ISBN : 978-602-96426-0-5

PROCEEDING of

IndoMS International Conference om
Mathematcs and Its Applications (CMA) 2009

Yogyakarta - Indonesia, October 12 13" 2009



Proceedings of ICMA 2009

Analysis, pp. 161-172.

} WAVELET NEURAL NETWORK ON
MULTIRESOLUTION ANALYSIS WITH PARTICLE

SWARM OPTIMIZATION

JULAN HERNADI

Abstract. The main issue in the artificial neural network (ANN) includes
the architecture, the activation function and the appropriate learning algo-
rithm. So far, the application of wavelet in ANN are concerned with the
wavelet (mother wavelet), instead of the activation function. This paper pro-
poses some new ideas to the architecture of ANN based on the structure of
multiresolution analysis (MRA), where the scaling function (father wavelet)
plays a key role for approximation. These ideas also offer that both types the
mother and the father wavelet to be used simultaneously as bridge connecting
between the hidden layer and the output layer. An interesting optimization
technique, particle swarm optimization (PSO) is also introduced for training
the network. In addition, the numerical simulation is presented to show the
performance of the model.
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1. Introduction

| The wavelet theory is a rapidly developing branch of mathematics which has
found many application, for instance, in numerical analysis and signal processing,
e.g. see Mallat [14]. This theory is very attractive and has offered very efficient
algorithms for analyzing, approximating and estimating function or signal. On
the other hand, the neural networks are a class of computational architecture that
are composed of interconnected nodes or neurons. Due to the similarity between
wavelet theory, specially discrete inverse wavelet transform and one-hidden layer
neural network, the idea of combining both wavelets and neural networks has been
proposed by Zhang and Benveniste [17]. Thereafter, the combination of those two
topics created a new research field which is called wavelet neural network (WNN).
One of the characteristic WNN is the presence of the wavelet bases, instead of the
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activation function such as sigmoid function relating between the hidden unit and
the output unit, e.g. Zhang [18], Chen at al [2, 3], Kobayashi and Torioka, [12].

Generally, there are two ways to introduce wavelet, through continuous wavelet
transform (CWT) and mutiresolution analysis (MRA). The first-mentioned con-
cerned with a single function which oscillates and has zero mean. This function
is called wavelet or mother wavelet. On the MRA view of point, there is another
functions involved. the scaling function (father wavelet) which has a unity area
property, beside the wavelet function as in CWT. In practice, the scaling function
to be used for approximation, whereas the wavelet to capture the residual or detail,
usually in the oscillation form. Not all wavelet function has a counterpart scal-
ing function, but every scaling function of MRA there is always a corresponding
wavelet function, see Daubechies [6].

So far, the wavelet bases used in WNN is only derived from mother wavelet,
see Zhang [17] and Galvao at al [7]. Chen at al [2, 3] even allow all the scaling and
translating parameters running on the real line to be optimized. It is redundance,
instead, the parameters are enough to be taken from a set of dyadic points. The
wavelets commonly used in WNN are mexican-hat and Gaussian wavelet. Unfor-
tunately, these wavelets are not of compactly supported so-that the computation
becomes inefficiency because the matrix representing function evaluation of input
data becomes dense. Instead of wavelet function, the scaling function of MRA
with compactly supported has chance of success to be applied in WNN. The basis
from scaling function has been successfully applied to approximate some operator
equations, see Hernadi [9].

The another crucial issue in ANN is the learning algorithm, an algorithm
to determine the network weights via a given training sample. The algorithms
common used involve the gradient method, e.g. gradient steepest descent, or the
quasi-Newton method, e.g. the BFGS algorithm. But its disadvantages are slow
convergence and easy trap at local minimum. Particle Swarm optimization (PSO) is
a population based optimization method first proposed by Kennedy and Eberhart
[10] in 1995. This method Incorporates swarming behavior observed in flocks of
birds, school of fish, or swarms of bees, and even human social behavior, from which
the idea was emerged, see Clerk [4] for detail explanation. The main strength of
PSO is its fast convergence, which compares with global optimization algorithms
like genetic algorithm (GA), Abraham at al [1].

This paper offers a slightly different WNN model than previous results. Here,
the output are based on the structure of MRA. Hence, the scaling function or father
wavelet plays key role in the model. The parameters of translation and dilation
to be considered here are dyadic points and characterized by two integers j and k,
instead of whole real values such as those in CWT. In the computation, the paper
introduces the way of choosing the translation parameters k’s adaptively depending
on the scaling parameter J and the domain of input data.

This paper is organized as follows: Section 2 introduces an overview of wavelet
theory and muliresolution analysis. The models of wavelet neural network on MRA
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is described in section 3. The particle swarm optimization used for learning is pre-
sented in section 4. The computation procedures and some numerical experiments
is given in section 5. Finally, concluding remarks and some discussions are described
in the last section.

2. The Wavelet Theory: An Overview

There are two ways to introduce wavelet, through the continuous wavelet
transform (CWT) and multiresolustion analysis (MRA). Let 1 be a function in
L2(R). Furthermore, the collection of functions Ya,b are defined as

1 -b
Yap(z) == —Iﬁ(x—) where a,b € R,a # 0.
' Via '\ a
For each a,b € R,a # 0, the function Ya.b is called atomic and its norm does not
depend on both parameters a and b, indeed
1Vapll 2y = 19l c2(m)-

The continuous wavelet transform (CWT) of f € £L2(R) is the function W f de-
pending on parameters a and b and defined by

1 £2 z—b
W£)(a,b) = (f,%ap) = ——= fl@)p| — |dz. (1)
Vial J-co a
If ¢ satisfies the admissibility condition, i.e. Cyi= fooo J—‘;(—h"jl'ialw < oo then the
CWT is invertible, see Daubechies [6] or Tang at al [16]. In addition, if ¥ € L}(R)
then the admissibility condition implies

30 = [~ y@as=0 @)

that is the function 9 oscillates, hence this function is called wavelet or ’small
wave’. As a result, in engineering practical, the wavelet is often defined as the
function ¢ € £2(R) which satisfies (2). This definition is not exact in mathe-
matics, however, it is harmless in the application of wavelet. Two most popular

12 .
wavelets in WNN are Gaussian wavelet 1), (z) = —E\m/——w_&e“?ﬁ and Mexico-hat
wavelet /() = \/%(1 — z2)e™’/2,

In most application the function f in (1) to be reconstructed by only discrete
values instead of whole continuous values of a and b. The most often choice is
the dyadic points, a = 277 and b = k277, j,k € Z. Furthermore, ¥ € L2(R) is
called wavelet if the set of functions {2//24)(27z — k) : j,k € Z} constitutes an
orthonormal basis of £2(R). Consequently, each f € £2 (R) can be represented as

flah= D D0 ity () (3)
JEZ keZ
where

= Gowsn) = [ fepaan (4)
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The sequence of coefficients (d; ) in (4) is defined as the discrete wavelet transform
of f with respect wavelet .

Recall that the equality in (3) does work when f € L2(R) since the con-
vergence on the right hand side is valid in £2(R), but not for all f in L>®(R) or
L'(R). For example, if f(z) = 1, and because of the oscillation property then all
the coefficients dj; = 0 and (3) gives 1 = 0, a contradiction. This fact says that the
wavelet basis can not capture the constant part of any function. In the other hand,
the bases arising from ¢ could be more appropriate to be used in approximation
than wavelet itself.

In some cases, the wavelet ¥ can be derived from ¢ through MRA. The MRA
was first introduced by Mallat [13] set up from a function ¢ € £2(R) which satisfies

/_oo ¢(z)dx = 1. (5)

Then, a ladder closed subspaces {0} C ... C V_; C Vp C V... C L%(R) where V; is
defined as

V; :=span{¢;r; k € Z}

where ¢;k(z) := 29/2¢(27z — k) and E stands for the closure of E is an MRA of
L2(R). Moreover, if P; : £L2(R) — V; is the orthogonal projection onto V; then
for each f € L2(R) we have lim; o P;f = f in £2(R). This means that every
function in £2(R) can be approximated as accurate as possible by functions in Vj’s.

Let {V;}32, be a MRA of L2(R). For every j € Z, let us define W; the
orthogonal complement of V; in V4, that is

Vi1 = V; @ W;. (6)

Moreover, there always exists a function 1 € £2(R) such that {27/2%(2z — k) }rez
constitutes an orthonormal basis of W;. Such a function ¢ is called wavelet and
W; is defined as

W; = span{y;;k € Z}

is called detail space. By limiting process £2(R) is decomposed as

B w; = L2(R).

j=—00

This expression tells us that {1, x : 7,k € Z} is an orthonormal basis of £L(R). Bi-
orthonormal wavelets often to be used in applications, because of a weaker condition
and more flexible.

According to the definition of MRA, any function f € V; can be represented
in the form of

f@) =Y crrdir() ()

keZ

%"
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for some coefficients {(c;x)}. On the other hand, by relation (6) we have another
representation as

f@) =) cr1xbs1k(@) + Y di_1sti_14(z). (8)

kez kez

Later, representations (6) and (8) to be used in the model.
3. The Network Models

This paper considers a model of WNN based on MRA where the model output
has the form

Yi = ch,k(zsj,k(xi), i = 17 T )N (9)

where the basis function ¢;’s are derived from scaling function ¢, O := {(zs,vs) :
i =1,---,N} is the training data set, j is the approximation level and Cj k'S are
network weights to be determined. Beside that, there may be another data set of
pairs which is used to test or to validate . Graphically, this model is described by
following figure:

Xg— >

XN-——b

Figure 1. Model governed by the scaling function

Another model could be proposed here is based on (6) where both types bases
are involved. This model has the form

Yi = ch,k¢j,k(w’i) K Z dj,kszk(xi)v =5 )N (10)
k k

Here, two groups of weights {c;r} and {d;x} are trained concurrently. Figure 2
shows the architecture of such model.
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Figure 2. Model based on decomposition of MRA

4. Particle Swarm Optimization

Particle swarm optimization is a form of evolutionary computation technique
developed by Kennedy and Eberhart [10]. It incorporates swarming behavior ob-
served in flocks of birds, schools of fish, or swarm of bees, even human social
behavior, from which the idea is arisen. A "swarm” is an apparently disorganized
collection or population of moving individuals that tend to cluster together, while
each individual seems to be moving in random direction.

Commonly, a features on particles swarm optimization is described as follows,

e Population is initialized by assigning random positions and velocities; parti-
cles representing the potential solutions are then flown through hyperspace
as a search space.

e Each particle keeps track of its "best” (highest fitness) position in hyper-
space.

e This is called the ”"pbest” (personal best) of an individual particle.

It is called the ”gbest” (global best) for the best among ”pbest’s”.
e At each time step, each particle stochastically accelerates towards its ” pbest”

and ”gbest”.

The process of particle swarm optimization, in general can be done in following
steps:

Initialize population in hyperspace.

Evaluate fitness of individuals particle.

Modify velocities based on previbus best (pbest) and gbest (or Ibest for
neighborhood version of PSO), then update positions.

4. Terminate by some criteria, e.q. the number of iterations is reached.
5. Go to step 2.

SO

Now, we are going to formalize PSO mathematically. Assume, a swarm of
particles of size S fly through an N— dimensional search space where each particle
represents a potential solution to the optimization problem. Each particle a in
swarm £ = (X1, Xo, -+, X,, -+ Xg) is represented by the following characteristics:
Tq,;(t): j* component of the position of particle a, at time t.

Va,j(t): 7" component of the velocity of particle a, at time t.

Ya (L) gfh component of the personal best(pbest)of particle a, at time t.
g‘/j(7t): J** component of the global best (gbest) position of swarm, at time
t.




i

Wavelet Neural Network on Multiresolution Analysis with Particle Swarm... 167

Let f be a fitness function to be optimized. WLOG, assume that the objective
is to find the minimum of f in N-dimensional space. The personal best of particle
a at time ¢, y, ;(t) is updated at time £ + 1 as

(e if f(za(t+1)) > %
ya,J(t+1): ya:]( ) f( ( )) f(ya( )) (11)
Zai(t+1) else

for j=1,2,---,N. Then, gbest is taken as
g(t) == yybesi(t) = min (yl (t)v A yS(t))

In each iteration, positional updates are performed for each component j=1,--- N
and for each particlea =1,---, S by

’Ua!j(t + 1) = wvad(t) + Cllej(t) (ya:j(t) — .’L‘a’j(t)>
+cara,;(t) (ﬁj(t) T -Ta,j(t)> (12)
Toj(t+1) = x4;(t) + v, (t + 1). (13)

where w is called the inertia factor, r; and ry are random numbers which used
to maintain the diversity of the population, and are uniformly distributed in the
interval [0,1], ¢; is a positive constant, called as coefficient of the self-recognition
component, ¢ is a positive constant, called as coefficient of the social component.

The main problem of application PSO in optimization is how to select the best
parameters so that the iteration converges fastly. So far, the selection is determined
by trial and error experimentations without scientific consideration. Abraham [1]
stated the role of inertia weight w is considered critical for the convergence behavior
of PSO. It regulates the trade-off betweer the global for a large value, and the local
exploration for a small value. A suitable value for w usually balance between global
and local exploration. For example, initially, the inertia weight is set as a constant,
however some experiments take it as function of time w(t). The parameters ¢,
and c are not critical for the convergence of PSO, but a proper choice may result
in faster convergence and alleviation of local minimum. As a default, usually,
€1 = ¢3 = 2, see Chen at al [3]. There are still open problems in determining the
best values for parameters of PSO.

Kennedy [11] also proposed another version for velocity updating as

Va4 1) = x (00508 + ear1 50 (U s (8) = 05() + cara s (3,00 — O)
(19)

where parameter y controls the magnitude of v, whereas the inertia w weights the

magnitude of the old velocity. At the end of this section, the pseudo-code for PSO

algorithm is illustrated.

01. Initialize the size of the swarm, e.g. s, and other parameters.

02. Initialize the positions and velocities for all particles randomly.

03. While (the stopping criteria in not met) do

04. t=t+1;
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05. Calculate the fitness value of each particle;
06. &* = argmin{f(z(z — 1), f (@i(#)),i = 1, S}
07 “Fongs =1%"S

08. o# = argmin{f(z#(z — 1), f(z:(t)),i =1, - 5}

09. Forj=1:N

10. Update the j-th dim value of v; according to (12) or (14), then x;
il Next j

12 Next 1

13. End While.

5. Computation Procedure and Numerical Experiments

5.1 Bases on input domain

Fet- O ee=fi(my, g) s 1 —lE: ,N} be a given training data set, and assume
that for each i, z; lies in a closed interval [zq, xp). The minimal such interval [zq, Zb)
to be called domain of input. Moreover, let ¢; x defined by

bin(x) = 22$(2z — k)

be wavelets bases generated by a scaling function ¢. Since the scaling function
must be compactly-supported, it is enough to assume that supp ¢ = [a,b]. Now,
we want to determine which bases contributing on domain [z, Zp)-

Theorem 1. Let the domain of trjzz’ning data input be included in some closed
interval [x4, 7] and support of the scaling function ¢ is [a,b]. Then, for fived level j
the bases ¢ r contributing to the domain are corresponding to k € {Kmin, - Thian
where

kmin = [2724 — b+ 1], and kmaz = 272, —a—1]
where notations | | and [ | symbolize to flooring and ceiling functions, respectively.
Consequently, the number of hidden nodes will be kmaz — kmin + 1.

Proof. Since supp ¢ = [a,b] then supp ¢jk = [“—21;5, %5] In order that support
intersects domain, the following situations must be satisfied

b+ kmin a+ kmax
e > z, and ST

Thus, kmin is the first integer that greater than 29z, — b. On account of flooring
function |z| as the greatest integer n which is less than or equal to z, then the first
assertion is proven. The second proof is similar. O

< ZTp.

5.2 The fitness function

The fitness function in the neural network is used to measure the quality
of learning process. Commonly, the root mean square €rror (RMSE) is taken as
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fitness, i.e.

RMSE :=

where y; is the output of training data and ¢; is the model output (estimator).
According to model (9), it is needed to evaluate the value of basis functions

kmaz
Qz‘ — Z Cj,k(bj,k(xi)v 7% — 1, Q0:0 ,N.
k=kmin
In order to keep computation efficiently, it is recommended to write the basis func-
tions evaluation in the matrix-vector form as
Y=30c¢

k=kmin, " kmaz

- = s
Where Y = (yl) . ,N’ (p = (¢J‘k (xi))iZI,u- ,N and o= (Cj’k)k=kmin e ukmam :
Furthermore, the mass matrix ® could be stored as pre-determined. A similar pro-
cedure when model 2 is taken.

T
i=1,

5.3 Examples 5

For numerical implementation, we have two examples of nonlinear function
approximation,
cales 2R 1)
X 1+ 22
This example was taken by Sun at all [15] using RBFNN and PSO approach. Next
example is

v o€ [—8,12]. (ex.1)

y = sin(3z) cos(5(z — 0.5)), z € [-1,1]. (ex.2)
This example was implemented by Kobayashi [12] using WNN with Gaussian

. wavelet and SERWANN algorithm.

On this paper we use model 1 and PSO of version (14) with parameters follow
Chen at al [3], i.e. x =0.8;w = 0.7;¢; = 2;c2 = 2. The scaling function to be used
in implementation arises from B-spline family defined recursively as

on(z) = %d’N——l(z) + N‘#¢N—1($ —1)

where ¢o(x) := X[0,1)(x) is a characteristic function on [0, 1), see Chui [5] for detail
or Hernadi [9] for closed-form definition. The level approximation j affects on the
number of hidden nodes of the network. Theoretically, the more hidden nodes the
more accurately but the less efficiency. Thus, j should be taken as small as possible,
but still gives an accurate result. Here, the experiment results.




170 JULAN HERNADI

Table 1. Summary of experiment results

= [ Example 1 | Example 2 |

Scaling function quadratic B-spline | cubic B-spline
Approximation level 7=0 =13
Number of hidden nodes 22 19
Swarm size 100 50
Number of inputs 50 randomly 25 randomly
RMSE 0.005 0.004
Number of iterations 200 276

This results is much better' than Sun at al [15] which only gives RMSE =
0.0332 with 33 hidden nodes. Figure 3 shows the result of method.

T T
— true data

model output

1.5 T T T T T T
*  model output
—— true data
1f \/\
g \/
L

) I ) L L L L L n
= -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

o

Figure 3. Results of method: example 1 (above) and example 2 (bottom)

As view in figure, the model approximates data accurately, not only for train-
ing data but also for test data. For instance, in example 1, the 75 test data was
taken randomly on interval [—8,12]. As a result, RMSE for this data test is 0.0158.

Intuitively, the larger size of swarm the faster convergence of iteration. Ac-
cording to the numerical experiments this is only taken place in the first few itera-
tions as be shown in the figure 4.

Why this phenomenon could be happened, let’s recall to the iteration (@2),
(13) and (14). If the velocities are very close to zero, then all particles will stop
moving once they catch up with the global best particle, which lead to prema-
ture convergence, and no further improvement. This stagnation phenomenon is a
weakness of PSO iteration and will be regarded as an open problem.
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Figure 4. Convergence rate of several swarm sizes

6. Concluding Remarks and Discussion

This paper has proposed a different kind of WNN where scaling function was
used in the model, instead of wavelet as it has been considered by several authors.
Training using PSO algorithm gave satisfactory results, even better than previous
method. :

So far, only model 1 has been implemented with B-spline scaling functions.
Model 2 could be more attractive because it combines both scaling function and
wavelet. It is a strength of MRA theory that the scaling function is used to ap-
proximate, while the wavelet to capture the detail or residual in consequence of
approximation. The application of other type of wavelets bases should be tried,
e.g. Daubechies’s wavelets could be interesting one because they have many good
anproximation properties such as regularity, orthonormality, vanishing moment and
narrow support. :

Since the wavelets basis on MRA usually of compactly supported, it is a good
idea to take network weights depend on input data. The main reason is there will
be only a few input data included in any support of basis function so that the
corresponding weight only depend on those input data, hence efficiently is kept.
This idea has been done by Chen at al [2, 3] but in the form of linearly depending
and the support was not compact so that all inputs contribute to each weight.

Many challenging issues corresponding to this method is concerned with study
of PSO algorithm, in particular choosing the best parameters to be applied in
WNN. A collaboration between PSO and GA may be considered as the method for
improving of PSO, in particular to cope the stagnation phenomenon as mentioned
above. An extension to higher dimension is still to be a problem in the wavelet
neural network. So far, this problem is just coped by a radial approach as in Galvao
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[7] or by a tensor product of wavelets in one-dimension as in Chen at al [2]. These

app

roaches did not give a flexible of choosing the wavelet function. For instance,

by radial approach, there only Mexican-hat wavelet found so far that can be used
in higher dimension, see Galvao [7]. The fast wavelet transform as a strength of
wavelet by means of MRA has never been considered in WNN.
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