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Abstract. The problem of determination an estimator through sample data is a part
of the inverse problems. Generally, the inverse problem has no solution in the ordinary
sense since the known data have been contaminated by noises. The minimizer of the least
square functional is usually taken as the solution of the invers problem.

The optimal design on parameter estimation uses the Fisher information matrix (FIM)
as a tool for optimal criteria that minimizes some cost functional over set of FIM’s.
The consideration is based on the Cramer-Rao lower bound inequality that can only be
attained by the invers of FIM.

This article demonstrates how to implement the inverse problems in connection with pa-
rameter estimation numerically where the set of noises is generated independenty during
the experiment. The numerical simulation is applied to a distributed parameter system
of parabolic equation to find the optimal sensor locations for the parameter. The sim-
ulation is also carried out to a model of dynamical system to obtain the optimal time
for measurements. The accuracy of estimators are compared to the prior supposed nom-
inal paramaters and the variance of estimators are contrasted with the lower bound of
Cramer-Rao inequality through the functional value acting on FIM’s.
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1. INTRODUCTION

In general, two approaches are often used to study the real world fenomena,
namely through their mathematical representation and by making replication of their
behavior. On the mathematical representation, a relevant mathematical model is built
dan studied. In most cases, the mathematical model involves some parameters that
require to be estimated through observation data. This stage is known as the calibration
model.

At the beginning, the problem of parameter estimation appeared in statistics
where the functional relationship among variables is presumed to have an explicit rep-
resentation like linear, quadratic, exponential, and some other, and the set of parameters
in the statistical model is assumed arising from a population with certain distribution
probability.(Goodwin [7]).

In latest development, the explicit relationships were not adequate anymore to
deal problems in science and engineering. The implicit relationship among variables
like differential equations subjected to initial or boundary value conditions, integral
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equations, or integro-differential equations had attracted the attention many mathe-
maticians and applied scientists (Vogel, [13], Doicu at. al. [6], Muller [10]; Aster at. al.
[1]).

The abstract formulation of parameter estimation (identification) can be described
by the following operator equation.

G(θ) = d, (1.1)

where G denotes an operator, θ constitutes the parameter vector characterizing the
model and d represents the observation data that might be a function of time or a
discrete set of observations. Two problems in the parameter identification are the
forward problem and the inverse problem. On the forward problem, the paramemeter
θ is given, the output model is determined. In this problem, we are faced with problem
of solving an operator equation. The inverse problem is adressed to obtain an estimator
for parameter θ through the observation data d. The inverse problem is generaly ill-
posed because of the noise disturbance most probably accomadated in data observation
due to reading mistaken of instrument or rounding error of numerical data. This is the
main obstacle in solving the inverse problem in connection with parameter estimation.
This situation is represented as

data = clean observation+noise component

d = G(θtrue) + ε (1.2)

= dtrue + ε (1.3)

where dtrue = G(θtrue), i.e. fulfils exactly equation (1.1) whenever θ = θtrue. This
exact parameter is sometimes called the nominal or natural parameter and its exsitence
is assumed naturally. Usually, the nominal parameter is not available explicitly, instead,
it must be estimated by an estimator obtained through the observation data (sample).

An intuitive consideration in choosing the optimal sample that a sample contain-
ing much information for some parameter is believed will result a better estimator in
the sense more accurate and more reliable. Accurate refers the closeness to the nomi-
nal parameter, while reliability corresponds to the small varians. The premis used on
paramater estimation is that the information content on the parameter θ may vary
considerably from one time measurement to another (Banks, at. al. [4])

One of the parameter model that frequently appears on the applied sciences is the
system of differential equations which models some physcial, sociological or biological
phenomenon(Bank at. al. [4, 5]).

ẋ(t) = g (t, x(t), θ) , t ≥ t0, x(t0) = x0(θ), (1.4)

where x(t) ∈ Rn denotes the vector of state variables and θ ∈ Rp. This model is a kind
of the lumped-parameter system (LPS). For a given the admisible parameter θ, the
solution x = x(t, θ) to the initial value problem (1.4) can be obtained. Sometimes the
model output emerges in the form of functional with respect the state variable x(t, θ),
i.e. f(t, θ) := h(t, x(t, θ), θ). Consequently, the model output (1.4) can be represented
as

z(t) = f(t, θ), t ≥ t0. (1.5)

The distributed-parametric system (DPS) which is a model that depends on both
the time variable and the spatial variables also involves some parameters that require to
be estimated. One of the DPS model is represented by some partial differential equation
subjected to some intial and boundary values as given in (Ucinski [12]):

∂y

∂t
= F

(
x, t, y,

∂y

∂x1
,
∂y

∂x2
,
∂2y

∂x2
1

,
∂2y

∂x2
2

, θ

)
, x ∈ Ω ⊂ R2, t ∈ (0, T ) (1.6)

with boundary conditions B
(
x, t, y, ∂y∂x1

, ∂y∂x2
, θ
)

= 0, x ∈ ∂Ω, t ∈ (0, T ) and initial value

y(x, 0) = y0(x), x ∈ Ω.
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In the implementation, this system is solved generally by a semi-dicrete method
in which the one variable is discretized, while keeping the another continue. Thus, the
model output of (1.5) for LPS in some occasion can be adapted to DPS. By assumption
the model (1.4) is representative enough of the real problem, the nominal parameter
θ0 ∈ A is guaranted available, and thus the system output y(t) = f(t, θ0) can be
regarded as the true output. It is assumed that the measurement z(t) at time t contains
the error, beside the true data. It means the measurement consist of two components,
the system output (clean data) and the error component (noise).

z(t) = f (t, θ0) + ε(t), t ∈ [0, T ]. (1.7)

The random proccess of measurement error ε(t) is assumed to have zero mean, time-
dependent varians σ2(t), independent within the measurements.

In this paper, the inverse problem is simulated to estimate the nominal parameter
θ0 through observation data. To asses the sample quality, the estimator variability based
on that sample is calculated from a series of experiments where the noises are generated

independetly during the experiment. Finally, the estimator θ̂ for θ0 is taken as the mean
of estimators which were obtained from each eksperiment as done in the Monte Carlo
simulation.

2. THE OPTIMAL DESIGN METHOD

Considering the output model f(t, θ) and the statistical model z(t) (observation
proccess), the objective function is given by a generalized functional error as

J(y, θ) :=

T∫
0

1

σ2(t)
(y(t)− f(t, θ))

2
dP (t) (2.1)

where P denotes a general measure defined on σ-algebra of [0, T ]. In particular P is the
probability measure. Let τ = {t1, · · · , tN : t1 < t2 < · · · < tN}. The following Dirac
measure δti is one of simple but important probability measure.

δti(A) =

{
1 if ti ∈ A
0 if ti /∈ A

For a given set of points τ = {t1, t2, · · · , tN}, the measure Pτ is defined as

Pτ =

N∑
i=1

δti . (2.2)

By means of this measure, the cost functional in (2.1) reduces to the discrete version of
the weighted least squared functional.

Jd(y, θ) =

N∑
i=1

1

σ2(ti)
(z(ti)− f(ti, θ))

2
. (2.3)

Although the continuous version (2.1) is possible to be applied on numerical imple-
mentation, e.g. by quadrature formula for the integral approximation, but the discrete
version is more advantage.

According to Banks at. al [4], the abstract problem of the optimal design is how

to choose ”the best” measure P̂ over P[0, T ] the set of all probability measures on [0, T ]
in the sense

J
(
F (P̂ , θ0)

)
= min
P∈P(0,T )

J (F (P, θ0)) , (2.4)

where F (P, θ0) denotes the Fisher information matrix (FIM) given by

F (P, θ0) =

∫ T

0

1

σ2(s)
OTθ f(s, θ0)Oθf(s, θ0)dP (s). (2.5)
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In practice, the probality measure P is characterized by mesh, or points in τ as men-
tioned before such that the optimal design method is now switched to the optimization
problem of choosing a set of poitns τ∗ = {t∗i }, i = 1, · · · , N such that the following
condition holds.

J (F (τ∗, θ0)) = min
τ∈T
J (F (τ, θ0)) (2.6)

where T stands for a set of all meshes 0 ≤ t1 ≤ · · · ≤ tN ≤ T
The discrete version of FIM had been introduced by Thomaseth and Cobelli [11]

as

F (τ, θ0) =

N∑
i=1

1

σ2(ti)
∇Tθ f(ti, θ0) ∇θf(ti, θ0) (2.7)

where ∇θf := ∂f(t,θ)
∂θ denotes the vector gradient of parameters. Throughout this arti-

cle, the simulations use the discrete version of FIM’s as the arguments of the objective
functional (2.6). Furthermore, the optimal criteria is based on such optimization prob-
lem. Many optimal criteria found in the literature (Ucinski [12], Banks at. al [5]),
following are three famous:

• D-optimal, which maximize the determinat of FIM, i.e.

J (F ) := − ln det(F )

where det denotes the determinant of matrix.
• E-optimal, which maximize the spectral radius of FIM, i.e.

J (F ) := λmax(F−1)

where λmax is the largest eigen value.
• A-optimal or SE-optimal, which maximize the trace of FIM, i.e.

J (F ) := tr(F−1)

where ”tr” stands for the trace of matrix, the sum of entries on the main diag-
onal.

Hence, we have two kinds of optimization problems that must be solved in the parameter
identification. First, the optimal sample is determined by taking the minimizer of the
functional (2.6) based on the optimal criteria. Second, the estimator of paramater
θ is taken as the minimizer of the least squared functional in (2.3). Certainly, The
larger sample size and the more parameters involved the more difficult to solve problem
numerically due to high dimension. On the other hand, the smaller the sample size
gives less information about the parameters obtained through it.

Taking the optimal sampel is similar to minimize the number of the measurements
and to fix the best time when the measurements are carried out. It is in line with the
choosing the best position for measurement in the case of spatial variable. Banks at. al.
[4] used the generalized sensitivity function (GSF) to localize the measurement time at
point where magnitude of GSF is closed to 1. The closer GSF to 1, the less information
contained in data. The number of parameters can be reduced by keeping the most
significant parameters and regarding the others as constants. A method for parameter
selection to qualify those parameters was introduced by Banks at. al [2]. The problem
to optimize the measurements numbers (sample size) as well as its numerical realization
are still open.

This paper represents some algorithms and its numerical realization for simulating
the inverse problems on the contex of parameter estimation. The cost functional that
measures the discrepancy between model output and observation is minimized. Two
examples for implementation are the equation of temperature distribution of a rod thin
and the logistic model of Verhulst-Pearl equation.
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3. NUMERICAL SIMULATION

The first simulation is a simple case in DPS, the equation of temperature distri-
bution of a rod thin taken from (Ucinski [12]):

Example 3.1. The temperature distribution y = y(x, t) on a rod thin with assumtion
no heat source and both ends with perfect insulated.

∂y

∂t
(x, t) = θ

∂2y

∂x2
(x, t), x ∈ (0, 1), t ∈ (0, tf ) (3.1)

y(x, 0) = sin(πx) (3.2)

where the parameter θ stands for the diffusivity of the material forming the rod. Suppose
the two ends associate with x = 0 and x = 1, respectivley, and at time t = 0 suddenly
placed in contact with ice packs at 0o and that the temperature at the ends is maintained
at all later times. The situation is represented by the boundary conditions

y(0, t) = y(1, t) = 0, t ∈ (0, tf ). (3.3)

It is deliberate that model was taken trivially so that its analytic solution is
available and given by

y(x, t) = e−θπ
2t sin(πx). (3.4)

We want to find x1 the location which contains the most information about parameter θ.
Theoretically, it is required to solve the optimization problem with the objective function
J defined on the set of FIM’s. At this moment, we do not apply this procedure. Instead,
the potential sensor locations are prior defined intuitively to be candidates the optimal
sample. In order to make the numerical simulation does work, the spatial variable is
discretized and the time variable is kept continuous so that the observation process can
be represented as

z(t) = ym(t) + εm(t), t ∈ T := (0, tf )

where

ym(t) = col
(
y(x1, t), y(x2, t), · · · , y(xn, t)

)
εm(t) = col

(
ε(x1, t), ε(x2, t), · · · , ε(xn, t)

)
.

In this case, z(t) is the observation vector in a space of n-dimenstion, xj ∈ [0, 1], j =
1, · · · , n are the sensor locations, y(xj , t) is assumed as the true output at position xj

dan time t, and ε = ε(x, t) is the noisy random process with assumption E(εm(t)) = 0,
Var(εm(t)) = σ2(t), Cov(εm(t)εm(s)) = σ(t)σ(s)δ(t− s) for t ∈ T , where δ is the Dirac
distribution concentrated at origin.

Prior to solving of inverse problem by a certain optimization algorithm, the obser-
vation data is irritated by some artificial noise. For each point of optimal sensor xj , the
experiments are carried out repeatedly with different noises. The following algorithm
is composed to implement the numerical simulation on computer.

Algorithm 1.

(1) Disceretize the time interval [0, tf ] with sampling or by a uniformly partition
with step ∆t. Let nt be the lenght or size of time sample.

(2) Define the set of potential sensor location Ω0 = {x1, x2, · · · , xN}, for instance,
taking the equidistance points (uniformly).

(3) For each xi ∈ Ω0:
(a) Generate the vector of true or system output y(t, xi; θ) with respect to

θ = θtrue, for t in the time set of sampling, i.e.

yi = (yki |k = 1, · · · , nt)

where yki = y(xi, tk).
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Gambar 1. Model output with noise

(b) Generate the noise εi ∼ N(0, σ2)

εi = (εki |k = 1, · · · , nt).
(c) Define the observation data zi = (zki |k = 1, · · · , nt) by taking

zi(tk) = y(xi, tk) + εki .

(d) Define the functional error as the objective function Ji : Θad → R with

Ji(θ) :=

nt∑
k=1

|zi(tk)− y(xi, tk; θ)|2.

(e) Corresponding to xi ∈ Ω, the estimator θ̂i is obtained, i.e.

θ̂i = argmin {J (θ)|θ ∈ Ωad} .
(f) Do experiment (a)-(e) as L times. The noises are distinguished from one

experiment to another.
(g) By applying the Monte Carlo trial, the estimator corresponding to xi ∈ Ω

is the mean of L estimators within the experiments.
(h) Calculate the standard error of the estimator to look it’s variability.

The sensor location xj corresponding with smallest value of the standard errors
qualifies as the most informative sample.

Numerical Experiment 1. For this simulation, we assume θtrue = 1, tf = 2, ε ∼
N(0, 0.05) is random noises generated by randn on MATLAB. One of the system output
at x = 0.5 (smooth curve) and the observation data (irregular curve) is represented on
Figure 1. It can be seen that all values of the obsevation data are disturbed by noises.
The sampling time takes unifomly with ∆t = 0.01. Suppose the optimal sensor locations
being observed are given in the set

Ω0 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
The experiment is carried out as L = 20 times where the noise is generated indepen-
dently. The optimization algorithm used the MATLAB optimization toolbox, in par-
ticular function fminsearch and fminbnd. Both MATLAB functions produce the same
results. In this numerical experiment also tried fminbnd for dealing 1-d optimization
problem. The standard error is calculated by the following formula.

SEθ(x) =

L∑
k=1

(θ̂k(x)− θtrue)2.
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Gambar 2. Estimators at sensor locations and their corresponding
standard errors

Figure 2 (left panel) shows the estimator obtained through each sensor location. It is
clear that the estimator in connection with x = 0.5 is the most accurate. Notice that,
θtrue = 1 was set as the nominal parameter.

The standard errors for each estimator are shown on Figure 2 (right panel). It
is similar to phenomenon in the accuration, the smallest variance is also happened at
same point, x = 0.5. This result indicates that the location x = 0.5 is most optimal,
i.e. it contains most information about parameter θ.

Furthermore, we confirm this finding to the theorical background stating that the
optimal criteria must be satisfied by this point. By using the elementry calculus, the
following FIM is obtained.

M(x) =
π4

σ2

∫ tf

0

t2e−2θπ2t dt︸ ︷︷ ︸
>0

sin2(πx).

Because of only single point considered, we can treat the FIM as a scalar so that the
objective function is trivial. Thus, we can take xj as the maximum value of FIM
instead of using the optimal criteria such E-optimal or A-optimal. This matrix reaches
maximum at πx = π/2 or x = 0.5. Perfectly, the numerical simulation result and the
background theoretical are agreed.

For the second simulation, we use the model of dinamical system of logistic pop-
ulation growth.

Example 3.2. Model of Verhulst-Pearl logistic describes the dynamical growth of one
population which has the intrinsic growth and growth with saturation due to the carrying
capacity.

ẋ(t) = r x(t)

(
1− x(t)

K

)
, x(0) = x0 (3.5)

where K denotes the carrying capacity, r stands for the intrinsic growth, and x0 indi-
cates the initial size of population.

The corresponding parameters system given by θ := (K, r, x0). For simplicity,
the simulation considers only two parameters, namely r and x0. In fact, the state
variable x(t, θ) was less sensitif with respect to parameter K than the others [9]. For
that reason, K is taken as constant K = 17.5. The analitic solution of the model is
given explicitly by

x(t) =
17.5

1 + ( 17.5
x0
− 1) exp(−rt)

. (3.6)

The profile of solution for x0 = 0.7 dan r = 0.1 is shown on Figure 3.



8 Julan HERNADI

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

t

x
(t

;θ
)

Gambar 3. Graphic of solution to logistic model for x0 = 0.7 and r = 0.1

A relevant problem in connection with the parameter estimation is how to choose
the measurements time so that the collected data contains as much as possible the
information about parameters x0 and r. Specifically,

• Where is the interval (duration) for measurements,
• How many measurements must be taken, and
• How is the distribution of the measurements.

The inverse problems is solved for each given a set of measurements data (observation
process) repeatedly. On each repetition, a set of noises is disturbed to measurement
data. The following algorithm required to realize the numerical simulation.

Algorithm 2.

(1) Define the collection of measurements set or a potential samples Ω0 := {τ1, τ2, · · · , τN}
where τi = {ti1, ti2, · · · , tin} is the set of measurement times. In this case, each
sample consists of the same number of points, i.e. n.

(2) Fix L, the number of repetitions.
(3) Generate M , the randomly matrix with size L×n where its rows are the vectors

of noises ε ∼ N(0, σ2).
(4) For each τi ∈ Ω0:

(a) Define the true output x(t; θ) with rescpect to θ = θtrue so that x =
(x(t; θtrue)|t ∈ τi).

(b) For each k = 1, · · · , L, define the observation data zki (t) composed of the
true output component and the noise component zki (t) = x(t; θtrue) + εk

where t ∈ τi and εk denotes the random vector of kth row of matrix M .
(i) Define the functional J ki : Θad → R with

J ki (θ) :=
∑
t∈τi

|zki (t)− x(t; θ)|2.

The following minimizer is obtained.

θ̂ki = argmin
{
J ki (θ)|θ ∈ Ωad

}
.

(ii) Finally, the estimator corresponding to the measurement time of
τi = {ti1, ti2, · · · , tin} is defined as

θ̂i :=
1

L

L∑
k=1

θ̂ki .
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(c) Calculate the standard error of this estimator to know its variability by
formula

SEθ(τi) =

L∑
k=1

(θ̂k(τi)− θtrue)2.

where θ̂k(τi) denotes the estimator obtained through sample τi at kth rep-
etition.

Totally, there are N vector of estimators corresponding to N measurements sample. The
sample correspoding to the estimator with minimum standard error dan most accurate
is appointed as the best sample.

Numerical experiment 2. In the implementation, the experiment strategic yields a
constrained optimization as introduced in Hernadi [8] and Banks at. al. [5]. A slightly
different from precursors, this time a 13 intervals of potential measurements are given
in advance as shown in Tabel 1. On each interval, 5 points are taken uniformly where
both ends interval are included. The set of measurements (samples) which derive from
each interval is used to estimate θ.

Table 1. Some intervals for measurement

No Interval No Interval No Interval No Interval No Interval

1 [0, 4] 4 [12, 16] 7 [8, 16] 10 [10, 20] 13 [12, 20]
2 [4, 8] 5 [16, 20] 8 [16, 22] 11 [0, 25]
3 [8, 12] 6 [2, 8] 9 [0, 10] 12 [5, 10]

The nominal parameter had been choosen r = 0.7 and x0 = 0.1 L = 50 and
σ = 0.125 for the standard of deviation. The MATLAB optimization toolbox fminsearch
had been applied with equal initial values for all experiments. The result of numerical
experiments is sumarized in Tabel 2.

Table 2. The estimation and standard errors for each sample

Sampel Est parameter Standard error
r x0 r x0

1 0.6954 0.1048 0.4971 0.0495
2 0.6995 0.1005 0.0119 0.0047
3 0.6996 0.1022 0.0278 0.0238
4 0.7075 1.0379 2.7343 390.79
5 1.3641 3.7687 83.300 2696.8
6 0.6985 0.1012 0.1220 0.0049
7 0.7001 0.1018 0.0290 0.0235
8 1.4344 3.6315 84.200 2474.0
9 0.6993 0.1010 0.0112 0.0054
10 0.7068 0.1344 0.3802 0.8510
11 0.6988 0.1039 0.0832 0.0320
12 0.7002 0.1000 0.0084 0.0043
13 0.7378 1.2389 18.5817 18.5910

According to table, it is clear that the worst estimation are given by sample 5 and
sample 8, not only a lack of accuracy but also their standar errors are very big. For
sample 4 and sample 13, the accuracy is good for parameter r but poor for parameter
x0, while the standard errors are still rather big. The best result is given by sample 12,
then follow by sampel 2.
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Table 3. The values of optimal criteria for each sample

No of Sample D-optimal E-optimal SE-optimal

1 -5.8509 0.8775 0.8808
2 -12.8318 0.0220 0.0221
3 -11.4845 0.0618 0.0619
4 -2.5850 10.4363 10.4435
5 8.4335 3858.4 3859.6
6 -12.3877 0.0248 0.0250
7 -10.6975 0.0865 0.0868
8 8.8811 5131.5 5132.9
9 -9.6012 0.4546 0.4548
10 -6.4705 1.4182 1.4193
11 -9.4171 0.1657 0.1662
12 -13.2531 0.0152 0.0153
13 -1.7538 18.5817 18.5910
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Gambar 4. Estimator derived from 50 experiments

For a confirmation the result to the theoretical background, the Fisher information
matrix (FIM) is calculated for each sample by formula (2.7) with σ = 1, then the
corresponding functional with optimal criteria is evaluated. The computation results are
presented in Table 3. Based on thi evaluation, the optimal criteria value of sample 5 and
8 much bigger than the others. Theoretically, the smaller value of optimal criteria the
better of estimator as its variance closer to the lower bound of Cramer-Rao inequality.
The best two are sample 12 and sample 2 which give small values of the optimal criteria.
For instance, the sample 8 is regarded as bad sample as the value 8.4335 for D-optimal
and 3.8584×103 for E-optimal, meanwhile the sample 12 is considered as the best since
the value for D-optimal is −13.2531 and 0.0153 for E-optimal. The results of SE-optimal
resemble E-optimal.

The influence of those 50 experiments with respect to the parameter estimation
is visualized by two graphs on Figure 4 that compares between the best sample and
another. On left panel, the measurements were taken on [5, 10], i.e. sample 12. It can be
seen that the estimators for both paramaters are very settle. This behaviour indicates
the sampel contains much information about the paramemeter. However, on the right
panel the measurements were taken on the interval [12, 16], i.e. sample 4. Although
the accuracy is good enough as 0.7075 for r but it come worst for x0 as 1.0379. Also,
their variability are very big, in particular for x0. This sample is regarded as the less
informative for parameter being estimated than previous one.
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4. CONCLUDING REMARKS

The numerical simulation of inverse problem has been applied to the problem of
finding the optimal location for sensor and the optimal time for measurement. According
to simulations, the optimal criteria does play important role to obtain the optimal
sample in the sense it contains much information about the parameters being estimated.
Although the lower bound of Cramer-Rao inequality is almost impossible to be achieved,
it is suggested to have a sample with small optimal criteria value, the smaller this value
the better sample quality for estimating in the sense more accurate and more resistence
due to small disturbance on the measurement data.

This simulation used a single sample to estimate all parameters. As a result, the
quality of estimation are different among the parameters. It is suspected that certain
parameters have different optimal sample of other parameters. It suggests us to inves-
tigate more deeply the sample characteristic correspond to individual paramater. The
estimation method of parameter individualy could be considered in the next research.
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