ABOUT US

DISTRIBUTION & ACCESS

DOWNLOADS

NEWS

ISSN: 1662-9795

2

f y in

CONTACT US

Journals	🛱 Books		Home » Key Engineering Materials » Details					
Engineering Rese	arch		Key Engineering Ma	aterials - Details				
Advanced Engineering	g Forum	>	Details	Volumes				
Applied Mechanics an	nd Materials	>		About:				
Engineering Innovation Journal of Biomimetic and Biomedical Engin	ons s, Biomaterials eering	> >	Key Engineering Materials	Key Engineering Materials is a peer range of basic and applied aspects modelling, processing and applicat "Key Engineering Materials" is one				
International Journal Research in Africa Materials Science	of Engineering	>		"Key Engineering Materials" specia complete volumes and complete s considers stand-alone papers by in Authors retain the right to publish				
Advanced Materials R	esearch	>	SUBMIT PAPER	All published materials are archive				
Defect and Diffusion I Diffusion Foundations	Forum s and Materials	> >	RECENT VOLUME	Abstracted/Indexed in: SCOPUS www.scopus.com. REAXYS www.reaxys.com.				
Journal of Metastable Nanocrystalline Mater	and rials	>	Ei Compendex www.ei.org/. Inspec (IET, Institution of Engin Chemical Abstracts Service (CA Google Scholar scholar.google.	eering Technology) www.theiet.org. S) www.cas.org. com.				
Journal of Nano Resea	arch	>	GeoRef www.americangeosciences.org/georef.					
Key Engineering Mat	erials	<	Cambridge Scientific Abstracts	(CSA) www.csa.com.				
Materials Science Forum			Ulrichsweb www.proquest.com EBSCOhost Research Database	n/products-services/Ulrichsweb.html. es www.ebscohost.com/.				
Nano Hybrids and Co	mposites	>	Zetoc zetoc.jisc.ac.uk. EVISA http://www.speciation.ne	et/Public/Linklists/EVISA.html.				
Solid State Phenomer	าล	>	Index Copernicus Journals Mas WorldCat (OCLC) www.worldca	ter List www.indexcopernicus.com. t.org.				

Engineering Series

Engineering Materials - Details

```
Editorial Board
                                        Volumes
                            About:
                            Key Engineering Materials is a peer-reviewed periodical which covers entire
                            range of basic and applied aspects of the synthesis and research,
                            modelling, processing and application of advanced engineering materials.
                            "Key Engineering Materials" is one of the largest periodicals in its field.
                            "Key Engineering Materials" specializes in the publication of thematically
                            complete volumes and complete special topic volumes. Periodical
                            considers stand-alone papers by individual authors.
                            Authors retain the right to publish an extended and significantly updated
                            version in another periodical.
                            All published materials are archived with PORTICO and CLOCKSS.
                            Abstracted/Indexed in:
                            SCOPUS www.scopus.com.
                            REAXYS www.reaxys.com.
pec (IET, Institution of Engineering Technology) www.theiet.org.
emical Abstracts Service (CAS) www.cas.org.
```

ISSN print 1013-9826 ISSN cd 1662-9809 ISSN web 1662-9795

Atomindex (International Nuclear Information System) https://inis.iaea.org.

Advances in Science and Technology

Construction Technologies and Architecture

Special Book Collections

Foundations of Materials Science and Engineering	>
Scientific Books Collection	>
Specialized Collections	>
Retrospective Collection	>

Newsletter Subscription

First Name *

Last Name *

Email *

SUBSCRIBE

Subscribe to our Newsletter and get informed about new publication regularly and special discounts for subscribers!

Additional Information:

Please ask for additional information: kem@scientific.net 34 volumes per year

Subscription

>

>

WEB ACCESS 2023: Volumes 939 - 972 (34 Vols.) Access January - December 2023

The Journal published as of 1982 - 2022: 938 Vols.

Online Subscription Price 2023: EUR 2'875 / US\$ 3'130 (Option 1)

Online Subscription Price 2023 with access only to all Back Volumes: EUR 4'110 / USD 4'505 (Option 2)

Back Files purchase (perpetual access) on request (Option 3)

Benefits to libraries: • Outright purchase • Perpetual access rights Multiple concurrent users • Long-time preservation • COUNTERcompliant usage statistics • Pick & Choose licensing options as well as package options. • 24/7 access on www.scientific.net • Freedom to use offline or print • Advanced search options

Please contact us for all subscription options, including access to backvolumes, multisite & archival licensing at subscriptions@scientific.net

Share:

DISTRIBUTION & ACC	ESS	FOR PUBLICATION	INSIGHTS	DOWNLOADS	ABOUT US	POLICY & ETHICS	CONTACT US	IMPRINT
PRIVACY POLICY	SITEMA	P ALL CONFERENCE	ES ALL	SPECIAL ISSUES	ALL NEWS			

DISTRIBUTION & ACCESS NEWS ABOUT US FOR PUBLICATION DOWNLOADS

f Y in

CONTACT US

₩0 items Registration Log In

			10	
Journals 🛱 Books		<u>Home » Key Engineering Materials</u>	» Editorial Board	
Engineering Research		Key Engineering Mater	ials - Editorial Board	ISSN: 1662-979
Advanced Engineering Forum	>	Details	Volumes	Editorial Board
Applied Mechanics and Materials	>	Founding Editor		
Engineering Innovations	>	Fred H. Wohlbier		
ournal of Biomimetics, Biomaterials and Biomedical Engineering	>	Editor(s) in Chief		
International Journal of Engineering Research in Africa	>	ORCID	Graz University of Technolog Joining and Forming; Koperr Austria;	gy, Institute of Materials Science, nikusgasse 24/1, Graz, A-8010,
Materials Science		Prof. Dr. José Manuel Torralba ORCID	SEND MESSAGE 🔀 Universidad Carlos III de Ma	drid, IMDEA Materials; Av.
Advanced Materials Research	>	Editorial Board	Universidad 30, Leganés, 28	911, Spain;
Defect and Diffusion Forum	>	Prof. Aldo Roberto Boccaccini	University of Erlangen-Nürn Department of Materials Sci Cauerstrasse 6. Erlangen, 93	berg, Institute of Biomaterials, ence and Engineering;
Diffusion Foundations and Materials Applications	>	Prof. Mónica Campos	University Carlos III de Madu Science and Engineering: Av	rid , Department of Materials
ournal of Metastable and Nanocrystalline Materials	>	ORCID	28911, Spain;	
ournal of Nano Research	>	Dr. Li Chang	University of Sydney, Schoo Mechatronic Engineering; Sy	l of Aerospace, Mechanical and /dney, Australia, 2006;
Key Engineering Materials	<	Prof. Yi Bing Cheng	Monash University, Departn Engineering; PO Box 197, Ca	nent of Materials Science and aulfield East, Australia, 3145;
Materials Science Forum	>	Prof. Ilaria Cristofolini	University of Trento, Depart	ment of Industrial Engineering; Via
Nano Hybrids and Composites	>	ORCID	Sommarive 9, Povo, 38123,	Italy;
Solid State Phenomena	>	Prof. Robert Danzer	Montanuniversität Leoben, Funktionskeramik; Peter-Tu	Institut für Struktur- und nner-Strasse 5, Leoben, A-8700,
Engineering Series		Drof Suong Van Hoa	Austria,	tment of Mechanical and
Advances in Science and Technology	>	PTOI. Suolig Vali Hoa	Industrial Engineering; 1455 Montreal, Canada, H3G1M8	Demaisonneuve West # EV 4-145, ;
Construction Technologies and Architecture	>	Prof. Xiao Zhi Hu	University of Western Austra Chemical Engineering; Perth	alia, School of Mechanical and n, Australia, WA 6009;
Special Book Collections		Prof. Mohamed A. Taha	Ain-Shms University, Depart Engineering, Faculty of Engi Abbasiya sq., Cairo, Egypt, 1	ment of Design and Production neering; Khalifa El-Maamon st, 1566;
Foundations of Materials Science and	>	Prof. Alejandro Ureña Fernand	lez Universidad Rey Juan Carlos Science and Engineering; Tu Spain;	i (URJC), Department of Materials lipan s/n 28933, Mostoles, Madrid,
Scientific Books Collection	>	Prof. Dragan P. Uskokovic	Institute of Technical Scienc Sciences and Arts; Knez Mih	es of the Serbian Academy of ailova 35/IV, Belgrade, Serbia;
Specialized Collections	>	Prof. Maria Teresa Vieira	Universidade de Coimbra, IG Engenharia de Materiais e S Marrocos, Coimbra, 2020, 20	CEMS - Instituto de Ciência e uperficies ; Pólo II-Pinhal de
Retrospective Collection	>		Warrocos, connora, 5050-76	
Newsletter Subscription		Prof. Zhi Rui Wang	University of Toronto, Depa Engineering; 184 College Str	rtment of Materials Science and eet, Toronto, Canada, M5S 3E4;
		Prof. Ming Xing Zhang	University of Queensland, S Engineering; St. Lucia, Quee	chool of Mechanical and Mining nsland, Australia, QLD 4072;

DOWNLOADS

ABOUT US

ALL NEWS

POLICY & ETHICS

IMPRINT

CONTACT US

Engineering Series		
Advances in Science and Technology	>	Prof. Suong Var
Construction Technologies and Architecture	>	Prof. Xiao Zhi H
		Prof. Mohamed
Special Book Collections		Prof. Aleiandro
Foundations of Materials Science and Engineering	>	
Scientific Books Collection	>	Prof. Dragan P.
Specialized Collections	>	Prof. Maria Ter
Retrospective Collection	>	Prof. Zhi Rui W
Newsletter Subscription		Prof. Ming Xing
First Name *		
Last Name *		
Email *	_	
SUBSCRIBE		
Subscribe to our Newsletter and get informed abo new publication regularly and special discounts f subscribers!	out for	
DISTRIBUTION & ACCESS FOR PUBLICATION	I IN	ISIGHTS DOWNLO

f y in

ABOUT US

CONTACT US

Volumes

Key Engineering Materials Vol. 855	>
Key Engineering Materials Vol. 854	>
Key Engineering Materials Vol. 853	>
Key Engineering Materials Vol. 852	>
Key Engineering Materials Vol. 851	>
Key Engineering Materials Vol. 850	>
Key Engineering Materials Vol. 849	<
Key Engineering Materials Vol. 848	>
Key Engineering Materials Vol. 847	>
Key Engineering Materials Vol. 846	>
Key Engineering Materials Vol. 845	>
Key Engineering Materials Vol. 844	>

Home » Key Engineering Materials » Key Engineering Materials Vol. 849

DOWNLOADS

NEWS

Key Engineering Materials Vol. 849

ToC:	Table of Contents	
Search		< 1 2 3 >
Paper Title		Page
Physical- Waste an Authors: Is Abstract: P contribute more	Mechanical Properties of Paving Block from F ad Sand swahyuni, Indri Hermiyati, Suharyanto, Uma Fadzil Plastic shopping bags are easy to obtain for free or at as the highest quantity among plastic waste. The pla	Plastic Shopping Bags 61 lia Arifin, Dewi Nur Hidayati t low prices, hence astic shopping bags waste
Quality II Authors: G Abstract: S much chea more	mprovement of Recycled Paper with Extracte Bita Indah Budiarti, Dika Fajariyanto, Okta Hendrat Beveral Indonesian paper mills utilize used paper as f Baper and abundant availability, but the strength of th	d Xylan from Corncobs 67 feedstock as the price is he paper product tends to
Utilizatio Authors: F Bayu Muri Abstract: S wastes or more	n of Silica from Indonesian Solid Wastes as Ca Firman Kurniawansyah, Amila D. Istiqomah, Aisyah ti Petrus, Achmad Roesyadi Synthesizing materials can be attempted by utilizing a disposed/by-products of certain activities. In this arti	atalyst Materials 72 J. Malahayati, Himawan Tri alternative sources such as icle, exploration of silica
<u>Silica fro</u> Authors: N Abstract: T filler. Silica more	m Geothermal Waste as Reinforcing Filler in A Muh. Wahyu Syabani, Ina Amaliyana, Indri Hermiya The main components of artificial leather were polym is one of the commons reinforcing filler for many co	Artificial Leather ti, Yayat Iman Supriyatna ner, plasticizer, stabilizer, and omposites. Meanwhile,
Styrene [Recovery from the Pyrolysis of Polystyrene W	aste Using Bentonite

	Abstract: Polystyrene is a type of plastic that is widely used in daily life. It is applied for	
Key Engineering Materials Vol. 843	 decoration, food packaging, and electronic packaging process. However, the use of <u>more</u> 	
	Triacetin Synthesis as Bio-Additive from Glycerol Using Homogeneous and Heterogeneous Catalysts Authors: Zahrul Mufrodi, Erna Astuti, Mochamad Syamsiro, Sutiman, Suryo Purwono Abstract. The government thes to anticipate the needs of fuerin indonesia. Efforts to develop new fuels have also been done. New fuels and renewable energy that has been more	90
	Improvement of Biocomposite Properties Based Tapioca Starch and Sugarcane Bagasse Cellulose Nanofibers Authors: Mochamad Asrofi, Sujito, Edi Syafri, S.M. Sapuan, R.A. Ilyas Abstract: Biocomposite based tapioca starch (TS) and sugarcane bagasse cellulose nanofibers (SBCN) was made through casting method. SBCN was prepared by chemical and more	96
	Potency of Rare Earth Elements and Yttrium in Indonesia Coal Ash Authors: Widya Rosita, Dea Anisa Ayu Besari, I Made Bendiyasa, Indra Perdana, Ferian Anggara, Himawan Tri Bayu Murti Petrus Abstract: Indonesia coal ash is predicted to reach 10.8 million tons in the year 2020 but its utilization is still limited. In the last decade, coal ash has become a promising REY source more	102
	<u>Zinc Oxide Recovery from Solid Waste of Electric Arc Furnace Dust (EAFD)</u> <u>Using Hydrometallurgical Method</u> Authors: Widi Astuti, Agus Haerudin, Istihanah Nurul Eskani, Fajar Nurjaman, Aulia Pertiwi Tri Yuda, Joni Setiawan, Isnaeni, Farida, Dwi Wiji Lestari Abstract: Indonesia coal ash is predicted to reach 10.8 million tons in the year 2020 but its utilization is still limited. In the last decade, coal ash has become a promising REY source more	108
	Characterization and A Preliminary Study of TiO ₂ Synthesis from Lampung Iron Sand Authors: Yayat Iman Supriyatna, Slamet Sumardi, Widi Astuti, Athessia N. Nainggolan, Ajeng W. Ismail, Himawan Tri Bayu Murti Petrus, Agus Prasetya Abstract: The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO ₂ synthesis which can be used for the manufacturing of more	113
	Showing 11 to 20 of 23 Paper Titles < 1 2	3 >
DISTRIBUTION & ACCESS FOR PUBLIC	ATION INSIGHTS DOWNLOADS ABOUT US POLICY & ETHICS CONTACT US IMPRINT	

Triacetin Synthesis as Bio-Additive from Glycerol Using Homogeneous and Heterogeneous Catalysts

ZAHRUL Mufrodi^{1,a}, ERNA Astuti^{1,b*}, MOCHAMAD Syamsiro², BUDI Santosa³, SUTIMAN⁴ and SURYO Purwono⁵

¹Department of Chemical Engineering, Universitas Ahmad Dahlan, JI. Ring Road Selatan, Yogyakarta, Indonesia

²Department of Mechanical Engineering, Janabadra University, Jl. Tentara Rakyat Mataram, Yogyakarta, Indonesia

³Department of Automotive Technology of Vocational Education, Universitas Ahmad Dahlan, JI. Pramuka 42 Sidikan, Yogyakarta, Indonesia

⁴Department of Automotive Technical Education, Universitas Negeri Yogyakarta, Jl. Colombo No. 1 Karangmalang, Yogyakarta, Indonesia

⁵Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika, Sleman, Yogyakarta, Indonesia

^azahrul.mufrodi@che.uad.ac.id, ^berna.astuti@che.uad.ac.id

Keywords: Biodiesel, Glycerol, Triacetin, Bio-additive.

Abstract. The government tries to anticipate the needs of fuel in Indonesia. Efforts to develop new fuels have also been done. New fuels and renewable energy that has been developed are water, wind, bioenergy, solar, ocean, and geothermal. Bioenergy which now widely developed is biodiesel. The development of biodiesel industry which has increased rapidly, was accompanied by government policies that are written in the blueprint of the national energy management, make the biodiesel production grow rapidly. Glycerol as a by-product of the biodiesel industry is available abundantly, so it is necessary to study alternative uses. One alternative is to process glycerol into triacetin which can be used as bio-additive. The reaction between glycerol and acetic acid using a batch reactor was done on the mole ratio of catalyst/glycerol of 3.0%, the mole ratio of acetic acid/glycerol of 3/1, reaction temperature of 80-110°C and reaction time of 60 minutes. The optimum condition is achieved when the batch reaction was run with catalyst Amberlyst-15 at temperature of 110°C with conversion of 97.52% and selectivity triacetin of 89.74%.

Introduction

Indonesia is one of the prosperous countries in terms of energy because of its availability in abundance. The population growth rate is constantly rise so that energy demands also increases. This fact changes Indonesia which used to be the oil-exporting country become a net importer of oil. The government through the ministry of energy and mineral resources have the vision to seek and to replace the use of fuel by increasing the role of alternative energy from new renewable energy as a solution to reduce the dependence of fossil energy. The renewable energy consists of the energy of water, wind, biomass or biofuels, solar energy, ocean energy, and geothermal energy. Renewable energy that still needs to be processed before used is biofuels.

The government has adopted a policy to increase the percentage use of biofuels as an anticipatory step because of the reduced supply of oil from fossil fuels and the increasing market demand. This policy is included in the roadmap of biodiesel in the blueprint of the national energy management from 2006 to 2025. That blueprint is the mandate of the Presidential Decree No. 5 of 2006, which is become the national energy development reference. In the period of 2011-2015, the government has a target the supply of biodiesel as many as 3 million kL/year or 15% of existing solar supply. Later in the period of 2016-2025, this target increased to 6.4 kL/year which will be used as the transportation needs of 20% and consumption of 5%. Biodiesel is a diesel fuel from

vegetable oil by trans-esterification. Biodiesel is one of the best alternatives fuels which have several advantages such as renewable, high cetane number, high viscosity, better lubrication properties of the fuel, has low sulfur content, and low emission.

The biodiesel production will produce glycerol as by product. As prediction, in 2020 Indonesia will produce glycerol 0.42 million kL/year. Glycerol would be a problem if it is not used and just dumped into the environment. Therefore, it is necessary to study alternative uses. There are several alternative utilization of glycerol into value-added materials. Glycerol into triacetin which can be used as bio-additive.

The abundance of glycerol will result in decreased sales value of glycerol as a byproduct of the biodiesel plant. It should be anticipated to improve the usefulness of glycerol both in terms of quantity and its variants. With the increasing usefulness of glycerol will result in the higher price of glycerol that will increase the profitability of biodiesel plants. Among the usefulness of glycerol has been investigated are polyglycidyl nitrate [1-4], bioaditive triacetin [5-8], as an ingredient in pharmaceutical products, polyether, emulsifiers, fabric softener, stabilizers, preservatives in bread, ice cream, cosmetic ingredients, and others [9, 10].

Synthesis of triacetin with solid catalysts have been carried out using phosphotungstic [11], Amberlyst-15 or SAC-13 (Nafion-SiO₂) [12], Amberlyst-15, K-10, the acid Niobic, HZMS-5 and HUSY [13], Zirconia-based solid acid [14] tungstophosphoric acid (TPA) [15], and PW2_AC [16]. The use of solid catalysts has ease of product purification process. Many studies have also been conducted to study the reaction kinetics with cation-exchange resin as a solid catalyst [5, 17]. While the reaction kinetics using a packed bed reactor and cation exchange resin as catalyst were proposed by Fukumura *et al.* [18] and Mufrodi *et al.* [6, 8]. The reaction mechanism is simplified into three consecutive main reactions:

Fig. 1. Reaction mechanism

Methods

The chemicals used in the experiments were acetic acid, 98% purity (Petrochemical Chang Cun), glycerol, 93% purity (P & G Chemicals), amberlyst-15, silica-alumina, modified zeolite and sulfuric acid (Merck Index No. 016-020-00-8) as catalysts.

The reaction was done in a three-neck flask equipped with a heating mantle, cooling system, mercury stirrer, thermometer and sampling equipment (Fig. 2). The reaction between glycerol and acetic acid was done with the mole ratio of catalyst/glycerol of 3% using several types of catalyst: acetic acid, amberlyst-15, silica-alumina and modified zeolite. The reaction temperatures were 80°C, 90 °C, 100 °C, and 110°C.

Fig. 2. Batch reactor

Samples were analyzed using gas chromatography (GC) agilent 6890N MSD 5975B, Model Number: Agilent 19091S-433, HP-5ms column of 5%. Phenyl methyl siloxane, the temperature of the detector: MS Quad 150°C, the injector volume of 1 microliter, the injector temperature 275°C, and the injector pressure of 3.27 psi.

Results and Discussion

Experiments of triacetin from glycerol and acetic acid to the reaction temperature variation run at 80°C and 90°C, the mole ratio of catalyst/glycerol of 3% and the mole ratio of acetic acid/glycerol of 3/1. The temperature was before boiling water (100°C). The effect of various acid catalysts on Glycerol conversion and product selectivity at temperature 80°C and 90°C can be seen in Table 1.

Table 1	. The effect	t of various	acid cata	lysts on	Glycerol	conversion a	and pro	duct sele	ctivity a	at 80°C
				an	d 90°C					

	Catalyst	Conversion, %		Selectivity, %						
		80°C	90°C	Monoacetin		diacetin			Triacetin	
				80°C 90°C		80°C	90°C	80°C	90°C	
1.	Sulfuric acid	87.69	89.52	16.41	13.74	23.85	24.61	59.74	61.65	
2.	Amberlyst-15	98.23	98.85	02.94	2.63	14.64	12.74	82.42	84.63	
3.	Silica alumina	84.56	86.22	20.38	20.05	32.74	30.99	46.88	48.96	
4.	Modified zeolite	86.03	87.94	19.35	18.12	27.43	25.43	53.22	56.45	

Table 1 shows that glycerol conversion and triacetin selectivity are higher when the reaction temperature is increased from temperature 80°C to 90°C for all catalysts various. The best performance of catalysts is amberlyst-15, with maximum conversion is 98.85% and triacetin selectivity is 84.63%. In general, the temperature rose of 80°C to 90°C will result in decreased selectivity of monoacetin and diacetin. The increase in the average glycerol conversion of temperature from 80°C to 90°C with catalyst acetic acid, amberlyst-15, silica alumina and modified zeolite are 2.09%, 0.06%, 1.96% and 2.22%.

The effect of various acid catalysts on glycerol conversion and product selectivity at temperatures 100°C and 110°C can be seen Table 2.

					° °					
No	Catalyst	Conver	rsion, %	Selectivity, %						
		100°C	110°C	Monoacetin		Diacetin		Triacetin		
				100°C	110°C	100°C	110°C	100°C	110°C	
1.	Sulfuric acid	90.21	93.45	16.83	13.07	20.74	19.61	62.43	67.32	
2.	Amberlyst-15	96.42	97.52	00.19	00.03	11.89	10.23	87.92	89.74	
3.	Silica alumina	88.65	87.43	17.98	18.47	33.97	32.84	48.05	47.69	
4.	Modified zeolite	89.22	89.02	15.13	15.95	24.65	24.63	60.22	59.42	

Table 2.	The effect	t of various	acid cata	lysts on	glycerol	conversion	and pro	oduct sel	ectivity	at 10	00°C
				an	d 110°C						

The reaction between glycerol and acetic acid will produce triacetin as the main product, monoacetin and diacetin as intermediate products, and water as a side product. The reactions are series-parallel reactions and reversible reactions. The glycerol conversion and triacetin selectivity were calculated at a reaction temperature of 100°C and 110°C. These temperatures were chosen because the boiling point of water is 100°C. As seen in Table 2, the performance of two catalysts, acetic acid and amberlyst-15, increase in the higher temperature, but the performance of silica-alumina and modified zeolite decrease. Therefore, for sulfuric acid and amberlyst-15 catalysts, if the reaction temperature is increasing from 100°C to 110°C than glycerol conversion and triacetin selectivity are decreasing. The best results get on the mole ratio of catalyst and glycerol of 3%, the temperature of 110°C, the reaction time of 60 minutes, using catalyst amberlyst-15 with glycerol conversion of 97.52% and triacetin selectivity of 89.74%.

This paper also studies the effect of the addition of triacetin into biodiesel. Biodiesel can be made using waste cooking oil [19, 20] and chicken fat [21]. Biodiesel performance without triacetin, mix with 10% and 20% triacetin can be seen in Table 3.

Table 3. Properties of biodiesel without and with triacetin							
No	Analysis	Product analysis					Analysis
		Standard		Biodiesel+0%	Biodiesel+10%	Biodiesel+20%	method
		Biodiesel		of triacetin	of triacetin	of triacetin	(ASTM)
1.	viscosity		2.3-	4.821	4.594	4.211	D 445
	kinematic		6.0				
	$(40^{\circ}C), mm^{2}/s$						
2.	Flash po	oint, >	100	177	141	129	D 93
_	°C						
3.	pour point,	°C <	<18	9	12	6	D 97

Table 3. Properties of biodiesel without and with triacetin

High viscosity causes atomized fuel to become large granules so that fuel injection cannot be carried out properly if sprayed into the combustion chamber. The lower the viscosity of the fuel, causes the better the fuel combustion. The addition of triacetin on biodiesel has an impact on reducing viscosity so that biodiesel is more flammable. Flashpoint is the lowest temperature at which a solvent can form an ignitable mixture in air near the surface of the liquid. Decreased of the flash point makes biodiesel more combustible. Similarly, a decrease in pour point will make it easier for biodiesel to flow at lower temperatures. Adding triacetin to biodiesel causes flash point and pour point to decrease so that biodiesel performance is getting better.

Conclusion

At the synthesize of triacetin from glycerol and acetic acid, in general, the temperature rose of 80°C to 90°C will result in decreased selectivity in monoacetin and diacetin. The optimum conditions are mole ratio of catalyst and glycerol of 3.0%, the temperature of 110°C, the reaction time of 60 minutes, and using Amberlyst-15 as a catalyst. The best results are glycerol conversion of 97.52% and triacetin selectivity of 89.74%.

Acknowledgements

The authors would like to acknowledge for financial support of this work through the research grant of Pasca Doctor 2018 project no. PPD-113/SKPP/III/2018 from The Ministry of Research Technology and Higher Education of the Republic of Indonesia

References

[1] E. Astuti, Supranto, Rochmadi, A. Prasetya, Kinetic modelling of nitration of glycerol: three controlling reactions model, Engineering Journal. 18 (2014) 73.

[2] E. Astuti, Supranto, Rochmadi, A. Prasetya, K. Ström, B. Andersson, Determination of the temperature effect on glycerol nitration processes using the hysys predictions and the laboratory experiment, Indo. J. Chem. 14 (2014) 57.

[3] E. Astuti, Supranto, Rochmadi, A. Prasetya, Optimum operating conditions of glycerol nitration to produce 1, 3-dinitroglycerin kinetic modeling of nitration of glycerol, ARPN Journal of Engineering and Applied Sciences. 11 (2016) 5203.

[4] E. Astuti, Supranto, Rochmadi, A. Prasetya, Optimum conditions for the formation of glycidyl nitrate from 1,3-dinitroglycerin, Key Engineering Materials. 718 (2017) 95.

[5] Z. Mufrodi, E. Astuti, A. Aktawan, S. Purwono, The effect of recycle stream on the selectivity and yield of the formation of triacetin from glycerol, IOP Conference Series: Earth and Environmental Science. 175 (2018) 1-6.

[6] Z. Mufrodi, Rochmadi, Sutijan, A. Budiman, Synthesis acetylation of glycerol using batch reactor and continuous reactive distillation column, Engineering Journal. 18 (2014) 20-29.

[7] R. H. Cahyono, Z. Mufrodi, A. Hidayat, A. Budiman. Acetilation of Glycerol for Triacetin Production Using Zr-Natural Zeolite Catalyst, ARPN Journal of Engineering and Applied Sciences. 11:8 (2016) 5194-5197.

[8] Z. Mufrodi, A. Budiman, S. Purwono. Operation conditions in syntesize of bioaditive from glycerol as by-product biodiesel: a review, Energy Procedia. 145 (2018) 434-439.

[9] J. Bonet, J. Costa, R. Sire, J.M. Reneaume, E.A. Plesu, V. Plesu, G. Bozga. Revalorization of glycerol: comestible oil from biodiesel synthesis, Food and Bioproducts Process. 87 (2009) 171-178.

[10] M. I. Galan, J. Bonet, R. Sire, J.M. Reneaume, A.E. Plesu, From residual to use oil: revalorization of glycerine from the biodisel synthesis, Bioresource Tech. 100 (2009) 3775-3778.

[11] M. Zang, X. Yuan, Synthesis of glycerol triacetate catalyzed by phosphotungstic acid, Hecheng Huaxue. 9:5 (2001) 469.

[12]J.A. Melero, R.V. Grieken, G. Morales, M. Paniagua, Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel, Energy and Fuels. 21 (2007) 1782-1791.

[13] V.L.C. Goncalves, B.P. Pinto, J.C. Silva, and C.J.A. Mota, Acetylation of glycerol catalyzed by different solid acids, Catalysis Today. 133 (2008) 673-677.

[14] P. S. Reddy, P. Sudarsanam, G. Raju, B. M. Reddy, Synthesis of bio-additives: acetylation of glycerol over zirconia-based solid acid catalysts, Catal Commun. 11 (2010) 1224-1228.

[15] M. Balaraju, P. Nikhitha, K. Jagadeeswaraiah, K. Srilatha, P.S.S. Prasad, N. Lingaiah, Acetylation of glycerol to synthesize bioadditives over niobic acid supported tungstophosphoric acid catalysts, Fuel Process. Tech. 91 (2010) 249.

[16] P. Ferreira, I. M. Fonseca, A.M. Ramos, J. Vital, J. E. Castanheiro, Acetylation of glycerol over heteropolyacids supported on activated carbon, Catal Commun. 12 (2011) 573-576.

[17] D. Gelosa, M. Ramaioli, G. Valente, M. Morbidelli, Chromatographic reactors: esterification of glycerol with acetic acid using acidic polymeric resins, Ind. Eng. Chem. Res. 42 (2003) 6536-6544.

[18] T. Fukumura, T. Toda, Y. Seki, M. Kubo, N. S Kitakawa, T. Yonemoto, Catalytic synthesis of glycerol monoacetate using a continuous expanded bed column reactor packed with cation-exchange resin, Ind. Eng. Chem. Res. 48 (2009) 1816-1823.

[19] A. Aktawan and Z. Mufrodi, Small-scale production of biodiesel through transesterification process of waste or used cooking oil, IOP Conference Series: Earth and Environmental Science. 245 (2019) 1-6.

[20] E. Astuti, Z. Mufrodi, The optimum condition of biodiesel production from waste cooking oil using continuous stirred tank reactor, International Journal of Smart Grid and Clean Energy. 8:2 (2019) 201-205.

[21]G. H. Soegiantoro, J. Chang, P. Rahmawati, M.F. Christiani, Z. Mufrodi, Home-made ECO green biodiesel from chicken fat (CIAT) and waste cooking oil (pail), Energy Procedia. 158 (2019) 1105-1109.