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Abstract— Fuzzy membership function was introduced into 

the Support Vector Machine (SVM) resulting in modifications. 

Selecting the correct membership function is an important step 

in the Fuzzy Support Vector Machine (FSVM) method. One of 

the general criteria for selecting fuzzy membership is 

determined by the distance between a point and its fixed center 

category. This study aims to develop the SVM method into 

Fuzzy SVM (FSVM) with several distance functions that are 

applied to the Early Stage Diabetes data which collects 520 

data. The distance functions used include Euclid, Canberra 

distance, Minkowski distance, Chebyshev distance, Minkowski 

Chebyshev distance, and Bray-Curtis distance where this 

distance function is used to determine the best distance that 

can be seen from the results of accuracy, specificity, g-means 

which is best for viewing diabetes risk. The results of this 

comparison show that the FSVM method with several distance 

functions is more than the SVM method. Where the FSVM 

method at the Canberra distance with a penalty value of � =

�� is the best distance to see the risk of diabetes, based on the 

results of specificity = 100%, g-means = 86.91%, and accuracy 

= 85.26% is superior to the SVM method at the penalty value 

� = ���  with specificity = 69.36%, g-means = 77.31%, and 

accuracy = 79.49%. Although the FSVM method produces an 

evaluation value at sensitivity = 75.53%, it is lower than the 

SVM method with a sensitivity value = 86.17%. 
 

Keywords—Support Vector Machine (SVM), Fuzzy Support 

Vector Machine (FSVM), Membership Function, Metric 

 

I. INTRODUCTION  

The last ten years, machine learning methods have been 
developed to aid the classification without being bound by 
the assumptions, and to provide greater flexibility in data 
analysis, but still have the accuracy and ease of use are high. 
Machine learning methods that have been developed one 
Support Vector Machine (SVM) [1]. Vapnik said, [2] 
defined the Support Vector Machine (SVM) method as a 
new machine learning method. The SVM method finds an 
optimal global solution, by mapping the training data to a 
high-dimensional space, then in a high-dimensional space it 
will look for a classification that maximizes the margin 
between the two data classes [3]. The concept of SVM is an 
effort to find the best hyperplane, which is used as a 
separator between the two classes at the input[4]. SVM is 
one of the featured methods of machine learning because it 
has good performance in completing the classification and 
predict cases. The principle of SVM is to find the optimal 
classification model or set of separators from the 
classification data trained by the algorithm to divide the data 
set into two or more different classes. These classes can help 
predict classes based on new data [5]. 

However, in the application of SVM there are many 
distractions that could make the data sample is not ideal. 
Therefore, the Fuzzy membership functions are introduced 
into the SVM. FSVM is very effective in many real-time 
applications such as credit risk evaluation, text categorization 
and others [6] [7] [8] [9] [10]. The facts prove that FSVM is 
better than SVM in dealing with noise and can effectively 
eliminate the influence of noise on SVM [11]. The main 
problem in the FSVM model is the creation of appropriate 
memberships to minimize outlier effect data points.[12], 
[13], [14] and [15] selecting the correct membership function 
is an important step in the FSVM method. One common 
criterion for selecting Fuzzy membership is determined by 
the distance between the point and the central category and 
equipment[11],[16]. "Euclidean" distance is a common 
metric for FSVM. As an alternative method, several distance 
functions are proposed to measure the distance from each 
point to the center of the class, this distance function will be 
used to determine the best point. 

Utilization data mining is not limited to science and 
technology, but in the world of healthcare data mining is 
often used to treat the buildup of medical data. SVM method 
can be used as a reference to predict and diagnose a 
particular type of disease using methods that can be applied. 
Diabetes is a disease in the form of a metabolic disorder 
characterized by blood sugar levels that exceed normal limits 
[17] which occurs because the pancreas does not produce 
enough insulin (a hormone that regulates blood sugar or 
glucose), or when the body cannot effectively use the insulin 
it produces[18]. Diabetes is not an infectious disease, but 
WHO data shows that the percentage of non-communicable 
diseases in 2004 which reached 48.30% was greater than the 
number of presentations of infectious diseases, which was 
47.50%. Even non-communicable diseases are the number 
one cause of death in the world (63.50%) (Islam, Ferdousi, 
Rahman, & Bushra, 2020). (Garnita, Society, Studies, 
Society, & Indonesia, 2012). Many people with diabetes are 
not aware of the disease, especially, because of the lack of 
information in the community about diabetes symptoms. 
Symptoms of early characteristics of people with diabetes are 
often referred to as triaspoli (polyuria, polydipsia, and 
polyphagia). This study aims to develop the SVM method 
into Fuzzy SVM (FSVM) with several distance functions 
applied to Early Stage Diabetes data which collected 520 
data from Sylhet Diabetes Hospital, Sylhet Bangladesh. The 
distance functions used include Euclid, Canberra distance, 
Minkowski distance, Chebyshev distance, Minkowski 
Chebyshev distance, and Bray-Curtis distance where this 
distance function is used to determine the best distance that 
can be seen from the results of accuracy, specificity, g- 
means which is best for viewing diabetes risk. This study 
also tried to experiment with developing the SVM method 
into FSVM using various distances. This is one of the 
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novelty elements offered in this study compared to other 
studies. The results of the proposed method will compare the 
SVM method with Fuzzy SVM with several distance 
functions. 

 

II. METHODS 

A. Support Vector Machine (SVM) 

Support vector machines (SVM) is a supervised learning 
method, first introduced by Vapnik in 1995 together with 
Bernhard Boser and Isabele Guyon [19]. [20] [6] Support 
Vector Machine (SVM) is a classification method that works 
by finding a hyperplane with optimum margins. Hyperplanea 
is a data dividing line between classes. Margin (m) is the 
distance between the hyperplane and the closest data in each 

class. The hyperplane can be represented as  0T

ix b− =w . 

Where ix  is the data, { }1, 1
i

y ∈ − + is the class label of ix , 

w is the weight vector of size (px1), and b is the position of 
the plane relative to the center of the coordinates or better 
known as bias scalar value. The formula for the SVM 
optimization problem for linear classification is 

 
1

21
min

2 i

n

i

C ξ
=

 
+  

 
w  (1) 

by combining the two functions separator for both classes, 
then it can be represented in the inequality as follows: 

( )
( )

1 0

1

T

i i i

T

i i i

y x b

y x b

ξ

ξ

+ − − ≥

+ ≥ −

w
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ξ is a slack variable ξ  has been added to the model for 

classifying data that can not be separated linearly. Where C 
is the major parameters that determine the penalty due to 
errors in classification (misclassification) data. 

 To determine the optimal hyperplane above it is possible 
to change the shape of the primal into shape Quadratic 
Programming (QP). Thus the optimization problem can be 
solved by the Karush-Kuhn-Tucker (of the summit) and 
formulated into a formula lagrange 
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where iα  dan iµ  are Lagrange Multiplier. By minimizing � 
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∂
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 with i0, 0, 0,i iξ α µ≥ ≥ ≥  ( ) 1 0,T

i i i iy x bα ξ + − + = w  

0i iµ ξ =  Thus obtained the dual problem 

 
1 1 1

max 1

2

n n n
T

i i j i j i j

i i i

y y x xα α α
α = = =

−   (3) 

 where ( ), .,i nα α α= … is a non-negative Lagrange 

multiplier vector. By completing the above quadratic 

optimization iα  so that obtained
1

i i

i

n

iw y xα
=

= . Based on 

KKT conditions, is term bias 

 
1

n

i i i i

i

b y y xα
=

= −  (4) 

can also be computed for any supporting vector 

(observation that the corresponding iα  is greater than zero). 

The sample point ix  is classified based on the sign of its 

classification function as follows, 

 ( ) ( )( )T
if x sign x b= +w  (5) 

For the non-linear separable in feature space, kernel 

function  ( ) ( ) ( ), Φ Φ
T

i j i jK x x x x= is used to find 

hyperplane in a higher dimensional space, where ( )Φ
i

x is a 

non-linear mapping function. 

 

B. Fuzzy Support Vector Machine (FSVM) 

In the classification of soft intervals, the value of 
parameter C should not be too large or too small to ensure 
the effect of the classifier [11]. Training given S, where 

dimana ( ){ }
1

x , ,
N

i i i i
S y s

=
= , xi  is a sample of size n, 

{ 1, 1}iy ∈ + − stating grade (+1 for positive class and -1 for 

negative class), and 	
  is the fuzzy membership. So, the 
objective function is written as follows, 

 
2

1

1
min

2

n

i

i

iC s ξ
=

 
 


+


w  (6) 

by combining the two functions separator for both 
classes, then it can be represented in the inequality as 
follows: 
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1

T

i i i

T

i i i
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y x b

ξ

ξ
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Φ w
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where w is the vector weighting on local decisions, b 

stated bias, ixΦ a nonlinear function that maps ix  into 

space features high dimensional in which areas a better 
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decision can be found, C is a regularization parameter chosen 
beforehand to control the trade-off between margins 
classification and misclassification costs. Non-negatif 

variables iξ  is slack variable states of  ix  on SVM, while 

i is ξ  is a error size with different weights according to is . 

To solve quadratic optimization, the Lagrange Equation 
is as follows, 

 ( )
1 1

n n n
2

1

1
C 1

2
T

i i i i i i i i

i i i

L s y x bξ α ξ µ ξ
= = =

 = + − + − + −   w w     (7) 

where iα  and iµ  are Lagrange Multiplier. By 

minimizing L with to ,bw , and i is ξ : 
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C. Fuzzy Membership Function u for FSVM 

Ding Xiaokang [11] explains that FSVM models 
adopting the conventional method of calculating 
membership, which determines the class centers by 
averaging all of the samples. By using the distance from each 

sample point to the center of the class as id , then the 

membership function can be expressed as: 
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Where δ  is positive value used to avoid 	 to zero, while  � 
represents the  Euclidean  distance from each sample to the 
class center.  

β = constant to avoid 0is =  

max

max

i i cen

i i cen

i i

i i

d x x

d x x

r d

r d

+ +
+

− −
−

+ +

− −

= −

= −

=

=

 

cenx+ = positive sample center 

cenx− = negative sample center 

ix+ = labelled sample 1iy =  

ix− =  labelled sample 1iy = −  

This function indicates that the closer to the center of the 
class, the greater the value of membership, and the smaller 
the contrary. 

 

D. Metric 

1. Minkowski Distance 

The Minkowski distance is a generalization of the distance 
matrix, defined as follows: 

 ( )
1

min , , 1

i

i

d rr

i id x y x y r
=

 
= − ≥ 
 
  (11) 

where r is a Minkowski parameter, at Euclidean (r = 2) and 
Manhattan (r = 1) distances. Metric conditions are met as 
long as p is equal to or greater than 1[21]. 

 

2. Chebyshev Distance 

The Chebyshev distance is the variance of the Minkowski 
distance where, 

 
( ) 1, maxn

cbc k i i

p

d x y x y

∞

=

→

= −
 (12) 

where ix  and iy  are nilai the values of x and y in 

dimension n  [21] 

 

3. Canbera Distance 

The Canbera distance is given as follows: 
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 ( )
1

,
n

i i

i i i

x y
d x y

x y=

−
=

+
  (13) 

Canberra distances can perform very well, significantly 
better than the most used Manhattan and Euclidean 
distances, as shown [22] This distance tests the sum of the 
series of fractional differences between the coordinates of a 
pair of vectors [23]. 

 

4. Minkowski Chebyshev Distance 

Rodriguez [24] brings up a new distance, namely the 
combination of the Minkowski and Chebyshev distances. 
The combination of the Minkowski and Chebyshev 
distances is shown in the following definition: 

 ( ) ( ) ( ) ( )
1 2 1 2, , , , ,mkw chebw w d

d x y w d x y w d x y= +  (14) 

Or 

 

( ) ( )
1 2 1 1, ,

1

, max ,1

i
d r

r n

i i k i

i

iw w r
d x y w x y x y k n

=
=

 
= − − − ≤ ≤ 

 
  (15) 

 

where ix  and iy  are the value to –i  on two vectors x  

and y , and vice versa on the dimension n  

 

5. Bray-Curtis Distance 

The Bray-Curtis distance, sometimes also called the 
Sorensen distance, is commonly used in ecology and 
environmental sciences. This distance view space as a 
lattice that is similar to the distance of a city block. The 
Bray-Curtis distance has the nice property that if all 
coordinates are positive, the value is between zero and one. 
If both objects are at zero coordinates, the Bray-Curtis 
distance is not specified. [23] 

 ( )
1

,
n

i i

i i i

x y
d x y

x y=

−
=

+
  (16) 

where, 

d =  distance between x and y 

x =  cluster center data 

y =  data on attributes 

 

E.  Classification Evaluation 

The actual data and the predicted data from the 
classification model are presented using a cross tabulation 
(Confusion matrix), which contains information about the 
actual data class represented in the row matrix and the 
predicted data class in the column[19]. 

Accuracy is an evaluation matrix that is very important to 
assess the performance of an overall classification results. 
The higher the classification accuracy of classification 
techniques also means that the performance is getting better. 
[25] explained that the evaluation of the performance of a 
classifier in the imbalance class can be measured using the 
G-mean. Sensitivity is a performance measure to measure the 
positive class or the accuracy of the positive class. 
Specificity is a performance measure to measure the negative 
class or the accuracy of the negative class. 

Table 1. Confusion Matrix 

Actual 
Predicted 

Positive Negative 

Positive TP FN 

Negative FP TN 

Information: 

TP : True Positive (the number of correct predictions in 
the positive class) 

FP : False Positive (the number of wrong predictions in 
the positive class) 

FN : False Negative (the number of incorrect predictions 
in the negative class) 

TN : True Negative (the number of correct predictions in 
the negative class) 

 

Accuracy 

Accuracy assesses the overall effectiveness of the 
algorithm by estimating the correct value of the class 
label. The Accuracy Value is stated as follows 

TN TP
Accuracy

TN TP FN FP

+
=

+ + +
                         (17) 

 

 

Sensitivity (SE) 

Sensitivity is a performance measure to measure the 
positive class or the accuracy of the positive class. The 
sensitivity value states how many positive class samples 
are correctly labeled. The sensitivity value is stated as 
follows. 

TP
Sensivity

TP FN
=

+
                                           (18) 

Specificity (SP) 

Specificity is a performance measure to measure the 
negative class or the accuracy of the negative class. The 
specificity value states how many samples of the negative 
class are correctly labeled. The specificity value is stated 
as follows. 
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TN
Specifity

TN TP
=

+
                                       (19) 

 

G-means (GM) 

[26] said that the g-mean value was used to evaluate the 
performance of the algorithm on imbalanced data 
problems. G-means is the product of the prediction 
accuracy for both classes which includes accuracy in the 
positive class (sensitivity) and accuracy in the negative 
class (specificity). This value shows the balance between 
the classification performance of the majority and 
minority classes. poor performance in positive sample 
prediction will result in a low G-means value as well as 
for the negative class. The g-means value is expressed as 
follows. 

g mean Sensivity x Specifity− =                   (20) 

 

III. RESULT AND DISCUSSION 

In this study the type of data used is secondary data 
obtained from the official page through 
https://archive.ics.uci.edu/ml/datasets.php. Data collected in 
the article amounted to 520 using questionnaires data taken 
directly from the patient's Hospital ethical standards 
institutions in which research is conducted and ethical 
approval was obtained from the Hospital Diabetes Sylhet, 
Bangladesh Sylhet. The factors that influence the risk of 
diabetes are 16 as the �
  variable and the 
 variable as the 
class label of the �
 variable with members {1,-1}, where 1 is 
for the class that is not at risk of developing diabetes and -1 
for the class that is at risk of developing the disease diabetes. 
The steps in conducting the analysis in this study are as 
follows 

a) Exploration to see the characteristics of the data. 

b) Divide the data into training and testing data. 

c) SVM classification on the training data and evaluate 
the classification performance on the test data. 

d) FSVM classify the training data using Euclidean 
metrics, Canberra, Minkowski, Chebyshev, 
Minkowski, Chebyshev, and Bray-Cutris and evaluate 
the classification performance on the test data. 

• Calculates Euclid, Canberra, Minkowski, 
Chebyshev, Minkowski-Chebyshev, and Bray-
Cutris matrices from data points to class center. 

• Calculate the value of membership function 

e) Comparing the performance of SVM and FSVM 
classification with several matrix models to see the 
best classification results. 

 

Before the SVM modeling data is divided into training 
and testing. In this study, the data used amounted to 520 
cases divided into training data of 70%, namely 364 cases 
and testing data of 30%, namely 156 cases. This SVM 
method uses a polynomial kernel with different C penalty 
values to see the best accuracy results. 

Table 2. Classification 

MODEL C SE SP GM Accuracy 

SVM 2� 84,04% 67,74% 75,45% 77,56% 

2� 74,47% 62,90% 68,44% 69,87% 

��� 86,17% 69,36% 77,31% 79,49% 

FSVM-1 2� 72,34% 100% 85,68% 83,97% 

2� 72,34% 100% 85,05% 83,33% 

2�� 71,28% 100% 84,43% 82,69% 

FSVM-2 2� 74,47% 100% 86,30% 84,62% 

�� 75,53% 100% 86,91% 85,26% 

2�� 71,28% 100% 84,43% 82,69% 

FSVM-3 2� 73,40% 100% 85,68% 83,97% 

2� 72,34% 100% 85,05% 83,33% 

2�� 71,28% 100% 84,43% 82,69% 

FSVM-4 2� 72,34% 100% 85,05% 83,33% 

2� 71,28% 100% 84,43% 82,69% 

2�� 71,28% 100% 84,43% 82,69% 

FSVM-5 2� 72,34% 100% 85,05% 83,33% 

2� 72,34% 100% 85,05% 83,33% 

2�� 71,28% 100% 84,43% 82,69% 

FSVM-6 2� 72,34% 100% 85,05% 83,33% 

2� 72,34% 100% 85,05% 83,33% 

2�� 71,28% 100% 84,43% 82,69% 

 

Table 3. Classification Performance The results of the 
SVM classification performance at different C penalty values 
resulted in the values of sensitivity, specificity, G-means, and 
accuracy. On the SVM classification, it can be seen that the 
best classification performance evaluation is given by a 
penalty value of � = 2�� with an evaluation value of 
sensitivity 86.170%, specifity 69.355%, G-means 77.307% 
and accuracy 79.487%. FSVM Classification at the 
Euclidean Distance (FSVM-1), the best classification 
performance evaluation results are given by a penalty value 
of � = 2�  with the same evaluation values, namely 
sensitivity 72.340%, specifity 100%, G-means 85.676% and 
accuracy 83.974. FSVM Classification at the Canberra 
Distance (FSVM-2), it can be seen that the best classification 
performance evaluation results are given by a penalty value 
of � = 2� with an evaluation value of 75.532% sensitivity, 
100% specificity, 86.909% G-means and 85.256% accuracy. 
FSVM Classification at the Minkowski Distance (FSVM-3), 
it can be seen that the best classifi ation performance 
evaluation results are given by a penalty value of � = 2�  
with an evaluation value of 73.404% sensitivity, 100% 
specificity, 85.676% G-means and 83.974% accuracy. 
Furthermore, the results of the evaluation of the FSVM 
classification at the Chebyshev distance will c be given. 
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FSVM Classification at the Chebyshev Distance (FSVM-
4), it can be seen that the best classification performance 
evaluation results are given by a penalty value of � = 2� 
with evaluation values of 72.340% sensitivity, 100% 
specificity, 85.053% G-means and 83.333% accuracy. 
Furthermore, the results of the evaluation of the FSVM 
classification at the Minkowski-Chebyshev distance will be 
given. FSVM Classification at the Minkowski-Chebyshev 
Distance (FSVM-5), it can be seen that the best classification 
performance evaluation results are given by a penalty value 
of � = 2� with an evaluation value of 72.340% sensitivity, 
100% specificity, 85.053% G-means and 83.333% accuracy. 
Furthermore, the results of the evaluation of the FSVM 
classification at the Bray-Curtis distance will be given. 
Similarly in the FSVM-4 and FSVM-5, the results of the best 
classification performance evaluation in FSVM-6 are given 
by a penalty value of � = 2� with the same evaluation 
values, namely sensitivity 72.340%, specifity 100%, G-
means 85.053% and accuracy 83.333%. 

From the performance of SVM and FSVM classification 
with several distance functions, it can be seen that the results 
of Fuzzy SVM give the best results to see the risk of 
diabetes. It can be seen in Table 2. the sensitivity value (SE) 
of the SVM method is superior with the highest percentage 
of 86.17% at � = 2� while the FSVM method with several 
distance functions gives the highest percentage of 75.53% at 
� = 2� . However, in terms of specificity (SP), g-means 
(GM), and accuracy for all C penalty values, the FSVM 
method with several distance functions is very superior to the 
SVM method. The specificity value (SP) of the FSVM 
method with several distance functions gives an average 
percentage result of 100% while the SVM method has the 
highest specificity (SP) value with a percentage of 69.36% at 
� = 2�� , the value of g-means (GM) method FSVM with 
several distance functions gives the highest percentage of 
86.91% at C= 2� while the SVM method has the highest g-
means (GM)  � = 2�alue with a percentage of 77.31%. The 
accuracy value of the FSVM method with several distance 
functions gives the highest percentage of 85.256% at � =

2�. 

 

IV. CONCLUSION 

In this paper, a method for developing SVM into FSVM 
has been presented with several distance functions including 
Euclid distance, Euclid distance, Canberra distance, 
Minkowski distance, Chebyshev distance, Minkowski 
Chebyshev distance, and Bray-Curtis distance where this 
distance is used to determine the best distance that can be 
seen from the results. the best accuracy, sensitivity, 
specificity, g-means. We applied the FSVM method with 
multiple distance functions to the Early Stage Diabetes data. 
The results of this comparison show that the FSVM method 
with several distance functions is more than the SVM 
method. Although the sensitivity (SE) value of the SVM 
method is superior, for the value of specificity (SP), g-means 
(GM), and accuracy on all C penalty values, the FSVM 
method with several distance functions is very superior to the 
SVM method. 
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