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ON A CLASS OF A>-MODULES
I. E. Wijayanti,''2 M. Ardiyansyah,’ and P. W. Prasetyo* UDC 512.5

In [Int. Electron. J. Algebra, 15, 173 (2014)], Smith introduced maps between the lattice of ideals of
a commutative ring and the lattice of submodules of an R-module M, i.e., g and A mappings. The defi-
nitions of the maps were motivated by the definition of multiplication modules. Moreover, some sufficient
conditions for the maps to be lattice homomorphisms were studied. We define a class of A-modules and
indicate the properties of this class. We also present sufficient conditions for the module and the ring
under which the class A is a hereditary pretorsion class.

1. Introduction

A ring R is @derstood as any commutative ring with unit and a module M is a left R-module, unless
otherwise stated. An R-module M is called a multiplication module if, for any submodule N in M, there is
anideal I in R such that N = JM. For further explanation of multiplication modulesfpver commutative rings,
we refer the reader to [4, 8, 13]. Moreover, M is a multiplication module if and only if, for any submodule N
of M we have N = Anng(M/N)M (see [8]).

An R-module M is calledj prime module if, for any nonzero submodule K" in M, Anng(K) = Annp(M).
A proper sufmodule V' in A/ is called a prime submodule of M if M /N is a prime module (see [14]).

Let K" and N be submodules of M. The residue of K in N is denoted by

[N:r K|]={re R|rK C N}.
For a special case where N = 0, we obtain the annihilator of K as follows: [0 :p K] = Anng(K).
Let £(M) be the lattice of submodules of the R-module M, where for any submodules N and K in M,
the “join” and “meet” are defined as

NVvK=N+K and NAK=NnNK,

and N < K means that N C K. In particular, for M = R, we have the lattice of ideals in R, which is denoted
by L£(R). The definitions of ;¢ and A mappings introduced by Smith in [12] are as follows:

p: L(M) = L(R), N~ Anng(M/N), (1.1)

A: L(R) = L(M), I+ IM. (1.2)
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Mappings (1.1) and (1.2) are motivated by the relationship between submodules and ideals in a multiplication
module. Thus, we define a class of modules as follows:

A={M|(BNC)M =BM NCM ¥B,C (finitely generated ideals of R)}.

By virtue of Lemma 2.1 of [12], M € A if and only if M is a A-module. Note that A is not necessary
a hereditary class.

If R is aring, then an R-module M is called a chain module if, for any submodules N and L in M, either
N C Lor L € N. Aring R is called a chain ring if the R-module R is a chain module. In Proposition 2.4
of [12], Smith proved the following sufficient condition for a ring under which its modules are in A:

Proposition 1.1. Ifa ring R is a chain ring, then every R-module is in .

Moreover, the class A is closed under direct summands and direct sums (see Lemma 2.5 of [12]). Theorem 2.3
in [12] gives a necessary and sufficient condition for a module to be in A\. We now recall this result.

Proposition 1.2. The following assertions are equivalent:
(a) R is Priifer;

(b) every R-moduleisin \;

(¢) the class X is closed under the homomorphic image.

The sufficient conditions in Proposition 2.4 and Theorem 2.3 from [12] motivated us to study more general
situations from category R-modules R-Mod to subcategory o[M], which consists of M -subgenerated modules.
In the present paper, we show that, under certain additional conditions, if the subgenerator M is a Dedekind
module or a chain module, then the class A is equal to the class o[M].

In the next section, we discuss Dedekind modules and the relationship with the class A. In Section 3, it is
shown that Theorem 2.3 in [12] can be generalized.

2. Dedekind Modules and A-Modules

For the extensive study of Dedekind modules, we refer the reader to Alkan, et al. [3] and Sarac, et al. [11].
For any commutative ring R with identity and a set S consisting of nonzero divisor elements of R, the frac-
tion ring Rg is formed in a natural way. By analyzing the notion of fractional ideals introduced by Larsen and
McCarthy [9], we conclude that a fractional ideal I of R is invertible if there exists a fractional ideal I~! of R such
that /'] = R. In the case where I~! exists, we have /! = [R :p, I]. A domain R is called a Priifer domain
provided that each finitely generated ideal of R is invertible. Furthermore, an integral domain R is a Dedekind
domain iff every nonzero ideal of R is invertible.

‘We now generalize the notion of invertibility of fractional ideals to the case of submodules. The notion of
invertible submodules have been discussed in numerous papers (see, e.g., [3, 11]).

For any R-module M, consider

Tr={tes

forsome m € M, tm = 0 implies that m = 0}.
We can see that 7" is a multiplicatively closed subset of S. For any submodule N of M, we define

N'=[M :g, NJ.
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Folloing the concept of invertible ideal, we say that a submodule V' of M is invertible if N'N = M. Then
M is called a Dedekind module if every nonzero submodule of M is invertible and M is called a Priifer module
provided that every finitely generated nonzero submodule is invertible. As examples of Dedekind modules, we can
mention the Z-module @@ and Zj, for prime p.

An R-module M is called a multiplication module provided that, for each submodule N of M, there exist
anideal / of R suchthat N = IM, ie., I =[N :p M|. If P is amaximal ideal of R, then we define

Tp(M) = {m- € M| (1—p)m=0 forsome p € P}. (2.1)

Further, M is P-cyclic if there exist p € P and m € M such that (1 — p)M C Rm. In 2007, El-Bast showed
that M is a multiplication module if and only if, for every maximal ideal P of R, either M = Tp(M) or M is
P-cyclic.

We now establish the property of A-module dealing with the invertibility property of submodules of multipli-
cation modules. To do this, we recall an imponanl’roperty presented in [1], namely, for any finitely generated
faithful multiplication R-module and any invertible submodule N of M, [N :p M] is an invertible ideal of R.

Proposition 2.1. Let M be an R-module. Then the following assertions are true:

1. If I is amultiplication ideal of a ring R and M is a multiplication R-module, then \(I) is a multiplica-
tion R-module.

2. Every invertible submodule N of a faithful multiplication finitely generated module M is a A-module.

3. If M is a faithful multiplication module over an integral domain R, then M is a A\-module and, for any
ideal I of R, I™1 = (A(I))~L.

Proof. 1. Let P be a maximal ideal of 1. Consider the set Tp givenby (2.1). It Tp(M )=M or Tp(I)=1,
then Tp(IM) = IM. Hence, A(]) is a multiplication module. Suppose that Tp(I) # I and Tp(M) # M. Then
I and M are P-cyclic. Therefore, there exist elements py,pe € P, a € I, m € M such that

(1—p)I C Ra and (1 —=p2)M C Rm.
This implies that
(1—p)IMCR(am), where p=p;+ps—pip2 € P

Thus, A(/) = IM is P-cyclic. This proves that A({) is a multiplication R-module.

2. According to Proposition 2.1 in [1], for any invertible submodule N of M, [N :p M] is an invertible ideal
of R. By using (2), we can easily show that N = [N :g M]M is a multiplication R-module. If r € Anng(N),
then *N = 0 and, hence, rM = rN !N = 0. Thus, » = 0. Therefore, N is a faithful multiplication R-module.
By using Theorem 2.12 in [12], we conclude that N is a A-module because every faithful multiplication module
is a A-module.

3. This assertion is obvious by Theorem 2.12 in [12] and Lemma 1 in [2].

We are now ready to deduce & relationship between the Dedekind module and the A-module by using the
following Corollary 3.8 in [3]. We recall that a module M is divisible if M = rM forany 0 £ r € R.

Lemma 2.1. Let M be a Dedekind divisible R-module. Then R is a field.
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It is easy to understand that any vector space is a A-module. Moreover, we have the following direct conse-
quences of Lemma 2.1:

Proposition 2.2. If M is a Dedekind divisible R-module, then:
(1) M is A-module;
(2) N € Xforany N € o[M];

(3) the class of A is closed under submodules and homomorphic images.

‘We now apply the following result from paper [1]:

Lemma 2.2. If M is a faithful multiplication module, then M is a Dedekind (Priifer) module if and only if
R is a Dedekind (Priifer) domain.

Proposition 2.3. Let M be a faithful multiplication module and a Priifer module. Then o[M] C .

Proof. By the assumption and according to the result of Lemma 2.2, we conclude that R is a Priifer domain.
Proposition 1.2 shows that A is equal to the category of R-modules. It is clear that o[M] C A.
The converse assertion is given in the following corollary:

Corollary 2.1. Let R be a semisimple ring and let M be a faithful multiplication module and a Priifer
module. If M is a subgenerator for any semisimple module, then o[M] = \.

Proof. Applying Proposition 2.3, we get o[M] C \. Further, we take any N € \. Since R is a semisimple
ring, IV is also a semisimple module. Moreover, N € o[M] and we also prove that A C o[M].
‘We now recall a sufficient condition for a Dedekind module in Lemma 3.3 from [1].

Lemma 2.3. Let R be an integral domain and let M be a faithful multiplication module. If any nonzero
prime submodule P of M is invertible, then M is a Dedekind module.

Proposition 24. Let R be an integral domain and let M be a faithful multiplication module. If any nonzero
prime submodule P of M is invertible, then o[M] C A.

Proof. The proof is obvious if we apply Lemmas 2.3 and 2.2.
The next propositions establish some other properties of Dedekind modules.

Proposition 2.5. Let M be a faithful multiplication Dedekind module over an integral domain R. If I is
anideal of R, then M is a A-module over I and (1) is a A\-module over R.

Proof. Since [ is an ideal of R, A(f) = IM is a submodule of M. Hence, I M is an invertible submodule.
We have /=1 = (A(I))™! by virtue of Proposition 2.1, i.e., I is an invertible ideal of R. By using a result from [7],
we conclude that [ is a A-module over R. For any ideals B and C of R, we have

(BN C)A(I) = (BN C)IM = (BINCI)M
= BIM 0 CIM = BX(I)n CA(I).

This proves our assertion.
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We now present a sufficient condition of A-module.

Proposition 2.6. Let M be a multiplication Dedekind R-module. Then every R-module is a A-module.

Proof. According to Theorem 3.12 in [3], a multiplication Dedekind R-module implies that the ring R is
a Dedekind domain, i.e., a Priifer domain. This means that every R-module is a A-module.

If M is an R/I-module, then, under scalar multiplication am = (e + I)m, M becomes an R-module
for every a € R and m € M. Conversely, if M is an R-module, then M is an A/I-module with respect to
(a4 I)m = am forevery a+ [ € R/I and m € M.

Proposition 2.7. Let R be a ring, let M be an R-module, and let I be an ideal of R, where I C [0 :p M].
Then M is a A-module over R if and only if M is a A-module over R/1.

Proof. It M is a A-module over R, then (B N C)M = BM n CM for every finitely generated ideals B
and C of R. Let B/I and C/I be any ideals of R. Then

(B/INC/I)M = ((BNnC)/I)M.
Since (BN C)M = BM NnCM, we get

(BNC)/I)M = (B/I)M N (C/T)M.
This gives

(B/INC/I)M = (B/I)Mn (C/I)M.

Therefore, M isa A-module over R/ 1.

Conversely, let M be a A-module over R/I. Suppose that B and C are any ideals of R with BM # {0}
and CM # {0}. Clearly, B+ I/ and C' + I/ are ideals of R/I. Since M is a A-module over /I, we have

((B+I/I)n (C + I/T))M = (B + I/T)M 1 (C + I1/T)M.

On the other hand,

(B+1/HNn(C+I/I)M=((B+InC+I1)/1)M
and, consequently,

(B+INnC+1D)/I)M=(B+I1/I)YMn(C+1/1)M.

Then
(B+INCH+I)M=(B+I)Mn(C+I)M.

Since I C (0 : M), we get
(B+I)Mn(C+I1)M=BMnNCM.

Therefore, M is a A-module over R.
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3. Chain Modules and A-Modules
In this section, we consider chain modules and the relationship with A-modules.
Proposition 3.1. Let M be a chain and faithful R-module. Then o[M] C \.
Proof. Forany N € o[M], according to (15.1) in [15], we have
N = @paRmy,

where m, € M™ . Since M is chain, N = Rmy for some mgy € M ™. We now take any ideals BB and C' inthe
ring R. Tt is necessary to prove that

BNNCNC (BNnC)N.
We take any x € BN M CN. Then x = bmg forsome b € B and & = emy for some ¢ € C'. Hence,
r = bmgy = cmy

and, moreover, (b — ¢)mg = 0. Since M is faithful, b = ¢ and we conclude that x € (BN C)N.
For the converse of Proposition 3.1, we need an additional condition formulated in the following corollary:

Corollary 3.1. Let R be a semisimple ring and let M be a chain and faithful R-module and a subgenerator
Jor all semisimple R-modules. Then o[M] = \.

Proof. We apply Proposition 3.1. It is known that a module over a semisimple ring is semisimple. We take
any R-module N in A. Then N is semisimple. By the assumption, N € o[M].
According to the properties of o[M] from (15.1) in [15], we obtain the following corollary:

Corollary 3.2. Let R be a semisimple ring and let M be a chain and faithful R-module and a subgenerator
Sfor all semisimple R-modules. Then:

(1) A is a hereditary pretorsion class, i.e., \ is closed under submodules, homomorphic images, and any
direct sums;

(2) forany N € A\, N = ZRm, where m € MM,

(3) the pullback and pushout of morphisms in X belong to .

Corollary 3.3. Let R be a semisimple ring and let M be a chain and faithful R-module and a subgenerator
Sor all semisimple R-modules. If N is M -injective, then N is K-injective for all K A-modules.

Proof. If N is M-injective, then IV is K-injective for any K € o[M]. However, according to Corollary 3.1,
we get o[M] = A. Hence, N is K-injective for any K € .
We now recall the following definition from Definition 2.6 in [10]:

Definition 3.1. Let M and N be R-modules. We say that M rises to N and write M 1T N if every
M -injective module is N -injective.

By using this definition and the properties of injectivity ifj o[M], we conclude thatif N € o[M], then M T N
but the converse is not necessary true. Theorem 2.8 in [10] gives a sufficient condition under which the converse
assertion is true.
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Corollary 3.4. Let R be a semisimple ring and let M be a chain and faithful R-module and a subgenerator
all semisimple R-modules. For any module N such that M T N, N is M-injective if and only if N is
injective for all K € \.

Proof. The proof immediately follows from Corollary 3.3 and Theorem 2.8 of [10].
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