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 The growing popularity of electric vehicles (EVs) has the potential to 

complicate distribution network operations. When a large number of electric 

vehicles are charging at the same time, the system load can significantly 

increase. This problem is exacerbated when charging is done concurrently in 

the evening, which coincides with peak load times. To prevent the increase in 

peak load and distribution operation stress, EV charging must be coordinated 

to achieve financial and technical objectives. This study seeks to evaluate the 

impact of financially driven EV charging scheduling algorithms. The 

contribution of this study is that the scheduling algorithm considers EV usage 

behavior based on real data as well as considers the state-of-charge (SoC) 

target set by EV owners. The proposed algorithm seeks to minimize the total 

charging cost incurred by EV owners using mixed-integer linear 

programming (MILP). The impact of the coordinated charging scheduling on 

the system demand profile and real distribution system operation metrics are 

also evaluated. The simulation result tested on the Bantul Feeder 05 system 

demonstrates that coordinated charging can reduce the charging costs by 

57.3%. Furthermore, the peak load is reduced by 5.2% while also improving 

the load factor by 3.5% as compared to uncoordinated scheduling. Based on 

the power flow simulation, the proposed algorithm can reduce distribution 

transformer loading by 0.5% and improve voltage quality by 0.1% during 

peak load. This demonstrates that coordinated EV charging benefits not only 

the EV users but also the distribution system operator by preventing system 

operation issues. 
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1. INTRODUCTION  

Electrical energy demand continues to increase every year since it is one of the indicators of the country’s 

economic growth [1]. With rising energy demand accompanied with growing renewable energy generation, a 

management system that plays a role in maintaining energy efficiency is required. The advancement of 

information technology can be used to improve the efficiency of existing electric power systems [2]. This is 

commonly referred to as the smart grid. A smart grid, according to the Smart Grids European Technology 

Platform, is an electricity grid that is intelligently capable of integrating the actions of all users connected to it, 

including generators and loads, to produce a sustainable, economical, and reliable electricity supply [3]. 

Aside from being efficient, electricity generation is beginning to shift to new and renewable energy 

sources, reducing the use of traditional energy sources. Aside from electricity generation, other industries are 

beginning to shift to renewable energy sources. Transportation is one industry that is undergoing an energy 

transition [4]. The main factors driving transportation electrification are lower carbon dioxide emissions and 

less reliance on fossil fuels [5]. One of the transitions made is the substitution of electric vehicles (EVs) for 
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fossil-fuel vehicles (EVs). Electric vehicles have various advantages, including being less expensive [6], 

lowering air pollution, and enhancing public health [7][8]. 

Despite some limitations, such as limited range, long charging times, and high battery costs, the use of 

EVs has increased [9]. More than 10 million electric vehicles were paved worldwide in 2020, a 43% increase 

from the previous year [10]. In fact, by 2030, the number of electric vehicles is expected to increase from 800 

million to 1.6 billion [11]. Meanwhile, the Indonesian government has provided incentives to encourage the 

acceleration of the electric vehicle market in Indonesia. This is stated in Presidential Decree No. 55 of 2019 on 

the Acceleration of the Battery Electric Vehicle Program for Road Transportation [12]. 

If not managed properly, the penetration of a large number of EVs can pose system operation challenges. 

An increase in electrical load caused by charging electric vehicles can increase peak load demand [13], voltage 

deviation [14], and transformer deterioration [15]. To reduce the negative impact of EV penetration, it is 

necessary to manage and control EV charging. 

The balance between demand and electricity generation on a smart grid is carried not only by the 

generation side but also by the customer side. Demand response is one solution for controlling load electricity 

consumption behavior [16]. Demand response is defined by the Federal Energy Regulatory Commission 

(FERC) as a change in customers’ electricity consumption patterns as a result of a response to electricity rates 

or incentives, to reduce electricity consumption when electricity rates are high [17]. 

Electric vehicles cannot participate in the demand response program individually but must be part of a 

fleet group. An aggregator agent is required to enable interaction between a group of EVs and the grid [18]. 

The EVs aggregator’s job is to buy electricity to meet the charging needs of managed EVs [18]. If an aggregator 

can control the charging process in EVs, it has the potential to improve system performance. Setting the 

charging time for electric vehicles at other times, such as at night until early morning can reduce charging costs 

due to low electricity rates at that time while also reducing grid operation stress. 

Many studies on the optimal scheduling of electric vehicle charging have been conducted in recent years. 

By taking into account the system power flow, researchers [19] integrated electric vehicle charging stations 

into the economic dispatch process. However, the charging load of EVs is a variable that is optimized 

independently and is not based on consumer EV usage behavior. The charging behavior of each EV must be 

considered when scheduling EV charging. Researchers [20]–[22] developed an EV dispatching charging 

strategy based on EV user behavior such as time of arrival and departure, SoC at arrival, and desired state-of-

charge (SoC). 

Optimization must take into account not only the user behavior of EVs but also the applicable electricity 

pricing scheme. Electricity rates are especially important in the EV charging scheduling study [23]. Time-of-

use (ToU), real-time pricing (RTP), and critical peak pricing (CPP) are three models of variation in electricity 

rates that are popular among policymakers and scientists [24]. Real-time pricing is used by researchers [21] to 

optimize charging costs, while ToU policy is considered by researchers [20], [25], [26]. Time-of-use means 

that different rates are applied at different times [27], such as when the peak load of electricity costs is higher. 

When compared to fixed-price (FP) tariffs, the study in [26] shows that ToU rates can have a positive impact 

on system load patterns even when EV penetration is high. 

This study aims to develop optimal scheduling of electric vehicle charging with the study case in one of 

the distribution systems in Indonesia. The purpose of the optimization is to minimize charging costs incurred 

by the customers. The following is the present study’s contribution: 

1. Scheduling EV charging by taking into account EV usage behavior and desired SoC using mixed-

integer linear programming (MILP) optimization. 

2. Evaluating the influence of EV charging strategies on the load profile and distribution system’s power 

flow security, including transformer loading and voltage profiles. 

3. To the best of the authors’ knowledge, this is the first study to use a case study on the Indonesian 

distribution system as well as statistical data on vehicle usage behavior in Indonesia. 

The remainder of this paper is structured as follows. Section 2 describes the objective function of optimization, 

as well as its constraints and case studies. Section 3 presents and reviews the research findings 

comprehensively, and Section 4 draws conclusions from the proposed research. 

 

2. METHODS  

2.1. Optimization of EV Charging Scheduling 

EV charging scheduling optimization is carried out to minimize the total charging cost of a number of 

EVs (𝑁𝑉) throughout a certain time horizon (𝑁𝑇). The factors that affect the charging cost is the charging 

power (𝑃𝑐ℎ𝑣
𝑡 ), electricity rates during a specific time window (𝑒𝑝

𝑡), and the timestep per hour (𝑡𝑠). The objective 

function of the optimization problem is shown in (1).  
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Min𝐶 =∑∑𝑃𝑐ℎ𝑣
𝑡 ∙
𝑒𝑝

𝑡

𝑡𝑠

𝑁𝑉

𝑣=1

𝑁𝑇

𝑡=1

 
(1) 

Optimization is carried out by considering several constraints, namely the charger power rating, battery 

capacity, the arrival and departure times of electric vehicles, and desired SoC. The constraints considered are 

shown in (2)-(6). Equation (2) limits the charging power of EVs (𝑃𝑐ℎ𝑣
𝑡 ) to the capacity of the charger (𝑃𝑐ℎ_𝑚𝑎𝑥𝑣). 

The variable 𝑣𝑐ℎ𝑣
𝑡  is the charging state of the EVs. As stated in (3), during the arrival hour until the time the 

battery is fully charged, the charging state is labeled as 1. Otherwise, it is 0. 

 𝑃𝑐ℎ𝑣
𝑡 = 𝑣𝑐ℎ𝑣

𝑡 ∙ 𝑃𝑐ℎ_𝑚𝑎𝑥𝑣
 

(2) 

 𝑣𝑐ℎ𝑣
𝑡 = {

1, 𝑡𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ≤ 𝑡 < 𝑡𝑣

𝑎𝑟𝑟𝑖𝑣𝑎𝑙 + 𝑇𝑐ℎ𝑣
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3) 

Equation (4) states the EVs SoC (𝑆𝑜𝐶𝑣
𝑡) under certain conditions. When the EV hasn’t arrived home (𝑡 <

𝑡𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙), the SoC is zero. When the time of arrival (𝑡 = 𝑡𝑣

𝑎𝑟𝑟𝑖𝑣𝑎𝑙), the SoC equal to the arrival SoC (𝑆𝑜𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙). 

Finally, between arrival and departure times, the SoC follows the battery charging function, which depends on 

the charger power capacity (𝑃𝑐ℎ𝑣
𝑡 ), battery capacity (𝐸𝑚𝑎𝑥𝑣), charging efficiency (𝜂𝑣), and timestep per hour 

(𝑡𝑠). 

 
𝑆𝑜𝐶𝑣

𝑡 =

{
 
 

 
 0, 𝑡 < 𝑡𝑣

𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑆𝑜𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 , 𝑡 = 𝑡𝑣

𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑆𝑜𝐶𝑣
(𝑡+1) − 𝜂𝑣 ∙ 𝑃𝑐ℎ𝑣

𝑡 ∙
100

𝑡𝑠 ∙ 𝐸𝑚𝑎𝑥𝑣
, 𝑡𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ≤ 𝑡 < 𝑡𝑣

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

 (4) 

In (5), the variable 𝑇𝑐ℎ𝑣 is the required amount of to charge from the initial SoC (𝑆𝑜𝐶𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙) to the desired 

SoC (𝑆𝑜𝐶𝑣
𝑡𝑎𝑟𝑔𝑒𝑡

). Meanwhile, in (6) the total charging status (𝑣𝑐ℎ𝑣
𝑡 ) between arrival and departure time is equal 

the required charging time (𝑇𝑐ℎ𝑣). 

 

𝑇𝑐ℎ𝑣 = 𝑓𝑙𝑜𝑜𝑟

(

 
 𝑆𝑜𝐶𝑣

𝑡𝑎𝑟𝑔𝑒𝑡
− 𝑆𝑜𝐶𝑣

𝑎𝑟𝑟𝑖𝑣𝑎𝑙

1
𝑡𝑠
∙
𝜂𝑣 ∙ 𝑃𝑐ℎ_𝑚𝑎𝑥𝑣
𝐸𝑚𝑎𝑥𝑣

∙ 100
)

 
 

 (5) 

 
∑ 𝑣𝑐ℎ𝑣

𝑡 =

𝑡𝑣
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

−1

𝑡=𝑡𝑣
𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑇𝑐ℎ𝑣 (6) 

To model the optimization problem, a MILP approach is used. Python 3.8.3 is used for programming, 

using Spyder 4.1.4 as the integrated development environment (IDE). The CPLEX Studio 20.1 solver is utilized 

to identify the optimum solution using an Intel Core i7-8550U and 16 GB RAM PC. 

 

Research Workflow 

Fig. 1 depicts the workflow of this study. The research begins with the development of a test system to 

evaluate the proposed optimization method. The developed EV charging scheduling method was tested on a 

distribution system in Bantul Regency, Yogyakarta Special Region, Indonesia. The system used is one of the 

feeders at the Bantul Substation, namely the Bantul 05 Feeder. This system is a radial distribution system with 

a voltage level of 20 kV. Technical details of this system can be found in [28]. The system is then modeled in 

the power system simulator package DIgSILENT PowerFactory 2022 [29]. Fig. 2 depicts the single-line 

diagram of the testing system used. 

Then, the data that will be used as input for optimization were collected, such as the system’s load profile, 

electricity rates, considered EV types, and EV usage patterns. Fig. 3 shows the system’s load profile used in 

this study. The Feeder Bantul 05 has an installed load of 8123 kW and a peak load of 5946.7 kW. It is assumed 

that all loads have the same load profile. The electricity rates used in the optimization follow the ToU rates 

proposed in [30]. With this tariff scheme, daily electricity rates will be divided into three windows, i.e., off-

peak, medium, and peak as shown in Fig. 4. 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&


ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 39 

  Vol. 9, No. 1, March 2023, pp. 36-48 

 

 

Optimal Scheduling of Electric Vehicle Charging: A Study Case of Bantul Feeder 05 Distribution System  

(Candra Febri Nugraha) 

It is assumed that 150 EV charging units are installed in the system. The EVs charger under consideration 

here is assumed to be installed in every home for charging the private vehicle. Because private vehicles are 

more dispatchable than public transportation, they were chosen as a case study. Furthermore, private vehicle 

owners can choose whether to participate in the EVs charging scheduling program [31]. To simulate charging 

patterns for electric vehicles, some vehicle usage data, namely departure and arrival hours, as well as the 

distance traveled from each electric vehicle, is required. The three data are generated randomly based on the 

distribution obtained from the Jabodetabek 2019 Commuter Survey [32]. Fig. 5 shows the time of arrival and 

departure distribution, while Fig. 6 illustrates the distribution of daily EVs mileage. 

 

Start

Optimization of 

Uncoordinated 

scenario

Optimization of 

Coordinated 

scenario

Run load flow 

analysis simulation

End

Run load flow 

analysis simulation

Compare optimization and simulation 

results of Uncoordinated and 
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Distribution system data: 

Bus, transformers, line, 

and load specifications

Distribution system 
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Optimization data: Load profile, 
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Fig. 1. Research workflow 

 

 
Fig. 2. Bantul Feeder 05 single-line diagram  
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Fig. 3. System’s load profile 

 

 
Fig. 4. Hourly electricity tariff 

 

 
Fig. 5. Time of departure and arrival distribution 

 

The vehicle mileage data is converted to the remaining SoC. As a result, data on each EVs battery capacity 

and energy consumption is required. The Hyundai Ioniq 5 (Standard Range), Hyundai Kona Electric, Nissan 

Leaf, Genesis G80, and Lexus UX 300e are among the five EVs under consideration. Table 1 summarizes the 

technical data for each vehicle type taken from [33]. The charger capacity of electric vehicles is adjusted to the 

specifications of each EV, with assumed charging efficiency of 90%. Fig. 7 depicts the results of converting 

mileage to remaining SoC. 
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Table 1. EV model and technical specifications [33] 

EV Model 
Charger Power 

(kW) 

Battery Capacity 

(kWh) 

Energy Consumption 

(kWh/km) 

Hyundai Ioniq 5 (Standard 

range) 
11 54 0.183 

Hyundai Kona Electric 7.2 39.2 0.157 

Nissan Leaf 3.6 39 0.166 

Genesis G80 11 82.5 0.188 

Lexus UX 300e 6.6 45 0.191 

 

 
Fig. 6. EVs daily milage distribution 

 

 
Fig. 7. SoC distribution at the time of arrival 

 

The 150 EV chargers are assumed to be distributed evenly across 15 buses. This means that each bus has 

ten EV charging stations. The total capacity of the EV chargers installed in the system is 1182.4 kW, which is 

approximately 20% of the system’s peak load. The distribution of charger capacity on each bus is shown in 

Table 2. 

 

Table 2. Installed EV charger capacity at each bus 

Bus 
Installed Charger 

(kW) 
Bus 

Installed Charger 

(kW) 
Bus Installed Charger (kW) 

Bus 8 94.4 Bus 15 70.8 Bus 28 86 

Bus 9 61 Bus 16 75.2 Bus 31 94.4 

Bus 11 91.2 Bus 21 71.4 Bus 32 86.2 

Bus 12 88.6 Bus 25 70.8 Bus 33 87 

Bus 14 66.4 Bus 26 60.2 Bus 35 78.8 

 

Two charging scenarios were observed to test the developed method: Uncoordinated and Coordinated. 

Uncoordinated charging indicates that the drivers will immediately charge their EV once arrive home. When 

the battery percentage is close to 100%, charging will stop. Meanwhile, coordinated charging indicates that the 

charging is determined at a specific time based on the optimization. This means that even if the vehicle is 
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connected to the charger, the charging process may be delayed rather than completed immediately. The SoC 

target is limited to 90% based on [34][35] as a high level of SoC is strongly linked to battery life degradation 

[36]. Table 3 provides a summary of the scenarios considered in this study. 

 

Table 3. Optimization scenarios 
Scenario Charging Start Time Charging End Time 

Uncoordinated When the EV arrives at home Battery SoC ~100% 

Coordinated Based on optimization Battery SoC ~90% 

 

After the optimization result of both scenarios were obtained, a power flow analysis simulation was then 

performed to evaluate the impact of the Uncoordinated and Coordinated charging scenarios on the distribution 

system. There are two measurements taken, namely transformer loading and voltage on Bus 35, which is the 

bus furthest away from the transformer. This bus was chosen because it is the bus that experiences the most 

undervoltage. Table 4 displays the security criteria references used for comparison. 

 

Table 4. Power flow security criteria 

Parameter 
Value 

Minimum Maximum 

Transformer loading [37][38] - 80% 

Bus voltage [39][40] 0.9 p.u. 1.05 p.u. 

 

3. RESULTS AND DISCUSSION 

3.1. EV Charging and Load Profile 

The charging pattern in both scenarios is depicted in Fig. 8. Heavy charging occurs between 15:00 and 

22:00 in the Uncoordinated scenario, with peak charging at 19:00. This occurred because many drivers arrived 

home at the time and immediately charged their EVs. Furthermore, charging during these times occurs when 

electricity rates are high, potentially increasing charging costs. In the Coordinated scenario, however, most 

charging occurs between 23:00 and 06:00 the next day, with a peak at 00:00. This charging pattern avoids times 

when electricity costs are high. 

 

 
Fig. 8. EV charging profile 

 

Two different load profiles are produced because of the different charging patterns in the two simulated 

scenarios. Fig. 9 compares the base load profile (no EVs) to the load profiles in both scenarios. There is a 

significant increase in load in the Uncoordinated scenario during peak load hours, between 17:00 and 22:00. 

The peak load, which was originally 5946.7 kW, increased by 5.2% to 6255.9 kW. This is because EV charging 

peaks coincide with peak load. The load profile, on the other hand, changes differently in the Coordinated 

scenario. There is no increase in load during peak load times. This occurs because EVs that arrived home is 

not immediately charged. However, the change in the load profile occurs between 23:00 and 05:00 because the 

charging load of EVs is shifted. Furthermore, the load factor of the base load, Uncoordinated, and Coordinated 

scenarios are 79.3%, 76.2%, and 79.7%, respectively. This demonstrates how the Coordinated scenario 

improves the system’s load factor. 
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Fig. 9. Change in the load profile 

3.2. EV Charging Characteristics 

The SoC obtained in the two scenarios differs due to the different charging methods. For example, Fig. 

10 depicts the SoC of EV no. 62 throughout the charging process. In the Uncoordinated scenario, when the EV 

arrives home at 18:00, the EV is immediately charged nonstop until it is nearly full at 20:00. In Coordinated 

charging, the charging is not started directly when the EV gets home. Furthermore, the charging process is 

rather irregular. Nevertheless, the EV can reach the target SoC at 07:00 the next day, three hours before the EV 

is used. Fig. 10 depicts the final SoC in both scenarios. Because no SoC target is set in the Uncoordinated 

scenario, the electric vehicle will be charged until the SoC is close to 100%. The Uncoordinated charging 

method yields a 96% average final SoC. Meanwhile, in the Coordinated scenario, the final SoC is expected to 

be 90%. The average SoC obtained is slightly less than the target of 86%. Distribution of final SoC shown in 

Fig. 11. 

 

 
Fig. 10. SoC of EV no. 62 

 

 
Fig. 11. Distribution of final SoC 
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3.3. Impact on System Power Flow 

Fig. 12 and Fig. 13 show the results of the power flow simulation, i.e., transformer loading profile and 

bus voltage profile, respectively. There is a 12.5% loading peak in the transformer loading in the Uncoordinated 

scenario at 18:00. The loading value is still less than the 80% permissible loading standard. The peak loading 

in the Coordinated scenario, on the other hand, is still lower, at 12%. The difference in transformer loading 

between the two scenarios is due to the large capacity of the distribution transformer used, which is 60 MVA. 

As a result, there is no significant increase in load at the penetration level under consideration. 

 

 
Fig. 12. Transformer loading profile 

 

When the load demand is high, during peak load times, the bus voltage in the distribution system will 

generally decrease. However, the voltage of Bus 35 remains within the standard range in both the 

Uncoordinated and Coordinated scenarios, with no significant difference between the two, or 0.1% to be 

precise. Nevertheless, the voltage in the Uncoordinated scenario is generally lower during the peak load period. 

 
Fig. 13. Voltage profile of Bus 35 

 

3.4. Impact on Charging Cost 

Economically, the two EV charging scenarios result in different costs. Table 5 summarizes the charging 

costs and differences in both scenarios. The Uncoordinated charging method requires Rp3.20 million of 

charging cost for 150 EVs, or about Rp21,319 per EV. Meanwhile, the Coordinated charging method is much 

less expensive, costing only 1.37 million, or around Rp9110 per EV. That is, charging with the Coordinated 

method saves 57.3% of the cost than charging with the Uncoordinated method. Low charging costs can be 

obtained in the Coordinated scenario because EV charging takes into account changing electricity costs over 

time. To lower the cost, most charging is done when electricity rates are low. 
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Table 5. EV charging costs in both scenarios 

Scenario 
Total Charging Cost  

(Million Rp) 

Average Charging Cost 

(Rp/EV) 

Uncoordinated 3.20 21,319 

Coordinated 1.37 9110 

Difference 1.83 12,209 

 

3.5. Study Comparison with Previous Works 

This section compares the findings of various studies on the optimal charging schedule for electric 

vehicles. Table 6 compares the findings of this study to those of previous studies. 

Kanchev et al. [22] scheduled EV charging using discrete optimization. However, this study does not go 

into detail about the case studies used, the electricity tariff model, or the cost of charging EVs. There was also 

no scheduling validation for the distribution system discovered. 

Suyono et al. [25] optimized EV scheduling using two optimization methods, binary particle swarm 

optimization (BPSO) and binary grey wolf optimization (BGWO). Using the ToU tariff, coordinated charging 

is found to reduce charging costs by 5.45-15.89%, depending on the level of EV penetration. Afterward, the 

scheduling results are evaluated by simulating them to determine bus voltages and power losses in the IEEE 

31 bus system. 

Visakh et al. [21] used convex optimization to model optimal EV charging scheduling. Using dynamic 

pricing rates, resulted in a 30% reduction in charging costs. Simulation on the IEEE 4-node test feeder was 

done to validate the scheduling results and determine the impact on transformer loading and bus voltage. 

In contrast to previous research, this study optimizes the scheduling of EV charging models using MILP. 

Furthermore, previous research only used test cases as a simulation system. As a result, a real distribution 

system was used in this study, along with real vehicle usage behavior data. 

 

Table 6. Comparison of our study with previous works 

Author 
Optimization 

Method 

Real 

Study 

Case 

Electricity 

Tariff Model 

Charging Cost 

Reduction 

Power Flow 

Validation 

Kanchev et al. 

(2018) [22] 

Discrete 

optimization 
No Not specified Not evaluated Not evaluated 

Suyono et al. 

(2019) [25] 

BPSO and 

BGWO 
No ToU 5.45-15.89% 

Bus voltage and 

power losses 

Visakh et al. 

(2021) [21] 

Convex 

optimization 
No Dynamic pricing 30% 

Transformer loading 

and bus voltage 

Our study MILP Yes ToU 57.3% 
Transformer loading 

and bus voltage 

 

It should be noted that each study’s optimal scheduling results were obtained using different optimization 

methods, data, and validation models. As a result, Table 6 cannot be used to demonstrate the effectiveness of 

the presented optimization model unequivocally, but only for general comparisons with previous studies. 

 

4. CONCLUSION 

The optimal scheduling of EV charging was obtained in this study and tested on the Bantul 05 Feeder 

system. Based on the two charging scenarios that were tested, Uncoordinated and Coordinated, it is clear that 

Coordinated charging has several advantages over Uncoordinated charging. First, the Coordinated charging 

method significantly reduces EV charging costs by up to 57.3% as compared to the Uncoordinated method. 

Low charging costs can be obtained in the Coordinated scenario because EV charging takes into account 

changing electricity costs over time. To lower the cost, most charging is done when electricity rates are low. 

Second, by not increasing the system’s peak load, the Coordinated charging reduces the distribution system 

transformer loading by 0.5%. The voltage profile during peak load conditions is also found to be 0.1% higher, 

slightly better than the Uncoordinated scenario. This demonstrates that coordinated EV charging benefits not 

only the EV users but also the distribution system operator by preventing system operation issues. 

 

Future Work 

In this research, the electric vehicle charging station is assumed to take place entirely in the homes of EV 

owners. Future research may include EV charging units at other locations, e.g., public charging stations or 
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offices. Furthermore, the impact of EV penetration levels on the charging schedule and distribution system 

power flow can be investigated further.  
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