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Abstract—In estimating parameters, a small sample with
high information content is preferable to a large sample but
there is insufficient information. Therefore, the selecting of the
optimal sensor location becomes a crucial problem in parameter
estimation. The problem of determining an estimation through
sampling data is a part of the inverse problems. Generally,
the inverse problem has no solution in the ordinary sense
because in most cases the known data have been contaminated
with noises. The minimizer of the least square functional is
usually taken as the solution to the inverse problem. This
article demonstrates how to implement numerically the inverse
problems in relation to parameter estimation when the noise
set is generated independently during the experiment. The
numerical simulation is applied to a distributed parameter
system of the parabolic equation to find the optimal sensor
locations for the parameter as well as to a model of a dynamic
system to obtain the optimal time for measurements. Based on
the result of the numerical experiment, it is found that different
parameters in the same system could have different optimal
samples.

Index Terms—optimal sensor location, optimal design, FIM,
parameter estimation.

I. INTRODUCTION

TWo approaches commonly used to investigate the phe-
nomenon of the real world phenomenon are through

their mathematical representation [1] and by making replica-
tion of their behavior in laboratory scale [2]. On the mathe-
matical representation, a relevant mathematical model is built
and studied. In most cases, the mathematical model involves
some parameters that require to be estimated through ob-
servation data. The information content of the parameters
possessed by the sample is more important than the sample
size itself. A small sample containing a lot of information
about parameters is much more significant than another
large sample but lacks information content. Assessing the
informational content of observational data is a crucial issue
in parameter estimation [3], [4]. The information content
about existing parameters in a sample is usually measured
through the criteria that minimize some cost functional over
the set of Fisher information matrices (FIM’s) [5]. The FIM
plays an important role in the optimal design of parameter
estimation since the Cramer-Rao lower bound inequality can
only be attained by the inverse of FIM [6], [7].

Initially, the problem of parameter estimation appeared in
statistics where the functional relationship among variables
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is presumed to have an explicit representation like linear,
quadratic, exponential, or their combination [8], [9]. The
set of parameters in the statistical model was assumed to
arise from a population with a certain distribution probability
[6], [9]. However, in a distributed parameter system, the
relationship between variables tends to be more compli-
cated. Nowadays, the explicit models mentioned earlier are
inadequate anymore to deal with problems in science and
engineering [10], [11], [12]. The implicit relationship among
variables represented in more complex operator equations
such as differential equations subjected to initial or boundary
value conditions, integral equations, or integro-differential
equations are well suited and had attracted the attention of
many mathematicians and applied scientists, see [4], [13],
[14], [15].

The term distributed-parameter system (DPS) refers to
dynamical systems whose state depends not only on time
but also on spatial coordinates [4], meanwhile the lumped-
parameter system (LPS) depends only on time [6]. The
abstract formulation of parameter estimation (identification)
in the parameter system can be described by the following
operator equation [17]:

G(θ) = d, (1)

where G denotes an operator, θ constitutes the parameter
vector characterizing the model and d represents the obser-
vation data that might be a function of time or a discrete set
of observations. The problems in the parameter identification
consist of the forward and the inverse problem [7], [14]. On
the forward problem, the parameter θ is given, while the
output model is determined. Conversely, the inverse problem
is addressed to obtain an estimate for parameter θ through
the observation data d [18]. In this formulation, the problem
of solving an operator equation and estimating some param-
eters must be solved simultaneously. The inverse problem
is generally ill-posed because of the noise disturbance most
probably taken into account in the observation of data due to
an incorrect reading of the instrument or a rounding error of
the numerical data [19]. This is the main obstacle in solving
the inverse problem in connection with parameter estimation.
This situation can be represented as follows [17].

data = clean observation+noise component
d = G(θtrue) + ε (2)

= dtrue + ε (3)

where dtrue = G(θtrue), i.e. fulfills exactly equation (1)
whenever θ = θtrue. This exact parameter is sometimes re-
ferred to as the nominal or natural parameter and it presumed
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to exist naturally. In most cases the nominal parameter is not
available explicitly, instead, it is approximated by an estimate
obtained through the observational data (sample) [17], [15].

An intuitive consideration in choosing the optimal sample
is that a sample containing much information for some
parameter is supposed to result in a better estimate for that
parameter in the sense more accurate and more reliable. Ac-
curate refers to the proximity of the nominal parameter, while
reliability refers to the small variances. The premise used
in parameter estimation is that the information contained
on the parameter θ may vary considerably from one-time
measurement to another [20]. The purpose of determining
the optimal sensor location is intended to select a data set
that contains the most information about parameter to be
estimated [21], [22].

One of the parameter model that frequently appears on
the applied sciences is the system of differential equations
which models some physical, sociological or biological phe-
nomenon [24].

ẋ(t) = g (t, x(t), θ) , t ≥ t0, x(t0) = x0(θ), (4)

where x(t) ∈ Rn denotes the vector of state variables and
θ ∈ Rp. This model is a kind of LPS since the state is solely
on the time variable. For a given the admissible parameter θ,
the solution x = x(t, θ) to the initial value problem (4) can
be obtained. In most cases, the model output emerges in the
form of functional with respect the state variable x(t, θ), i.e.
f(t, θ) := h(t, x(t, θ), θ). Consequently, the model output
(4) can be represented as

z(t) = f(t, θ), t ≥ t0. (5)

On the other hand, the DPS model can be expressed by
a partial differential equation subjected to some initial and
boundary values [4]:

∂y

∂t
= F

(
x, t, y,

∂y

∂x1
,
∂y

∂x2
,
∂2y

∂x21
,
∂2y

∂x22
, θ

)
, (6)

where x ∈ Ω ⊂ R2, t ∈ (0, T ) and boundary conditions
B
(
x, t, y, ∂y∂x1

, ∂y∂x2
, θ
)

= 0, x ∈ ∂Ω, t ∈ (0, T ) and initial
value y(x, 0) = y0(x), x ∈ Ω.

In the numerical implementation, this system is generally
solved by a semi-discrete method in which one variable is
discretized while maintaining another continuous. Thus, the
output model given by (5) for LPS in certain circumstances
can be adapted to the DPS. By assumption the model (4)
is representative enough concerning the real model, the
existence of the nominal parameter θ0 ∈ A is guaranteed, and
thus the system output y(t) = f(t, θ0) can be regarded as the
true output. It is assumed that the measurement z(t) at time t
is contaminated by noise. This means that the measurement
consists of two components, i.e. the system output (clean
data) and the error component (noise).

z(t) = f (t, θ0) + ε(t), t ∈ [0, T ]. (7)

The random processes of measurement error ε(t) is assumed
to have zero mean, time-dependent variance σ2(t), indepen-
dent within the measurements.

This paper is structured as follows: section 2 gives a brief
overview of the optimal sensor location through some simple
illustrations. Section 3 presents the abstract formulation of

the problem in order to obtain the optimal sensor location
which is referred to as the optimal experimental design or
the optimal design method. Some famous optimal criteria
are introduced in this section. In section 4, some numerical
simulations of inverse problems are conducted for both DPS
and LPS through a series of experiments in which the
noises are generated independently during the experiment.
The estimate θ̂ for θ0 is taken as the mean of estimates
obtained from all experiments as performed in the Monte
Carlo simulation. The sample’s quality is measured through
its accuracy and variabilities.

II. OPTIMAL SENSOR LOCATION: AN OVERVIEW

During the COVID-19 pandemic, all public areas including
schools and universities demand the visitors to check their
body temperature using thermometer sensors placed at the
entrances. Once the author took temperature measurements
in three different locations through the palms, back of
hands, and forehead. The results were 36.1, 36.2, and 36.4,
respectively. Which value accurately represents my body
temperature at that time? This is the fundamental question
on the problem of optimal sensor location.

For the next illustration, consider the explicit model given
by the following equation.

f(x, t; θ) = exp(−θπ2t) sin(2πx) cos(20x). (8)

In order to get a better understand these issues, consider
the model (8) with t = 0.2 and nominal parameter θ0 = 1.
Think of the model output that was mixed by noise contam-
ination as shown in Figure 1. The noise set was generated
by MATLAB using randn function.
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Fig. 1. Model output of explicit model (8) with noise contamination.

To estimate the nominal parameter θ0, a sample should
be taken through the sensor location which is then used to
define the sum square errors (SSE). For example, if x1 and
x2 are taken as sensor points then the following SSE must
be minimized.

J (θ) = (f(x1, t; θ)− z1)
2

+ (f(x2, t; θ)− z2)
2
,

where z1 and z2 are measurements with noise contamination
as given in (7). The minimizer of SSE is set as the estimate
given by x1 and x2. Let Ω be the candidate sensor location
which consists of 100 points evenly distributed on the interval
[0, 1]. The experimental results were summarized in Table I.
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TABLE I
ESTIMATES OBTAINED FROM SEVERAL SENSOR LOCATIONS.

Sensor Points of measurement Estimate θ̂
1 30 points uniformly 1.3580
2 10 first points 1.0009
3 10 last points 1.5000
4 x1 = 0.4545, x2 = 0.5455, x3 = 0.6162 1.2610

Based on the experiment it is clear that the number of
points within sensors does not guarantee a better estimate.
For example, sensor 1 consists of 30 points which is worse
than sensor 3 which contains only 10 points. According to
[4], the number of required sensor points in some cases is
just a little more than the number of parameters so that it can
be kept to a minimum. To verify this statement, numerical
experiments have also been carried out for each sensor point-
wise. The results are shown in Figure 2. The most accurate
is achieved by x = 0.7172 which produces θ̂ = 1.0818.
Surprisingly, a single point contains more information about
parameter θ than several points collectively. In case the
nominal parameter θ0 was not assumed beforehand, the
accuracy cannot be measured. Instead, the quality of the
estimate is measured by the reliability of the sensor point
which is indicated by the standard error of the estimates
throughout the simulation.
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Fig. 2. Estimates obtained by single point sensors.

III. THE OPTIMAL DESIGN METHOD

Considering the output model f(t, θ) and the statistical
model z(t) (observation processes), the objective function is
given by a generalized functional error as

J(y, θ) :=

T∫
0

1

σ2(t)
(y(t)− f(t, θ))

2
dP (t) (9)

where P denotes a general measure defined on σ-algebra
of [0, T ]. In particular, P is the probability measure. Let
τ = {t1, · · · , tN : t1 < t2 < · · · < tN}. The following
Dirac measure δti is one simple but important probability
measure, where δti(A) = 1 if ti ∈ A and δti(A) = 0 if
ti /∈ A. For a given set of points τ = {t1, t2, · · · , tN}, the
measure Pτ is defined as

Pτ =
N∑
i=1

δti . (10)

Employing this measure, the cost functional (9) reduces to
the discrete version of the weighted least squared functional.

Jd(y, θ) =
N∑
i=1

1

σ2(ti)
(z(ti)− f(ti, θ))

2
. (11)

Although the continuous version (9) is applicable numer-
ically, for instance by using some quadrature formula for
integral approximation, the discrete version (11) is more
beneficial for numerical implementation. Therefore, this ex-
periment will utilize the discrete version.

According to [5], the abstract problem of the optimal
design is choosing ”the best” measure P̂ over P[0, T ] the
set of all probability measures on [0, T ] in the sense

J
(
F (P̂ , θ0)

)
= min
P∈P(0,T )

J (F (P, θ0)) , (12)

where F (P, θ0) denotes the Fisher information matrix (FIM)
given by

F (P, θ0) =

∫ T

0

1

σ2(s)
∇Tθ f(s, θ0)∇θf(s, θ0)dP (s). (13)

Practically, the probability measure P is characterized by
mesh, or points in τ as aforementioned such that the optimal
design method can be transformed into the optimization
problem of choosing a set of points τ∗ = {t∗i }, i = 1, · · · , N
such that the following condition holds.

J (F (τ∗, θ0)) = min
τ∈T
J (F (τ, θ0)) , (14)

where T stands for a set of all meshes 0 ≤ t1 ≤ · · · ≤
tN ≤ T .

The discrete version of FIM had been introduced by
Thomaseth and Cobelli [25] as

F (τ, θ0) =
N∑
i=1

1

σ2(ti)
∇Tθ f(ti, θ0) ∇θf(ti, θ0), (15)

where ∇θf := ∂f(t,θ)
∂θ denotes the vector gradient of param-

eters. Throughout this article, the simulations use the discrete
version of FIM’s (15) as the arguments of the cost functional
(14). Furthermore, the current objective is to find an s∗ which
minimizes some real-valued function of J defined on all
possible FIMs. Some optimal criteria were considered in [4],
[5], [20], among others are:
• D-optimal, which maximizes the determinant of FIM,

i.e.
J (F ) := − ln det(F )

where ”det” denotes the determinant of matrix.
• E-optimal, which maximizes the spectral radius of FIM,

i.e.
J (F ) := λmax(F−1)

where λmax is the largest eigen value.
• A-optimal or SE-optimal, which maximizes the trace of

FIM, i.e.
J (F ) := tr(F−1)

where ”tr” stands for the trace of matrix, viz. the sum
of entries on the main diagonal.

In the first stage, the optimal sample is determined according
to functional (14) based on some optimal criteria. Secondly,
the estimation of parameter θ is taken as the minimizer of the
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least squared functional (11). There is no doubt that the larger
the sample size and the more parameters involved, the more
difficult it is to solve the problem numerically because of
the high-dimension problem. On the other hand, in classical
parameter estimation, a small sample size may contain less
information about the parameters to be estimated. However,
in the optimal design, the sample size can be reduced as long
as the content of the information inherited by sample can be
kept at maximum [4].

In the LPS, the optimal sample corresponds to minimizing
the number of measurements and choosing the best time
when the measurements should be carried out. It is similar
to determination of the best position for measurement in the
case of spatial variables in the DPS. In the dynamical system
or LPS, the traditional sensitivity function (TSF) and the
generalized sensitivity function (GSF) are often used as a
reference in determining the optimal times of measurement
[26], [20]. In the DPS, the optimal measurement relates to
selecting a spatial point that meets the optimal criteria within
a predetermined time horizon.

IV. NUMERICAL SIMULATION

The first simulation takes a simple case in DPS, the
equation of temperature distribution of a rod thin [4].

Example 1

The temperature distribution y = y(x, t) on a rod thin
with assumption no heat source and both ends with perfect
insulation.

∂y

∂t
(x, t) = θ

∂2y

∂x2
(x, t), x ∈ (0, 1), t ∈ (0, tf ) (16)

y(x, 0) = sin(πx) (17)

where the parameter θ stands for the diffusivity of the
material forming the rod. Suppose the two ends associate
with x = 0 and x = 1, respectively, and at time t = 0
suddenly placed in contact with ice packs at 0◦ and that the
temperature at the ends is maintained at all later times. The
situation can be represented by the boundary conditions

y(0, t) = y(1, t) = 0, t ∈ (0, tf ). (18)

It is deliberately the model was taken trivially so that it has
an explicit solution given by

y(x, t) = e−θπ
2t sin(πx). (19)

The objective here is to find x1 the location which contains
the most information about parameter θ. Theoretically, it is
required to solve the optimization problem with the objective
function J defined on the set of FIM’s. However, at this
moment the potential sensor locations are prior defined
intuitively to be candidates for the optimal sample. To
allow numerical simulation does work, the spatial variable
is discretized and the time variable is kept continuous so
that the observation process can be represented by

z(t) = ym(t) + εm(t), t ∈ T := (0, tf )

where

ym(t) = col
(
y(x1, t), y(x2, t), · · · , y(xn, t)

)
εm(t) = col

(
ε(x1, t), ε(x2, t), · · · , ε(xn, t)

)
.

In this case, z(t) is the observation vector in a n-dimenstion
space, xj ∈ [0, 1], j = 1, · · · , n are the sensor loca-
tions, y(xj , t) is regarded as the true output at position
xj and time t, and ε = ε(x, t) is the noisy random
process with assumption E(εm(t)) = 0, Var(εm(t)) =
σ2(t), Cov(εm(t)εm(s)) = σ(t)σ(s)δ(t − s) for t ∈ T ,
where δ is the Dirac distribution concentrated at origin.

Before solving the inverse problem by a certain optimiza-
tion algorithm, the observation data were disturbed by some
artificial noise. For each point of optimal sensor xj , the
experiments are carried out repeatedly with various noises.
The noises are generated by MATLAB toolbox randn. The
following algorithm is designed to write computer codes on
MATLAB.

Algorithm 1

1) Discretize the time interval [0, tf ], e.g. by a uniformly
partition with step size ∆t. Let T = {t1, t2, · · · , tnt}
be the measurement times where nt is the number of
sampling times.

2) Define the set of potential sensor location Ω0 =
{x1, x2, · · · , xN}, for instance by taking the equidis-
tance points (uniformly).

3) For each i = 1, 2, · · · , N :
a) Represent the vector of true or system output,

i.e. y(t, xi; θ) for θ = θ0. So, for each i =
1, 2, · · · , N , the true output is represented by

yi = (yki |k = 1, · · · , nt)

where yki = y(xi, tk).
b) Generate the noise εi ∼ N(0, σ2)

εi = (εki |k = 1, · · · , nt).

c) Define the observation data zi = (zki |k =
1, · · · , nt) by taking

zi(tk) = y(xi, tk) + εki .

d) Define the functional error as the objective func-
tion Ji : Θad → R with

Ji(θ) :=

nt∑
k=1

|zi(tk)− y(xi, tk; θ)|2.

e) Corresponding to xi ∈ Ω, the estimate θ̂i is
determined according to

θ̂i = argmin {J (θ)|θ ∈ Θad} .

f) Do experiment (a)-(e) as L times. The noises are
distinguished from one experiment to another.

g) Apply the principle on Monte Carlo simulation,
the estimate corresponding to xi ∈ Ω is taken
as the mean of L estimates obtained through all
experiments.

h) Calculate the standard error of the estimate to
measure its reliability.

The sensor location xj corresponds to the smallest
standard error is regarded as the most informative
sample.
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Fig. 3. The model outputs of Example 1 for x = 0.5 and their observation.

Numerical Experiment 1

For this simulation, it is assumed that θ0 = 1, tf = 2,
ε ∼ N(0, σ2) where σ = 0.04 is the random noises generated
by MATLAB using randn. For example, Figure 3 shows the
exact or true model output (smooth curve) and the observa-
tion or measurement data (irregular curve) for x = 0.5. The
sampling had taken uniformly with ∆t = 0.01 including
endpoints. So, there will be as many as 201 measurements
for each sensor location. Supposedly, the sensor locations
being observed are given in the set

Ω0 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

The experiment was performed as L = 20 repetitions where
the noises were generated independently. The optimization
problem can be solved by MATLAB, viz. function fmin-
search and fminbnd of MATLAB optimization toolbox.
The present numerical experiment adopted the fminbnd for
dealing 1-D optimization problem. The standard error is
calculated by the following formula.

SEθ(x) =
L∑
k=1

(θ̂k(x)− θ0)2.

The experimental results are presented in the three follow-
ing consecutive figures. Figure 4 indicates the errors of each
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Fig. 4. Error of estimates for each sensor location.

estimate obtained from each sensor point. It is found that the
most accurate estimator is given by sensor x = 0.5. The other
sensor points generate estimates with symmetrical-like errors

with respect to x = 0.5. For instance, the accuracies given
by the pairs x = 0.1 and x = 0.9, x = 0.2 and x = 0.8,
x = 0.3 and x = 0.7, and x = 0.4 and x = 0.6 are look like
similar.
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Fig. 5. Standard error of estimates for each sensor location.
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Fig. 6. Estimates obtained by the worst sensor at x = 0.1 and the best
sensor at x = 0.5.

The standard errors for each estimate are shown in Figure
5. The smallest variance also happened at x = 0.5. This
means that the sensor at x = 0.5 provides the most infor-
mation about the parameter θ. In addition, although both
x = 0.1 and x = 0.9 have comparable accuracy, the sensor
at x = 0.9 is considered better because its standard error
is smaller. Overall, it is concluded that the best sensor is
given by x = 0.5 while the worst is provided by x = 0.1.
The performance of two particular sensors in producing
the estimates is displayed in Figure 6. Observe that the
fluctuations provided by the worst sensor are significantly
higher than the best sensor. In addition, two sets of estimates
exhibit a strong linear correlation with a coefficient 0.9987.

Furthermore, it should be confirmed in the theoretical
background that the optimal criteria must met by x = 0.5.
By means of elementary calculus, the following FIM can be
obtained easily.

M(x) =
π4

σ2

∫ tf

0

t2e−2θπ
2t dt︸ ︷︷ ︸

>0

sin2(πx).

Because a single point is only considered, the FIM becomes
a matrix of single element so that the optimal criteria such as
E-optimal or A-optimal are trivial. Indeed, the determinant,
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the eigenvalue, and the trace of 1×1 matrices is nothing but
that element itself. Thus, the maximizer of optimal criteria
on FIM is given xj itself. In this case, M(xj) = k sin2(πxj)

where k = π4

σ2

∫ tf
0
t2e−2θπ

2tdt > 0. The matrix M(xj)
reaches maximum at πxj = π/2 or xj = 0.5. Consequently,
the D-optimal criteria J (M(x)) = − ln detM(x) reaches
the minimum at x = 0.5. A similar argument for other
optimal criteria. Hence, the result of numerical simulation
fits perfectly with the theoretical background.

The following simulation takes the model of dynamical
system of logistic population growth [5].

Example 2

Model of Verhulst-Pearl logistic describes the dynamical
growth of one population which has the intrinsic growth and
growth with saturation due to the carrying capacity.

ẋ(t) = r x(t)

(
1− x(t)

K

)
, x(0) = x0 (20)

where K denotes the carrying capacity, r stands for the
intrinsic growth, and x0 indicates the initial size of the
population.

The corresponding parameters system given by θ :=
(K, r, x0). In brief, the simulation considers only two pa-
rameters r and x0 while K is considered as a constant. Let’s
take K = 17.5 so that the analytic solution of the model can
be written as

x(t) =
17.5

1 + ( 17.5
x0
− 1) exp(−rt)

. (21)

The main issue here is how to choose the measurement
points (times) so that the collected data contains as much as
possible information about parameters x0 and r. Practically,
the problem should be breakdown into how to determine
the duration of measurements, the number of measurements,
and the distribution of measurements. The measurement
data are presumed to have been contaminated by a set of
noises. The inverse problem is solved repeatedly for each set
of measurement data (observation process). The following
algorithm is prepared for writing the MATLAB codes for
numerical simulation.

Algorithm 2

1) Define the collection of the set of measurement times,
Ω0 := {τ1, τ2, · · · , τN} where τi = {ti1, ti2, · · · , tin}.
This means that for each τi, i = 1, 2, · · · , N , a sample
of size n is obtained via measurement at t = tij , j =
1, 2, · · · , n.

2) Fix L, the number of repetitions.
3) Generate M , the randomly matrix with size L × n

where the rows represent the vectors of noises of zeros
mean, i.e. ε ∼ N(0, σ2).

4) For each τi ∈ Ω0: i = 1, 2, · · · , N :
a) Define the true output x = (x(t; θ0)|t ∈ τi),

where θ0 is the assumed nominal parameter.
b) For each k = 1, · · · , L, define the observation

data zki (t) composed of the true output and the
noise component, i.e. zki (t) = x(t; θ0)+εk where
t ∈ τi and εk emerged from the kth−row of
matrix M .

i) Define the functional J ki : Θad → R with

J ki (θ) :=
∑
t∈τi

|zki (t)− x(t; θ)|2.

Apply some optimization technique to obtain
θ̂ki = argmin

{
J ki (θ)|θ ∈ Θad

}
. Furthermore,

the notation θ̂k(τi) =: θ̂ki denotes the estimate
obtained through sample τi on the kth− rep-
etition.

ii) Finally, the estimate corresponding for the
time measurement τi = {ti1, ti2, · · · , tin} is
taken as the mean of estimates obtained from
all repetitions, i.e.

θ̂i :=
1

L

L∑
k=1

θ̂k(τi).

iii) Calculate the standard error of this estimate
to know its variability by formula

SEθ(τi) =
L∑
k=1

(θ̂k(τi)− θ0)2.

Hence, there will be N estimates generated from N measure-
ment samples. The best sample is the sample corresponding
to the estimate that has the smallest standard error dan the
most accurate (in case the nominal parameter is known).

Numerical experiment 2

The experiment strategy fullfilled the constrained opti-
mization as introduced in Banks et. al. [5] with a variation on
the scenario to find the most informative sample. In this case,
a total of 13 subintervals were prepared for measurements
are shown in Table II. The 5 points which were distributed
evenly are taken from each subinterval. The measurement
data obtained through these points are used to estimate θ.
For that purpose, the nominal parameter had been chosen,
i.e. r = 0.7, x0 = 0.1, and L = 50. The noises matrix M
was generated by MATLAB with µ = 0 and σ = 0.125.
Similar to Experiment 1 before, the disturbance was a
kind of Gaussian noise. The parameters estimation based
on the non-Gaussian noises, i.e. the Lêvy noises had been
implemented in the parameter estimation for models in the
finance mathematics [27], [28].

TABLE II
SOME INTERVALS FOR MEASUREMENT

No Interval No Interval No Interval No Interval
1 [0, 4] 5 [16, 20] 9 [0, 10] 13 [12, 20]
2 [4, 8] 6 [2, 8] 10 [10, 20]
3 [8, 12] 7 [8, 16] 11 [0, 25]
4 [12, 16] 8 [16, 22] 12 [5, 10]

The MATLAB optimization toolbox fminsearch had been
applied with the same initial values for all experiments. The
numerical experiment results are summarized in Table III.
The results in this table may be slightly different if other
disturbance data are attached but their patterns might be
similar. According to Table III, it is clear that the worst
estimate was produced by sample 5 and also sample 8. They
are not only lack in accuracy but also bad in standard errors.
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TABLE III
THE ESTIMATES AND THEIR STANDARD ERRORS FOR EACH SAMPLE

Sampel Id Estimates Standard errors
r x0 r x0

1 0.6954 0.1048 0.4971 0.0495
2 0.6995 0.1005 0.0119 0.0047
3 0.6996 0.1022 0.0278 0.0238
4 0.7075 1.0379 2.7343 390.79
5 1.3641 3.7687 83.300 2696.8
6 0.6985 0.1012 0.1220 0.0049
7 0.7001 0.1018 0.0290 0.0235
8 1.4344 3.6315 84.200 2474.0
9 0.6993 0.1010 0.0112 0.0054

10 0.7068 0.1344 0.3802 0.8510
11 0.6988 0.1039 0.0832 0.0320
12 0.7002 0.1000 0.0084 0.0043
13 0.7378 1.2389 18.5817 18.5910

TABLE IV
THE VALUES OF OPTIMAL CRITERIA FOR EACH SAMPLE

Sample Id D-optimal E-optimal SE-optimal
1 -5.8509 0.8775 0.8808
2 -12.8318 0.0220 0.0221
3 -11.4845 0.0618 0.0619
4 -2.5850 10.4363 10.4435
5 8.4335 3858.4 3859.6
6 -12.3877 0.0248 0.0250
7 -10.6975 0.0865 0.0868
8 8.8811 5131.5 5132.9
9 -9.6012 0.4546 0.4548
10 -6.4705 1.4182 1.4193
11 -9.4171 0.1657 0.1662
12 -13.2531 0.0152 0.0153
13 -1.7538 18.5817 18.5910

To confirm the experimental results to the theoretical
background, the Fisher information matrix (FIM) needs to
be calculated for each sample by the formula (15) with
σ(ti) = 1 for all i = 1, 2, · · · , N , then the corresponding
optimal criteria (D, E, and SE-optimal) are evaluated. The
results are displayed in Table IV. Based on the evaluation, the
optimal criteria values of samples 5 and 8 are much bigger
than the others. This fact corresponds to the poor accuracy
and standard errors of estimates shown in Table III.

Theoretically, the smaller value of optimal criteria, the
closer variance to the lower bound of Cramer-Rao inequality,
and consequently the better of estimate. This condition is
fullfiled by sample 2 and sample 12. Both samples reached
not only the minimum value for all optimal criteria (Table
IV) but also attained the highest accuracies and the smallest
standard errors for both parameters r and x0 (Table III). This
suggests that both samples contain much more information
about parameters than others.

In addition, it was found that a sample could contain much
information about certain parameters but less for others.
According to Table III, for instance, sample 4 yields good
estimate for r but it tends worse for x0. Similar behavior
also occurs on their standard errors.

V. CONCLUDING REMARKS

The numerical simulation of the inverse problem was
applied to the problem of finding the optimal location for
the sensor and the optimal time for measurement. According
to simulations, the optimal criteria does play an important
role to obtain a sample that contains much information about
the parameters being estimated. Although the lower bound of
Cramer-Rao inequality is almost impossible to be achieved, it

is suggested to have a sample with a small optimal criterion
value. A sample of this kind will produce good parameter
estimates in the sense of accuracy and resistance due to a
small disturbance of the measurement data.

The simulation used a single sample to estimate all pa-
rameters. As a result, the qualities of estimates are disparate
among the parameters. This indicates that the parameters
have their optimal sample that can differ from each other.
The problem of determining a single sample that contains a
lot of information for all parameters is a crucial issue in the
optimal design of the measurement method.

There are still many problems that need to be addressed
through further research. In case such an explicit form is
not available then the numerical treatment will become more
difficult. A large number of sensors will definitely affect
the computational complexity and bring forth multimodal
optimization problems. In case the parameters depend on
time as well as spatial variables, it will be more highly
complicated to determine the optimal sensor for parameter
estimation.
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