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 Supercritical carbon dioxide (Sc-CO2) has thus been proposed as an 

appropriate solvent for diluting the pharmaceuticals to increase particle size. 

The use of supercritical fluids (SCFs) in various industrial applications, such 

as extraction, chromatography, and particle engineering, has attracted 

considerable interest. Recognizing the solubility behavior of various drugs is 

an essential step in the pharmaceutical industry's pursuit of the most effective 

supercritical approach. In this work, four models were used to predict the 

solubility of Azathioprine in supercritical carbon dioxide, including Ridge 

regression (RR), Huber regression (HR), Random forest (RF), and Gaussian 

process regression (GPR). The R-squared scores of all four models are 0.974, 

0.6518, 0.966, and 1.0 for Ridge regression (RR), Huber regression (HR), 

Random forest (RF), and Gaussian process regression (GPR) models, 

respectively. The RMSE error rates of 2.843 ×10-13, 7.036 ×10-12, 5.673 ×10-

13, and 1.054 ×10-30 for the RR, HR, RF, and GPR models, respectively. MAE 

metrics of 1.205 ×10-6, 2.151  ×10-6, 5.997 ×10-7 and 9.419 ×10-16 errors were 

also found in the RR, HR, RF, and GPR models, respectively. It was found 

that Ridge regression (RR), Random forest (RF), and Gaussian process 

regression (GPR) models can be used to predict any compound's solubility in 

supercritical carbon dioxide. 
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1. INTRODUCTION  

In the field of pharmaceutical manufacturing, invention of new medications and innovation of favorable 

therapeutic approachesare the most significant obstacles [1]. An essential step in the pharmaceutical industry's 

quest for the most effective supercritical approach is the recognition of the solubility behavior of various 

therapeutic drugs [2]. In fact, the development of methods of particle engineering that are suitableto regulate 

particle size is of the utmost importance due to the significance of aspects to take into account include solubility 

and bioavailability [3][4][5][6][7][8]. Sc-CO2 is well-liked because of features such as low price, low critical 

pressure, high diffusivity, low viscosity, and high inertness or toxicity. Sc-CO2 has thus been proposed as a 

suitable solvent for increasing the particle size of pharmaceuticals. The use of supercritical fluids (SCFs) in 

numerous applications within the industrial sector, such as chromatography, extractions, and particle 

engineering, has attracted considerable interest [9], [10][11]–[16]. There have been a great deal of scientific 

investigations, both experimental and theoretical, carried out to comprehend the properties of Sc-CO2 systems, 

particularly the interactions between individual molecules in supercritical fluid solutions [17][3], [10], 

[18]. Additionally, advancements have been made in the use of Sc-CO2 as an alternative solvent system for the 

processing of materials [19], [20].  

Azathioprine is a crystalline solid mercaptopurine derivative with the chemical name 6-[(1-methyl-4-

nitro-1H-imidazol-5-yl)thio]-9H-purine. It's a drug used mainly to stop the body from rejecting a transplant by 
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lowering the immune system's T-lymphocyte borne delayed immune responses [21][22][23]. Rheumatoid 

arthritis, organ transplantation, Crohn's disease, chronic active hepatitis, systemic lupus erythematosus, 

polyarteritis nodosa, and other autoimmune disorders are all treated with azathioprine [22][23]. Additionally, 

Azathioprine is authorized as a medicine for the treatment of particular forms of cancer and inflammatory 

bowel diseases [24], [25]. Only a very small amount of azathioprine can be dissolved in water and other 

aqueous solutions, but it is highly soluble in organic solvents such as Dimethyl sulfoxide [21].  

Recently, machine learning (ML) method has become a powerful tool in the scientific disciplines [26]–

[34]. In the present work, four models were used to predict the solubility of Azathioprine in supercritical carbon 

dioxide, including Ridge regression (RR), Huber regression (HR), Random forest (RF), and Gaussian process 

regression (GPR). Moreover, R2, RMSE, and MAE were utilized to evaluate the models used. As mentioned 

previously, the novelty of this study is the application of machine learning to four distinct new models in order 

to optimize their configurations (hyperparameters) to improve and predict how well a drug will dissolve in 

water. Thus, the pharmaceutical industry benefits from research, new drugs are developed, and promising 

therapeutic approaches are advanced. 

 

2. METHODS  

2.1. Data Sheet 

In this study, 32 data points of solubility on Azathioprine  in Sc-CO2 were used [35]. The chemical 

structure, formula, molecular weight, and melting temperature of  Azathioprine are presented in Table 1. Fig. 

1 shows the research diagrams of  this study. Y is the solubility output, which has two inputs (temperature = 

X1, and pressure = X2), and it is displayed in Table 2. 

 

Table 1. Azathioprine's molecular form, melting point, and other physical characteristics 

Solute Chemical Form Structure 

Molecular 

Weight 

(g/mol) 

Tm (K) 

Azathioprine C9H7N7O2S 

 

277.263 526 [36] 

 

 
Fig. 1. Research diagrams of Azathioprine predictive solubility in Sc-CO2 

 

2.2. Ridge Regression (RR) 

Ridge regression is a well-known parameter estimation technique that can be applied in multiple linear 

regression in order to address the frequent collinearity problem. The following is the standard model for 

performing multiple linear regressions. 
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 𝑦 = 𝒙𝛽 + 𝜀, (1) 

where E(ε) = 0, 𝐸(𝜀𝜀′) = 𝜎2𝐼𝑛, and 𝑥 is (𝑛 × 𝑝) and by bold symbols. The matrix 𝐼𝑛 is the identity matrix with 

dimension n by n [37]. 

 

Table 2. Data sheet used in this work 
No. Temperature (K) 

(X1) 

Pressure (MPa) 

(X2) 

Y 

(106) 

1 308 12 5.1 

2 308 15 6.4 

3 308 18 6.7 

4 308 21 7.4 

5 308 24 8.1 

6 308 27 8.6 

7 318 12 4.0 

8 318 15 7.1 

9 318 18 7.7 

10 318 21 9.4 

11 318 24 11.2 

12 318 27 12.5 

13 328 12 3.4 

14 328 15 8.1 

15 328 18 9.6 

16 328 21 11.9 

17 328 24 13.4 

18 328 27 15.6 

19 338 12 2.7 

20 338 15 9.0 

21 338 18 12.0 

22 338 21 15.0 

23 338 24 17.1 

24 338 27 18.3 

25 308 12 5.1 

26 308 15 6.4 

27 308 18 6.7 

28 308 21 7.4 

29 308 24 8.1 

30 308 27 8.6 

31 318 12 4.0 

32 318 15 7.1 

 

2.3. Huber Regression (HR) 

Huber regression is an outlier-tolerant regression technique. It is to use a different loss function as opposed 

to the standard least-squares formula [38].  Definition of the Huber loss as  

 𝑙𝜏(𝑥) = {
𝑥2/2,                     if|𝑥| ≤  𝜏,

𝜏|𝑥|  − 𝑥2/2,       if|𝑥| >  𝜏,
 (2) 

where 𝜏 > 0 is the robustification parameter that achieves a satisfactory compromise between bias and 

robustness.  𝑙𝜏(𝑥) is the quadratic form of the loss function of  𝑥, and when x exceeds some threshold, the graph 

linearizes 𝜏 in magnitude. The 𝜏 presides over the blending of quadraticand 𝑙𝜏 losses, which can be considered 

to be the two polar opposites of the Huber loss with 𝜏 = ∞ and 𝜏 → 0, respectively. 

 

2.4. Random Forest (RF) 

The steps of bootstrapping and bagging need to be completed before a regression problem can be solved 

using the random forest (RF) method. A random subset of the training dataset is used in the first step of the 

process, which generates a set of decision trees based on the growth of each individual tree. After achieving 

the ensemble, the second stage disassembles the nodes of the decision tree by selecting random subsets of 

training samples during the initial bagging procedure.The decision is made by selecting the optimal subdivision 

and its value. The random forest (RF) model can be seen as a collection of decision trees, 𝐺(𝑥, 𝜃𝑟) is the Gth 

predicting tree, and θ provides a distribution vector that is independent and uniform and that was assigned 
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before the tree grew [39]. The Breiman (3) is used to construct the forest by combining and average. The RF 

model is comparable to a collection of decision trees, with G at the cantering the whole trees [39]. 

 𝐺(𝑥, 𝜃1, … … 𝜃𝑟) =
1

𝑅
∑ 𝐺(𝑥, 𝜃𝑟)

𝑅

𝑟=1

 (3) 

 

2.5. Gaussian Process Regression (GPR) 

GPR is a type of nonlinear regression that doesn't use parametric models but uses a probabilistic 

regression framework [40]. 

The result variable 𝑦 in this method can be presented as follows: 

 𝑦 = 𝑓(𝑥(𝑘)) + 𝜀 (4) 

Here (𝑥) is a calculation of data results,  𝑓 represents the lack of clarity regarding the functional dependence, 

and 𝜀 refers to Gaussian noise (𝜎𝑛
2) is the variation that is present in Gaussian noise. Mean and standard 

deviation are both Gaussian 𝑝 (𝑦∗|𝑋, 𝑦, 𝑥∗) 𝑐an be calculated by the following formulas [41]. 

 �̂�∗ = 𝑚(𝑥∗) + 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1(𝑦 − 𝑚(𝑥∗)), (5) 

 𝜎𝑦
2

∗
= 𝑘∗ + 𝜎𝑛

2 − 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑘∗, (6) 

Here K is matrix covariance by using the elements 𝑘𝑖,𝑗 = 𝑐𝑜𝑣 (𝑥𝑖, 𝑥𝑗), vector k as follows  

 [𝑘∗]𝑖 = 𝑐𝑜𝑣 (𝑥𝑖, 𝑥∗) 𝑎𝑛𝑑 𝑘∗ =  𝑐𝑜𝑣 (𝑥∗, 𝑥∗)  (7) 

To make reliable predictions, the dataset is used to figure out the mean and covariance function attributes. 

Because of how the predictive possible distribution functions, the attributes are shown as hyper attributes. The 

hyper-attributes are made by maximizing log 𝑝(𝑦|𝑋). 

 log 𝑝(𝑦|𝑋) = −
1

2
𝑦𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦 −
1

2
log (|𝐾 + 𝜎𝑛

2𝐼|) −
𝑛

2
log (2𝜋) (8) 

Here n is  the quantity of training subset. 

 

2.6. Model evaluation metrics  

To evaluate the models selected performance, we used three metrics: the root mean square error, also 

known as RMSE, the mean absolute error, also known as MAE, and the coefficient of determination, R2, are 

calculated as follows: 

 𝑅2 = 1 −
∑ (�̂�𝑖 − 𝑦𝑖)2

𝑖

∑ (𝑦𝑖 − 𝜇)2
𝑖

 (9) 

 𝑀𝐴𝐸 =
1

𝑛
∑|�̂�𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (10) 

 𝑅𝑀𝑆𝐸 = [
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

]

1
2⁄

 (11) 

where 𝑦𝑖 is the measured solubility, �̂�𝑖 is the predicted solubility, and 𝑛 is the quantity of data.  

 

3. RESULTS AND DISCUSSION  

In this study, 32 data points on Azathioprine solubility in Sc-CO2 were used. Table 1 presents the chemical 

structure, formula, molecular weight, and melting temperature of Azathioprine. 𝑌 is the solubility output, which 

has two input (temperature = X1, and  pressure = X2) and it is displayed in Table 2. Scikit-learn [42] is a widely 

used Python package for conventional machine learning algorithms on which we train all of the models.  

Fig. 2 shows the comparison of predicted solubility and real measured of Azathioprine using the Ridge 

Regression (RR). Fig. 3 presents  the comparison of predicted solubility and real measured of Azathioprine 
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using the Huber Regression (HR). Moreover, the comparison of predicted solubility and real measured of 

Azathioprine using the Random Forest (RF) are presented in Fig. 4. Additionally, Fig. 5 shows  the comparison 

of predicted solubility and real measured of Azathioprine using the Gaussian Process (GPR). Table 3 

summarized performance of Ridge regression (RR), Huber regression (HR), Random forest (RF), and Gaussian 

process regression (GPR)  models for the prediction of Azathioprine solubility in Sc-CO2, respectively. It was 

found that the Gaussian Process  (GPR) model prediction accuracy was better than three other developed 

regression machines as presented in Table 3 and Fig. 2- Fig. 5. Fig. 6 displays a 3D results of the input to the 

single output.  

 

Table 3. Performance of various models (RR, HR, RF, and GPR) for Solubility prediction of Azathioprine in 

Sc-CO2 
Models R2 RMSE MAE 

Ridge Regression (RR) 0.974 2.843 × 10−13 1.205 × 10−6 
Huber Regression (HR) 0.6518 7.036 × 10−12 2.151 × 10−6 
Random Forest (RF) 0.966 5.673 × 10−13 5.997 × 10−7 
Gaussian Process  (GPR) 1.0 1.054 × 10−30 9.419 × 10−16 

 

The Ridge Regression, Huber Regression, Random Forest, and Gaussian Process   models each have a 

RMSE error of 2.843 × 10−13, 7.036 × 10−12, 5.673 × 10−13, and 1.054 × 10−30, respectively.  The MAE 

values for the RR, HR, RF, and GPR were also found to have 1.205 × 10−6, 2.151 × 10−6, 5.997 × 10−7and 

9.419 × 10−16, respectively. Additionally, the R2 values of the RR, HR, RF, and GPR were found 0.974, 

0.6518, 0.966, and 1.0, respectively. 

 

 
Fig. 2. Ridge Regression plot of predicted solubility of Azathioprine versus experiment 

 

 
Fig. 3. Huber Regression plot of predicted solubility of Azathioprine versus experiment 
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Fig. 4.  Random Forest  Regression plot of predicted solubility of Azathioprine versus experiment 

 

 
Fig. 5. Gaussian Regression plot of predicted solubility of Azathioprine versus experimental data 

 
Fig. 6. Gaussian Regression 3D for the solubility of Azathioprine 
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4. CONCLUSION 

In the pharmaceutical industry, optimizing the solubility of various drugs in Sc-CO2 over a broad 

temperature and pressure range is a desirable endeavor. The primary objective of this study is to use 

four machine learning regression algorithms to predict the optimal solubility of  anticancer  and an 

immunosuppressive drug in Sc-CO2. In this regard, four machine learning regression algorithms methods were 

used in this study to look at the data of solubility of Azathioprine in Sc-CO2: Ridge regression (RR), Huber 

regression (HR), Random forest (RF), and Gaussian process regression (GPR). The RR, HR, RF, and GPR 

models each have a RMSE error rate of 2.843 × 10−13, 7.036 × 10−12, 5.673 × 10−13, and 1.054 × 10−30. 

The MAE metrics for the RR, HR, RF, and GPR were also found to have 1.205 × 10−6, 2.151 × 10−6, 5.997 

× 10−7and 9.419 × 10−16. Additionally, the R2 values of  the RR, HR, RF, and GPR were found 0.974, 0.6518, 

0.966, and 1.0. It was found that Ridge regression (RR), Random forest (RF), and Gaussian process regression 

(GPR) models can be used to predict the solubility of any compounds in supercritical carbon dioxide. Finally,  

this work can be used   to optimize and predict the drug solubility. So, research helps the pharmaceutical 

industry, leads to the creation of new drugs, and moves forward promising therapeutic approaches. 
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