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INTRODUCTION 

 

The preparation of the Econometrics 2 module is basically to help with literature needs for 

students of the Faculty of Economics and Business. Besides being intended to help students 

understand Econometrics 2, this module can be used to study other courses related to 

economics. For this reason, this module explains various materials on Regression with Time 

Series Data: Stationary Variables and Macroeconomic Forecasting (MFx): Structural VARs. 

Hopefully this module can provide broader knowledge to the reader. Although this module has 

many drawbacks. The author needs constructive criticism and suggestions. Thank You. 

 

Yogyakarta, September 2022 

The Writer 
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Chapter 1 Regression with Time Series Data: Stationary Variables 

 

A. Introduction 

Cross-section observations on a number of economic units at a given time are generated 

by random sample so uncorrelated, whereas time series is otherwise. The level of income 

observed in the Smiths’ household in one year may be related to the level of income in the 

year before. One could shuffle the observations and then proceed with estimation without 

losing any information in cross-section data. 

B. Dynamic Nature of Relationships 

Dependent variable y is a function of current and past values of an explanatory variable x, 

e.g., a change in the interest rate now will have an impact on inflation now and in future 

periods; it takes time for the effect of an interest rate change to fully work → lagged effects: 

distributed lag model. Lagged dependent variable as one of the explanatory variables, e.g. 

periods of high inflation will tend to follow periods of high inflation and periods of low. 

Error term to the continuing impact of change over several periods (serially correlated), 

e.g. impact of unpredictable shock that feed into the error term will be felt not just in period 

t, but also in future periods. 

Stationarity because tends to fluctuate around a constant mean without wandering or 

trending. The middle graph is non-stationary: slow turning or wandering. The right graph 

is non-stationary because trending. 

C. Finite Distributed Lags 

Formula: 

yt = α + β0xt + β1xt-1 + β2xt-2 + … + βqxt-q + et 

Different lags can be treated in the same way as different explanatory variables. Uses of 

the model: forecasting and policy analysis. Finite distributed lag model of order q: after a 

finite number of periods q, changes in x no longer have an impact on y. 

Picture 1. Stationarity 



2 
 

Assumptions: 

y and x are typically random, do not know their values prior to sampling, et is independent 

of all x’s in the sample past, current, and future. Conjunction with the other multiple 

regression assumptions. 

 

Okun’s Law: 

Change in the unemployment rate from one period to the next depends on the rate of output 

growth. 

Ut – Ut-1 = -ϒ (Gt - GN)  DUt = α + β0Gt – et 

DUt = α + β0Gt + β1Gt-1 + β2Gt-2 + … + βqGt-q + et 

Use okun data for exercise. 

Table 1. Okun Data 

Lag Length q = 3 

Variable Coefficient Std. Error t-Value p-value 

Constant 0.5810 0.0539 10.781 0.0000 

Gt -0.2021 0.0330 -6.120 0.0000 

Gt-1 -0.1645 0.0353 -4.459 0.0456 

Gt-2 -0.0716 0.0353 -2.027 0.0456 

Gt-3  0.0033 0.0363 0 0.9276 

Observations = 95 R2 = 0.652 σ = 0.1743 

Lag Length q = 2 

Variable Coefficient Std. Error t-Value p-value 

Constant 0.5836 0.0472 12.360 0.0000 

Gt -0.2020 0.0324 -6.238 0.0000 

Gt-1 -0.1653 0.0335 -4.930 0.0000 

Gt-2 -0.0700 0.0331 -2.115 0.0371 

Observations = 96 R2 = 0.654 σ = 0.1726 

 

D. Serial Correlation 

1. ARDL model: how a dependent variable can be related to current and past values of 

an explanatory variable.  

2. The effect of a change in the value of an explanatory variable is distributed over a 

number of future periods. 

3.  With time-series data, successive observations are likely to be correlated. If 

unemployment is high in this quarter, it is more likely to be high next quarter  → 

correlation over time. 

4. Correlations between a variable and its lags are called autocorrelations. 
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5. Correlogram shows the correlation between observations that are one period apart, 

two periods apart, three periods apart, and so on. 

6. Philips curve: describing the relationship between inflation and unemployment. 

INFt = INFE
t – ϒ (Ut – Ut-1) 

Falling levels of unemployment reflect excess demand for labour that drives up wages, 

which in turn drives up prices. 

INFt = β1 + β2DUt + et 

To examine whether the errors are serially correlated, we first compute the least 

squares residuals. 

et = INFt – b1 – b2DUt 

There is strong evidence that the residuals are autocorrelated → correlations at lags 

one through six and at lag eight are all significantly different from zero. 

Other test for serially correlated errors: 

1. Lagrange Multiplier Test: If Prob. Chi-square is less than 0.05 → reject the null 

hypothesis of no autocorrelation. 

2. Durbin Watson Test: used less frequently today because its critical values are not 

available in all software packages, and one has to examine upper and lower critical 

bounds instead.  

Estimation with serially correlated errors: 

What are the implications of serially correlated errors for least squares estimation?  

1. The least squares estimator is still a linear unbiased estimator, but it is no longer best 

→ there exists an alternative estimator with a lower variance → higher probability of 

obtaining a coefficient estimate close to true value. 

2. The formulas for the standard errors are no longer correct → confidence intervals and 

hypothesis tests may be misleading. 

3. Solution: HAC (heteroskedasticity and autocorrelation consistent) standard errors. If 

HAC standard errors are larger than those from least squares, we will overstate the                        

reliability of the least squares estimates. 

Example: 

Estimating a more general model: 

INFt = 0.3336 + 0.5593INFt-1 – 0.6882DUt + 0.3200DUt-1 

(se) (0.0899) (0.0908) (0.2575) (0.2499) 
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Expectations for inflation in the current quarter are 0.33% plus 0.56 times last quarter’s 

inflation rate. The effect of unemployment is -06882 (Ut – Ut-1) + 0.3200(Ut-1 – Ut-2). 

DUt-1 : significantly different from zero → excluded. 

INFt = 0.3548 + 0.5282INFt-1 – 0.4909DUt 

(se) (0.0876) (0.0851) (0.1921) 

Inflationary expectations: INFE
t = 0.3548 + 0.5282INFt-1 

So, 1% rise in the unemployment rate leads to an approximate 0.5% fall in the inflation 

rate. 

E. Autoregressive Distributed Lag Models 

An autoregressive distributed lag (ARDL) model is one that contains both lagged x and y. 

ARDL (1,1): INFt = 0.3336 + 0.5593 INFt-1 – 0.6882 DUt + 0.3200 DUt-1 

ARDL (1,0): INFt = 0.3548 + 0.5282 INFt-1 – 0.4909 DUt 

Advantage: capture dynamic effects from lagged x and lagged y and eliminate serial 

correlation in the errors. 

Criteria for choosing lag: 

1. Has serial correlation in the errors been eliminated? If not, biased → user correlogram 

or LM tests. 

2. Are the signs and magnitudes of the estimates consistent from theory? 

3. Are the estimates significantly different from 0? 

4. What values minimize AIC and SC? 

Example: 

INFt = 0.3548 + 0.5282 INFt-1 – 0.4909 DUt, obs = 90 

(se) (0.0876) (0.0851) (0.1921) 

1. Check whether errors are serially correlated → correlogram, if not significantly 

different from 0 → no evidence of serial correlation → further check using LM test. 

2. Try ARDL (4,0) → check AIC and SC. 

3. Okun’s Law: Try ARDL (0,2) → does it contain serially correlated error? What 

happen if we include DU (-1)? 

4. Drop G (-2) since it is no longer significant, check ARDL (1,1) with correlogram, LM 

test, AIC-SC! 

Forecasting: 

AR Model: Forecast GDP growth for three quarters ahead based on AR (2). ARDL Model: 

Forecast future unemployment using ARDL (1,1) → problems: need future values of G. 
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Chapter 2 Macroeconomic Forecasting (MFx) 

 

A. Introduction: Vector Autoregressive Models (SVAR) 

Del Negro and Schorfheide (2011): at first glance, VARs appear to be straightforward 

multivariate generalizations of univariate autoregressive models. At second sight, they turn 

out to be one of the key empirical tools in modern macroeconomics. Vector autoregression 

(VAR) is a statistical model used to capture the relationship between multiple quantities 

as they change over time. VAR is a type of stochastic process model. VAR models 

generalize the single-variable (univariate) autoregressive model by allowing for 

multivariate time series. Vector Autoregressive (VAR) models are widely used in time 

series research to examine the dynamic relationships that exist between variables that 

interact with one another. In addition, they are also important forecasting tools that are 

used by most macroeconomic or policy-making institutions. 

B. Estimation of VARs 

Let yt be a vector with the value of n variables at time t: 

yt = [y1,t y2,t … yn,t]’ 

A p-order vector autoregressive process generalizes a one-variable AR(p)  

process to n variables: 

yt = G0 + G1 yt-1 + G2 yt-2 + … + Gp yt-p + et 

G0  = (n x 1) vector of constants 

Gj  = (n x n) matrix of coefficients 

et  = (n x 1) vector of white noise innovations 

E [et] = 0 

E [et eπ
’] ={

Ω, 𝑖𝑓 𝑡 =  π
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

  

Picture 2. VARs 
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Example: A VAR (1) in 2 variables 

y1, t = g11 y1, t-1 + g12 y2, t-1 + e1, t 

y2, t = g21 y1, t-1 + g22 y2, t-1 + e2, t 

In matrix notation: 

yt = G1 yt-1 + et 

where, 

yt = (
𝑦1,t

𝑦2, 𝑡
), for example: yt = [

𝜋t

𝑔𝑑𝑝 𝑡] 

G1 = (
𝑔11 𝑔12
𝑔21 𝑔22

), et = (
𝑒1,t

𝑒2, 𝑡
) 

Assumptions about the error terms: 

 

General specification choices: 

1. Selection of variables to be included: in accordance with economic theory, empirical 

evidence and/or experience. 

2. Exogenous variables can be included: constant, time trends, other additional 

explanators. 

3. Non-stationary level data is often transformed (log levels, log differences, growth 

rates, etc.) 

4. The model should be parsimonious. 

 

C. Stationary VARs 

A p-the order VAR is said to be covariance-stationary if: 

1. The expected value of yt does not depend on time. 

E [yt] = E [yt+j] = π = [
π1
π

π𝑛
2] 

2. The covariance matrix of yt and yt+j depends on the time lapsed j and not on the 

reference period t. 
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Conditions for stationary: 

The conditions for a VAR to be stationary are similar to the conditions for a univariate AR 

process to be stationary: 

 

For yt to be stationary, the matrix polynomial in the lag operator G(L) must be invertible. 

A VAR(p) process is stationary (thus invertible) if all the np roots of the characteristic 

polynomial are (in modulus) outside the unit imaginary circle. 

det (In – G1L – G2L
2 - … - GpL

p) = 0 

E-Views calculates the inverse roots of the characteristic AR polynomial, which should 

then lie within the unit imaginary circle. 

Vector moving average representation of a VAR: 

If a VAR is stationary, the yt vector can be expressed as a sum of all of the past white noise 

shocks et (VMA (∞) representation). 

yt = π + G(L)-1 et, where π = G(L)-1G0 

yt = π + (In + Ψ1L + Ψ2L
2 + …) et 

yt = π + et + Ψ1et-1 + Ψ2et-2 + … 

yt = π + ∑ Ψ∞
𝑖=0 i et-i 

where Ψi is a (n x n) matrix of coefficients, and Ψ0 is the identity matrix. From the VMA 

(∞) representation it is possible to obtain impulse response functions. 

D. Lag Specification Criteria 

VARs are very densely parametrized: 

In a VAR (p) we have p matrices of dimension n x n: G1, ..., Gp. Assume G0 is an intercept 

vector (dimension: n x1). The number of total coefficients/parameters to be estimated is: 

n + n x n x p = n (1 + n x p) 

As for univariate models, one can use multidimensional versions of the:  

1. AIC: Akaike information criterion 

2. SC: Schwarz information criterion 

3. HQ: Hanna-Quinn information criterion 

Information-based criteria: trade-off between parsimony and reduction in sum of squares. 
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E. Forecasting Using VARs 

Let Yt-1 be a matrix containing all information available up to time t (before realizations of 

et are known): 

Yt-1 = (yt-1, yt-2, …, yt-T) 

Then: 

E [yt | Yt-1] = G0 + G1yt-1 + G2yt-2 + … + Gpyt-p 

The forecast error can be decomposed into the sum of et , the unexpected innovation of yt, 

and the coefficient estimation error: 

yt – E [yt | Yt-1] = et + v (Yt-1) 

If the estimator for the coefficients is consistent and estimates are based on many data 

observations, the coefficient estimation error tends to be small, and: 

yt – E [yt | Yt-1] ≅ et 

Iterating one period forward: 

E [yt | Yt-1] = G0 + G1E [yt | Yt-1] + G2yt-1 + … + Gpyt-p+1 

Iterating j periods forward: 

E [yt+j | Yt-1] = G0 + G1E [yt + j - 1 | Yt-1] + G2E [yt + j-2 | Yt-1] + … + Gpyt-p+j 
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