped. When dealing with huge datasets, it 

might be slow and memory intensive. 

Subspace 

discriminant 

Many predictors can be used, it is quick to fit and forecast, and it uses little memory, but the 

accuracy varies depending on the data. Using the Random Subspace technique, the model produces 

an ensemble of Discriminant classifiers. 

Subspace KNN 
Suitable for a wide range of predictions. Using the Random Subspace technique, the model 

produces an ensemble of nearest-neighbour classifiers. 

 
  

(a) (b) 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 

Fig. 2.  (a) MAV (b) SSI (c) VAR (d) RMS (e)WL (f) AAC (g) DASDV (h) AFB 

 

 
Fig. 3.  Boxplot of LOG 

 

Table 4 shows the accuracy obtained using several classifiers and nine feature extraction, and five classes. 

As seen in Table 4, the highest accuracy for each classifier is 93.9% for fine tree and medium tree. Eight 

features mean that LOG is not used as a feature, while nine features mean that LOG is used as a feature. These 

results indicate that even though the LOG value is relatively small, it significantly contributes to accuracy. 

Table 5 shows a comparison of several similar studies. In previous research, gliding-box and Lacunarity 

were used to classify crackle and squawk; the accuracy is up to 100% [26]. Meanwhile, the highest accuracy 

of 98.33% was obtained using LPC in four normal lung sound classes [38]. The proposed method produces a 

promising accuracy considering that the accuracy is up to 93.9% for the five data classes. In general, the 

advantage of the proposed method is that feature calculations are carried out directly on the signal without the 

need for a transformation process. On the other hand, the proposed method is susceptible to noise, signal 

truncation, normalization, and processes that affect signal amplitude. The presence of noise will change several 

characteristics, such as WL, MAV, and others. Combination with other transformation methods is interesting 

to be explored in further research. This time-domain method can also analyze lung sounds for the covid-19 

patient [40]. 
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Table 4. Accuracy using Classification Learner in MATLAB. 
Classifiers Classifier Types Accuracy using 8 features Accuracy using 9 features  

Decision Trees 

Fine tree 76.8 93.9% 

Medium tree 76.8 93.9% 

Coarse tree 65.7 79.8% 

K-Nearest Neighbour 

Fine KNN 79.8 79.8% 

Medium KNN 67.7 64.6% 

Cosine KNN 63.6 66.7% 

Cubic KNN 66.7 66.7% 

Weighted KNN 78.8 78.8% 

Ensemble Classifiers 

Bagged trees 78.8 92.9% 

Subspace discriminant 58.6 62.6% 

Subspace KNN 77.8 77.8% 

 

Table 5. Comparison with previous research using time-domain signal analysis 

Ref Data set Method Feature Classifier 
Accuracy 

(%) 

[38] 
4 normal class of lung 

sound 
LPC LPC coefficient BP-NN 98.33 

[26] 

 

136 fine crackles, 94 

coarse crackles, 133 

squawk 

Gliding box Lacunarity 
Discriminant 

analysis 
99-100 

[27] 

18 COPD, 20 normal, 

19 restrictive 

pulmonary diseases 

AR 

modelling 

AR coefficient of each 

segment 

Multi-nominal, 

decision tree, parzen 

window 

67-88 

[28] 

15 pulmonary 

fibrosis, 10 chronic 

bronchitis 

Crackle 

parameter 

initial deflection width 

(IDW), largest 

deflection width 

(LDW) 

Fuzzy clustering 

N.A 

Se=98.34 

Sp=97.88% 

[39] 
56 normal, 56 

patients 
MFCC HMM model of MFCC Maximum likelihood 83 

Proposed 

method 

5 classes of lung 

sound 

Time-

domain 

feature 

MAV, SSI, VAR, 

RMS, LOG, WL, 

AAC, DASDV, AFB 

Decision tree 93.9% 

 

4. CONCLUSION 

This research described the classification of lung sounds based on the time domain. Five classes: asthma, 

bronchial, crackle, friction rub, and stridor data were used as the input data. Then, using Mean Absolute Value 

(MAV), Simple Square Integral (SSI), Variance (VAR), Root Mean Square (RMS), Log Detector (LOG), 

Waveform Length (WL), Average Amplitude Change (AAC), Difference Absolute Standard Deviation Value 

(DASDV), and Amplitude of the First Burst (AFB)., datasets extracted features based on time-domain 

classification. Then, the data is classified using the Classification Learner toolbox in MATLAB. The highest 

accuracy obtained is 93.9%, with the fine tree, medium tree, and bagged trees as classifiers. The proposed 

method is simple and is carried out directly on the signal without a transformation process. It is hoped that this 

method can improve its performance by combining it with other signal decomposition or transformation 

processes. 
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