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Abstract. In most cases, the mathematical model that describes a real-world phenom-
enon contains parameters that must be estimated using observational data. A small
sample containing a lot of information about parameters is much more significant than
another large sample but lacks information content. The presence of noise disturbance
in the data observation due to an inaccurate instrument reading or a rounding mistake
of the numerical data would disrupt the estimation quality. An intuitive consideration is
that an observation data set can contain a lot of information about certain parameters
but less for others. Determining the observation data that collectively provides the most
information for all parameters is a major issue in the optimal design of measurement.
This article implements the strategy of selecting observational data for estimating pa-
rameters of mathematical model using the sensitivity function and the optimal-criteria
based on the Fisher Information Matrix (FIM).
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Motivation

A Mathematical models which describes some real phenomena
mostly involve parameters that must be estimated by
experiment data as a result of measurement.
Parameter estimation refers to the determination from
observed data of unknown parameters such that the predicted
respons (system model) and the process observation are close.
A postulate: Each experimental data set contains di�erent
information about parameters from one another.
A small sample containing a lot of information about
parameters is much more significant than another large
sample but lacks information content.
How to carry out measurement for obtaining sample
containing the most information about the parameters?
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Ilustration 1

Which measurement generates the most accurately of the body
temperature?
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Ilustration 2: Theoretical Model & Discrete Observation
Consider the explicit parameterized-model given by:

f (x , t; ◊) = exp(≠◊fi2
t) sin(2fix) cos(20x)

and the observation given by:

z(t) = f (t, ◊0) + ‘(t), t œ [0, T ],

where ◊0 is the nominal parameter, the noise ‘(t) is assumed to be
zero mean with constant variance.
To estimates the nominal paramater ◊0, a sample x1, x2, · · · , x

n

should be taken and the following SSE to be minimized:

J (◊) =
nÿ

k=1
|f (x

k

, t; ◊) ≠ z

k

(t)|2 .

How to choose the such sample x1, x2, · · · , x

n

: how many and
where the positions?
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Example of measurements contaminated by noises
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The graph was generated for t = 0.2 and ◊0 = 1 and ‡ = 0.01.
Let � be the candidate sensor location consists of 100 points
evenly distributed on the interval [0, 1].
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Estimates obtained from several sensor locations

Sensor Points of measurements Estimate ◊̂
1 30 points uniformly 1.3580
2 10 first points 1.0009
3 10 last points 1.5000
4 x1 = 0.4545, x2 = 0.5455, x3 = 0.6162 1.2610

Some facts:
The number of points within sensors does not guarantee for a
better estimate. For example, sensor 1 contains 30 points
worse than sensor 2 with only 10 points. Sensor 3 and sensor
4 are also worse.
Even, the best single point sensor is given by x = 0.7172
which produces ◊̂ = 1.0818.
In case the nominal parameter ◊0 was not assumed
beforehand, the quality of the estimate is measured by
standard error of the estimates throughout the simulation.
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Reliability of single point sensors
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The minimum variance given by x = 1.0818 also the most
accurate, i.e. the optimal single point sensor.
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System description of mathematical model

Lumped-parameter system (the nonlinear dynamical system):

dX

dt

= F (t, X ; ◊), X (t0) = X0, (1)

X : [t0, t

f

] æ RN state variable, F : [t0, t

f

] ◊RN æ RN some known
function, ◊ = (◊1, ◊2, · · · , ◊

p

) the parameter vector to be estimated.
Distributed-parameter system:

ˆy

ˆt

= F
3

x , t, y ,
ˆy

ˆx

,
ˆ2

y

ˆx

2 ; ◊

4
, x = (x1, x2) œ �, t œ (0, t

f

), (2)

y = y(x , t) the state variable, F some known function,
◊ = (◊1, ◊2, · · · , ◊

p

). The system accompanied by the BC and IC:

B(x , t, y ,
ˆy

ˆx

; ◊) = 0, x œ ˆ�, t œ (0, t

f

) and y(x , 0) = y0(x), x œ œ.

The parameter model ◊ is estimated through measurement data.
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Fisher Information Matrix (FIM) & Cramer-Rao Inequality

Lumped-parameter system (Thomaseth & Cobelli, 1999):

M =
Nÿ

i=1

1
‡2(t

i

)ÒT

◊ f (t
i

, ◊) Ò◊f (t
i

, ◊), (3)

where f (t, ◊) the output model, Ò◊f := ˆf (t,◊)
ˆ◊ denotes the vector

gradient of parameters.
Distributed-parameter system (Ucinski, 2005):

M =
Nÿ

j=1

1
‡2(t)

⁄
t

f

0

3
ˆy(x j , t)

ˆ◊

4
T

3
ˆy(x j , t)

ˆ◊

4
dt (4)

Cramer-Rao inequality:

cov(◊̂) ≤ M

≠1, (5)

where ≤ denotes the Löwner ordering of symmetric matrices,
i.e. cov(◊̂) ≠ M

≠1 is a nonnegative definite.
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Some Optimal Criteria (Quantitative Reference)
The objective is to find t

ú = {t1, t2, · · · , t

N

} for LPS or
x

ú = {x1, x2, · · · , x

N

} for DPS which minimizes some real-valued
function J defined on all possible FIMs.

D-optimal, which maximizes the determinant of FIM, i.e.

J (F ) := ≠ ln det(F )

where "det" denotes the determinant of matrix.
E-optimal, which maximizes the spectral radius of FIM, i.e.

J (F ) := ⁄max(F ≠1)

where ⁄max is the largest eigen value.
A-optimal or SE-optimal, which maximizes the trace of FIM, i.e.

J (F ) := tr(F ≠1)

where "tr" stands for the trace of matrix, viz. the sum of entries on
the main diagonal.
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Example 1 - DPS
The IBVP describing the temperature distribution y = y(x , t) of a rod
thin (Hernadi, 2022):

ˆy

ˆt

(x , t) = ◊
ˆ2

y

ˆx

2 (x , t), x œ (0, 1), t œ (0, t

f

) (6)

y(x , 0) = sin(fix) (7)
y(0, t) = y(1, t) = 0, t œ (0, t

f

) (8)

where the parameter ◊ stands for the di�usivity of the material forming
the rod.✏
�

�
�

How to find x

1 the location which contains the most information about
parameter ◊?

The solution of model trivially given by y(x , t) = e

≠◊fi2
t sin(fix), and so

the FIM is obtained as

M(x) = fi4

‡2

⁄
t

f

0
t

2
e

≠2◊fi2
t

dt

¸ ˚˙ ˝
>0

sin2(fix).

This FIM can be regarded as a matrix of single element.
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Example 1 (cont...)

The FIM at sensor point x

j is written as

M(x j) = k sin2(fix

j)

where k = fi4

‡2
s

t

f

0 t

2
e

≠2◊fi2
t

dt > 0. It reaches maximum at

fix

j = fi/2 or x

j = 0.5.

D-optimal criteria

J (M(x)) = ≠ ln det M(x)

attains the minimum at x = 0.5. Similarly argument for other
optimal criteria.
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Simulation

It is assumed that ◊0 = 1, t

f

= 2, ‘ ≥ N(0, 0.02).
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Supposedly, �0 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} the
sensor locations being observed.

The following experiment was performed as L = 20 repetitions
where the noises were generated independently.
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Estimate Errors
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Standard Errors
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Sensitivity Functions (Qualitative Reference)
The sensitivity functions, both traditional (TSF) and generalized (GSF),
were frequently used as a reference for optimal measurement. Consider
the dynamical model:

dX

dt

= F (t, X ; ◊), X (t0) = X0, (9)

where X0 := [x1(t0), x2(t0), · · · , x

N

(t0)]T = [x01, x02, · · · , x0N

]T is the
initial condition and ◊ = [◊1, ◊2, · · · , ◊

p

]T is the parameter system.
The TSF are the derivatives of states with respect to parameter, i.e.
ˆX

ˆ◊ and it is obtained from the sensitiviy equation:

d

dt

3
ˆX

ˆ◊

4
= ˆF

ˆX

ˆX

ˆ◊
+ˆF

ˆ◊
(10)

A system of size N with p parameters will govern the sensitivity
equation of size N ◊ p. In case the initial condition is also considered
as parameter, there will be an additional equation of size N ◊ N.
Challenges in solving the sensitivity equations: large sizes, the matrix
function as unknown, and the dependence on the state equation.
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Generalized Sensitivity Function (GSF)

Let t1, t2, · · · , t

n

be the observation times, the FIM of (9):

F =
nÿ

j=1

1
‡2(t

j

) [Ò◊X (t
j

; ◊0)] [Ò◊X (t
j

; ◊0)]T , (11)

where

Ò◊X (t
j

; ◊0) =
Ë

ˆX(t
j

;◊0)
ˆ◊1

ˆX(t
j

;◊0)
ˆ◊2

· · · ˆX(t
j

;◊0)
ˆ◊

p

È
T

, (12)

ˆX (t
j

; ◊0)
ˆ◊

k

=
Ë

ˆx1(t
j

;◊0)
ˆ◊

k

ˆx2(t
j

;◊0)
ˆ◊

k

· · · ˆx

N

(t
j

;◊0)
ˆ◊

k

È
T

. (13)

The generalized sensitivity function (GSF) is defined as

G(t¸) =
ÿ̧

j=1

1
‡2(t

j

)
#
F

≠1 ◊ Ò◊(t
j

; ◊0)
$

• [Ò◊(t
j

; ◊0)] , (14)

where the notation “•” stands for element-wise vector multiplication
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Information provided by TSF, FIM, and GSF

The TSF describe how model output trajectories change in
response to modest changes in model parameters.
The FIM measures the information content of the data
corresponding to the model parameters (Banks, Holm,
Kappel, 2011).
The sharp increases of GSF indicate a high information about
parameters (Thomaseth and Cobelli, 1999; Banks et all,
2011).

More detail, see Hernadi et al (2022) and references there in.
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Implementation to competitive model
The simplest competitive model can be described as

dx

i

dt

= r

i

x

i

A
1 ≠

q
N

j=1 –
ij

x

j

K

i

B
, x

i

(t0) = x

i0, i = 1, 2, · · · , N. (15)

For each i , j = 1, 2, · · · , N:
x

i

: the size of species,
r

i

: the intrinsic growth,
K

i

: the carrying capacity, and
–

i,j : the impact of i

th species towards j

th species where –
ii

= 1 and
–

ij

> 0 for i ”= j .
Parameter sets: {r

i

: i = 1, 2, · · · , N}, {K

i

: i = 1, 2, · · · , N},
{–

i,j : i , j = 1, 2, · · · , N, i ”= j}, {x

i0 : i = 1, 2, · · · , N}. The number
of sensitivity functions is N

2(N + 2).

The special case is when N = 2 which is well-known as the Lotka-
Volterrra equation. The logistic growth model of Verhulst-Perl is
this type for N = 1.
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Numerical simulation
The simulation data are N = 2, t0 = 0, t

f

= 150, x10 = 10; x20 = 30,
r1 = 0.1, r2 = 0.3, a12 = 0.3, a21 = 0.25, K1 = 150, and K2 = 100. We
want to estimate parameters r1 and r2 through observation data
contaminated by noises.
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Figure: TSF ˆX

ˆr

(left) and GSF g(X , r) (right)
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Numerical simulation (Cont...)

Measurements were taken from intervals [0, 20] and [90, 120] with
six evenly distributed data points from each interval.
Three criteria LS functions:

LS1(◊) =
nÿ

j=1
|x1j

≠ y1j

|2 , LS2(◊) =
nÿ

j=1
|x2j

≠ y2j

|2

LS3(◊) =
nÿ

j=1

!
|x1j

≠ y1j

|2 + |x2j

≠ y2j

|2
"

For each k = 1, 2; j = 1, 2, · · · , n, x

kj

: the model outputs, and y

kj

:
observations including disturbance terms.

Domain of Estimates (r̂1, r̂2) given by

observation LS1 LS2 LS3
[90, 120] (0.100, 0.100) (3.540, 18.343) (0.0012, 0.095)

[0, 20] (0.0986, 0.2344) (0.0999, 0.3002) (0.1000, 0.3007)
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Commentary

The nominal parameters were set as r1 = 0.1 and r2 = 0.3.
The observation data obtained from [90, 120] contains insu�cient
information about the parameters [90, 120] and [90, 120]. The
curves of TSF and GSF are no longer changes after t > 90.
Consider the estimates obtained from the interval [0, 20]. LS1
provides a good estimate for r1 but a poor estimate for r2. LS2
yields very good estimates for both r1 and r2. This means that the
data obtained through observation of x1 contains less information
about parameter r2 than x2 about parameter r1. The best result is
given by LS3. Thus, observation from interval [0, 20] contains a lot
of information about the parameters r1 and r2.
The TSF and GSF curves are look like similar behavior, i.e.--- dx1

dr2

--- π
--- dx2

dr1

--- (left) and |g(x1, r2)| π |g(x2, r1)| (right).
It is confirmed that the information content of parameters delivered
by observation data of states could be identified through their
sensitivity functions.
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Suggestion
Understanding the underlying mathematical model is essential

in parameter estimation.

Example #1:
The following data represents the average monthly per capita income of
ten randomly selected people from village X (e.g. in USD): 534, 440,
536, 582, 524, 552, 536, 485, 515, 461.

µ
X

= E (X ) ¥ X = 1
10

10ÿ

i=1
X

i

= 516.5.

Example #2:
Similarly to Example #1, but the residents are from village Y: 150, 90,
200, 250, 175, 2500, 210, 3200, 400, 325.

µ
Y

= E (Y ) ¥ Y = 1
10

10ÿ

i=1
Y

i

= 750.

Information given by Example #1 makes sense, but Example #2 is
misleading.
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Concluding Remarks

Two kinds of parameter systems have been considered were the
lumped parameter system (LPS) and the distributed parameter
system (DPS). The optimal sensor (measurement strategy) is
intended to collect data of high information content about the
parameters being estimated.
Two approaches for determining optimal sensor:

Quantitative methods: Taking minimum the real-valued
function J defined on all possible FIMs, i.e. D-optimality
(determinant), E-optimality (smallest eigenvalue), A-optimality
(trace).
Qualitative methods: Traditional sensitivity function (TSF),
Generalized sensitivity function (GSF).

Computation isssues:
Solve the state equation and sensitivity equation
simultaneously æ large system with state the matrix function.
Apply the optimization method to solve the optimality criteria
æ ill-conditioned, complexity computation.
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End of slides

Thank you very much

Wassalamu’alaikum Wr. Wb.
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