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Abstract Ecological systems can be quite complex,
consisting of an interconnected system of plants and
animals, predators and prey, fHowering plants, seed
dispersers, insects, parasites, pollinators, and so on. In
the case of the existence of a species affecting the survival
of other species : it can be derived a
competitive model m the form of a system of differential
equations. A competitive model involves a number of
parameters which grows in proportion to the number of
interacting species. The resistance of a state variable
to tiny disturbances of some parameter is referred to as
sensitivity. The competitive model of size N consists
of N parameters for intrinsic growth, N parameters
for carrying capacity, N? — N parameters for species
interaction, and N parameters for initial conditions. As
a result,@?re will be N?(N + 2) distinct values of sen-
sitivity. The purpose of this paper is to derive a general
formulation the sensitivity equations of dynamical system
and then apply it to the competitive model. This study
also encompasses the formulation of some algorithms and
the implementation for solving the sensitivity equation
numerically. Finally, the sensitivity functions are em-
ployed as qualitative instruments in the optimal design of
measurement for parameter estimation through a series
of numerical experiments. The results of this study are
the ordinary and the generalized sensitivity functions
for interacting species. Based on numerical experiments,
each group of data provides different information about
the existing parameters.

vice versa,

Keywords Sensitivity equation, Competitive model,
Sensitivity function, Optimal sample, Parameter estima-
tion.

AMS Subject Classification: 34A55; 49M05; 65L05;
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1 Introduction
7
garamete stimation is the process of using observa-

tion data in a dynamic system to develop a mathematical

del that describes the characteristics of that system.
lathematical modeling through parameter estimation is

a way that leads to a deeper understanding of the sys-

tem characteristics [19, 11]. The mathematical model is

assied to have a finite number of parameters that must
be estimated by some measurement data. In general, the
estimation technique is based on minimizing the error be-
tween the model response and the system response. The
system response is obtained through some discrete time
measurements, where each measured data is assumed to
convey information to a certain degree of the parameter
being estimated (2, 24]. For an illustration, suppose the
discrete-time observation is given by

y(tp) = fltp:0) +eltp), bk =1,2,--- | M (1)
where f is t odel response and €(f;) is the measure-
ment noises assumed to be independently identically dis-
tributed (i.i.d.) with zero mean m\mriance a?(t;). Sup-

pose that f = (fi,fo, -+, fu) and 6 = (#1,62,--- ,6;)

represent the vector of st@F#s and parameters, respec-

tively, then the time cofff@ derivative of f; with respect to
parameter £, ie. % i=1,2,--- M, j=1,2,--- ,p are
called the sensitivity functions. They describe how model
output trajectories change in response to modest changes
in model parameters [22, 3, 5]. In most cases, the model
response [ is implicitly depend on the solution of some
initial value problem (IVP).

To gain an awareness of the issues to be discussed, con-
sider the explicit model of three parameters as follows.

y(t) = et o je—oat o 42o—ast e(t).

(2)

In this cas@pRthe parameter vector is given by # =
(ev1, evp, vy) and the noise €(t) is assumed to be zero mean
with constant variance.

This signal was generated at discrete time t = 0 :

0.01 : 2 with the true parameters aq = 5.12, ay = 3.92,
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Figure 1. The measurement with noise

g = (.96, and noise & = 0.01. The issue to be addressed is
how to estimate these parameters using distorted data as
shown in Figure 1. More specifically, how many and when
measurements should be performed in order for the obser-
vation data to provide as much information about the pa-
rameter being estimated as possible. Let {#;, %2, ,far}
be % measurement times, the performance index based
on the mean square error (MSE):

M
MSE= =3 ly) - O ()

k=1
Despite the fact that the signal was defined on [0, 2],
measurements are considered also separately in each sub-
domain [0,1] and [1,2]. The following samples were pur-
posefully chosen to assess the information content of pa-

rameters provided by the data set:

Sample#1 : {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
: {1.1,1.2,1.3,1.4,1.5,1.6,1.7, 1.8, 1.9}
- {0.25,0.5,0.75}

Sampel#2
Sample#3

Sampled# :{1.25,

:{0.2,0.4,0.6,0.8,1.0,1.2,1.4, 1.6, 1.8}

5,1.75}
Sample#5

The estimate # is obtained by minimizing the MSE on
specific measurement points. The simulation results pre-
sented in Table 1 were ined by using the MATLADB
toolbox "fminsearch” for multidimensional unconstrained
nonlinear minimization based on Nelder-Mead method
[10]. The results are presented in Table 1. Samples 2
and 4 were drawn from the interval [1,2] and they pro-
vide worse estimates than samples 1 and 3 which taken
from the interval [0,1]. For instance, sample 4 produces
estimates d; = 32.869 and dy = 34.171 for the true pa-
rameter ey = 5.12 and &, = 3.92, respectively, very worse
even though their MSE's are small enough.

Therefore, a reference is required in order f§jselect the
best sample in terms of providing the most information
about the parameters to be estimated. The sensitiv-
ity functions, both traditional and generalized, were [re-
quently used as a reference for optimal measurement. The
sharp increase of generalized sensitivity functions indicate
a high concentration of information about parameters, see
[22, 5] and references therein. Figure 2 shows that fluc-
tuations in both sensitivity functions occurred more fre-
quently in the interval [0, 1] than [0,2] for g and ay. On

Table 1. Results of simulation with the initial iteration 8% =
(1,1,1) and the true parameter 0y = (5.12, 3.92, 0.96).

Measurement Estimate: f MSE(#)
Sample#1 (5.036,4.089,0.991)  4.912 x 10~ °
Sample#2  (3.804,160.589,0.961) 1.643 x 107*
Sample#3 (5.298,3.778,1.027)  6.478 x 10~
Sample#4  (32.869,34.171,0.956)  1.441 = 1079
Sample#5 (5.280, 3.866, 0.956) 1.303 x 10~*

the other hand, the curves fluctuations relating to g were
not too often.

Figure 2. The sensitivity functions of system (1.2): traditional
{up) and generalized (bottom).

Sensitivity analysis refers to the procedures used in sim-
ulatio dies to determine the impact of parameter vari-
ations on the time course of model output and also to
identify which parameters in the model are th@inost sen-
sitive or the least sensitive [3]. On this hand, a complete
description of a physical system, i.e. the mathematical
model and thnmramcter's values are supposed, then it
can be used to prediet the outeome of some measurements.
The problem of predicting result of measurements is called
the modelization problem, the simulation problem, or the
forward problem [21]. On the other hand, the inverse
problem consists of using the actual result of measure-
ments to predict the value of the parameters that char-
acterize the system. The forward problem has a unique
solution or well-conditioned, but the inverse problem has
not or ill-conditioned [21, 12, 1, 17, 27]. It means that
multiple measurements could result in a single estimate.
Another critical issue in the inverse problem is the possi-
bility of different parameter sets which describe the same




system. For instance, as shown in Table 1 that two es-
timates £y = {d, = 5.036,cd, = 4.089, &3 = 0.991} and
Ey = {a; = 3.804, 4, = 160.589, &3 = 0.961} are com-
pletely different for & and éo, but they produced similar
outputs. As a result, the quality of estimates is qualified
not only by MSE but also by their reliability with respect
to disturbance.

According to previous simulation@it is clear that both
types of sensitivity functions play an important role in
the optimal design of measurement. The sensitivity func-
tions are generally not explicitly available; nevertheless,
they muffffe revealed by solving the sensitivity equation,
which is a system of differential equations equipped with
some initial condition. This paper will address issues re-
lated to the derivation and numerical implementation of
the sensitivity equation, and to the application in the com-
petitive models. The paper is structured as follows. Sec-
tion 2 will describe an abstract formulation of the sensitiv-
ity equation. A construction of the sensitivity equation for
competitive model will be discussed in section 3. Section
4 will foeus on the algorithms composition for numeri-
cal implementation. Finally, some numerical experiments
concerned with the use TSEF and GSF in selecting the best
sample for parameter estimation will be demonstrated in
section 5. A various mean square errors will be employed
in some numerical experiments to assess the information
content ol the parameters conveyed by each existing state.

2 Abstract Formulation of Sensi-

tivity Equation
Let X(t) := [z1(t), - ,a:N(t)]T be the state function
involving a parameter vector # = [f;,8,, - - - _.BP]T and F :
[to. 1] x RY — RN be a vector function of the form

F(t, X:0) = [f1(t, X;8), fo(t, X:8), -, fw (1, X;:60)]"

where f, : [to,t7] x RY — R, i = 1,2,---,N. Consider
the general nonlinear dynamical system

E:F(t,){;ﬁ),)((tn):xn, (4)

In this case Xy = [m(to), ma(te),:  ,an(t)]f =
[To1, oz, -+, 2 is the initial value vector. The sensi-
tivity equation 18 derived by taking the derivative of the
state vector X with respect to the vector parameter # on
both sides of (4). By employing the interchange prop-
erty of derivative, i.e. % (%) = % (%) the following
sensitivity equation is obtained.

d (0X\ OFJX  OF (5)
i \as ) ox a8 o8 ”

Es a system of differential equations with state matrix
%] The elements of matrices in the equation (5) are

explicitly given as

ory 811 ah . dh

ax afy a, ar f)'.le:l 61.::\.'
5| o bax | |

dun i afn afn

da

a6, a8, PN

- ad ad,,
oF N !
a0~ | o

afn . Afw

@, a6,
. . . B (¢

Stz (ty) does not contain parameter in # then % =

J

0,fori=1,2,--- . Nand j=1,2,---,p. Therefore, the
initial condition of system (5) can be written as

dX(ty)

af
iLe. the null matrix of size N x p. The problem now is
how to determine the sensitivity matrix % that satisfies
(5) with initial condition (6). There are N x p elements of

sensitivity matrix where for ¢ dan j fixed, % represents
2

= zeros(N, p), (6)

the trajectory change of z; with respect the small change
of parameter f;. The solution of state equation (4) is
required for defining matrices % and % in (5). For
simplicity, the equation (5) is decomposed into individual

parameters. As an illustration, for i = 1,2,.-- ,p, this
equation can be written as
8z, ot . Oh i, af
d an; i Y a0 ;s
dt | s ) o .
Or a Afn A f Ay Af
an, Dy T a0, o0,
(7)

This is a linear system of the form ¢ = Ay+ f and the the-
oretical studies of these types of equations can be found in
some differential equation textbooks, e.g. Borelli & Colle-
man [8]. In this paper, the sensitivity equations (5) - (6)
and the state equation (4) are solved simultaneously by
some mumerical approaches in which the initial condition
is treated as a parameter. As a consequence, the quanti-
ties (;):I:) must be considered as a state variable too. Since
F does not involve X it fulfills % = 0, and thus the
sensitivity equation for Xy is obtained as follows:

d (dX\  OF 90X
dt (ax}) T 9X 09X,

(8)

The state variable g)}({” is a matrix function of size N x N,
% s [totf] — RVN*N where for each t € [ty 1], it
be written explicitly as

Gy (t) dxq(t)
ax EE RS
Xy -

Az (t

dxo

The differential equation (8) is equipped by the initial
condition

E}X(l‘[]]
=INun, 9
X, Nx N, (9
where [y, x denotes an indentity matrix of size N. This
matrix is easily obtained by remembering that Bzilto)

ding
iti=jand 0ifi # j.

It can be understood that a system of size N with p pa-
rameters will govern the sensitivity equation of size N x p.
In case the initial condition is also considered as param-
eter, then there will be one additional equation of size
N x N. The large sizes of system, the matrix function
as unknown, and the dependence on the state equation

' are some issues that give rise to challenges in solving the

sensitivity equations.




3 Derivation of Sensitivity Equa-
tion for Competitive Model

A detailed discussion of models for population interac-
tions has been written by Mwrray in [18], particularly on
two-species system. There are three main type of interac-
tion, i.e. predatorprey situation if the growth rate of one
population is decreased meanwhile the other increased,
competition if the growth of each population is decreased,
and mutualism or symbiosis when both the growth rates
are enhanced. In this paper, the three cases are not dis-
tinguished and they are regarded as competitive models.
In some references, the predator-prey equations is also re-
ferred as the kind of Lotka-Volterra equations.

The competitive model can be described as

T N 0T

% = Til; (1 - Z:j%lgj) .xi(to) = Tio, (10)
where i = 1,2,--- | N. In this model, N species where
N z 2 gggjhaving interactions with one another. For each
species ¢ = 1,2,- -+ | N, z; indicates the size of species, r;
signifies the intrinsic growth, K; represents the carrying
capacity, and a; ; describes? impact of i-th species on
j-th species. It is assumed that a;; =1, i = 1,2,--- | N
and a;; > 0 for i # j. There are no special constraints on
the interaction parameters as long as they do not generate
the chaotic behavior, as explained in [26]. The system
(10) is regarded as the standard model of Lotka-Volterra
equations. The more complicated of Lotka-Volterra model
has been discussed in [9] where the states emerged with
the feedback control and deviating argnment.

Clearly that the competitive equation (10) is the spe-
cial case of the abstract formulﬁﬁ (4), for which

N o ogixs .
Filt, X:0) = rixy (1 - 25295 ) =12 N. Ob-

serve that «;; := 1, and thus the competitive equation
for N species involves m’ + 1) parameters for equa-
tion, viz. {r, Ko @ 6,) = 1,2,--- N}\ {ay 11 =
1,2,--- ,N} and N additional parameters for initial val-
ues, i.e. r;(ty) = zp;, ¢ = 1,2,--+- ,N. The special case
of (10) is when N = 2 which is well-known as the Lotka-

Volterrra equation [13, 16, 1%
dry(f) 13 t) + arg1o(t)

= ryz(t) (

),tgt{}ll)

dt K
das(t) vo121 (E) + To(t)
rr;t( = rozs(f) (1 - %) £ H12)

These equations are equipped by the mitial conditions
r1(ty) = Ty and xo(ty) = xag. The logistic growth model
of Verhulst-Perl is this type for N =1 [2].

T
Z- (1 - K) .x(tn) = o

where r and K denote growth rate and carrying capacity,
respectively. Interestingly, the Verhulst-Perl equation has
a simple explicit solution provided by

(13)

K
() = .
) 1-(%-15&7—“'

where 7y = x(0) denotes the initial population size. The
corresponding parameters vector is # = (K, r, zy).

(14)

The elements of matrices in the sensitivity equations (5)
must be revealed in order to solve the sensitivity equation
numerically. The results of some algebraic manipulations
for dﬂing the elements of those matrices are shown be-
low. The elements of the Jacobian matrix % = (%)
i,j=1,2,--- N are determined by

N o .
o (R
(3;rj _ Tioj ¥y . j £ 4.

Take note of the parameters groupmtﬁched to the
competitive equation (10), ie. {r; : ¢ = 1,2, N},
{K;:i=1,2--- N}, and {aj; 1 i,j = 1,2,---  N,i #
J}. In the numerical implementation, it will be advan-

.

tageous for matrix % to be decomposed into parameter
groups %=, &=, and %-. The intrinsic growth rate and

carrying capacity matrices are calculated as follows:

AF N Vi Th
; = diag |z I—M i=1,2---,N|.
or 7 K;

(16)

ary _ EEﬂkuk .
((,)K)_dmg|iri.ri(? d=1,2,--- ,N|.
(17)

Furthermore, the interaction parameters {a,-j‘z',j N
1,2,--- ,N,j # i} must be rearranged, for instance, us-
ing the lexicographic technique. For example, for N = 3,
the new indices are given by aqy := T, 13 1= T, (g 1=
T3, 003 = T4, 0031 = Tr, 32 = Tg. Accordingly, the follow-

ing matrix is obtained. (%):{X“ =
0 0 Ii;‘:““l I;;;Z““:i 0 0
0 0 0 0 _f'?i(i:iﬁl _1'31:152
(1)
The simple case is when N = 2 , ie. ajy := 7 and

o1 1= Ta, so that

e
da /)y ) i jm12 0 i

As a result, there are as many as four groups of sen-
sitivity equations, three for parameters attached to the

state equation and the rest for initial value. They are
summarized as follows:
e The intrinsic parameter r;, 1 = 1,2,--- | N, let X, :=

X _ (0w
dr T\ dry

),i,j:l,z.--- N.

d;i' = g—; -+ z—i,){,.(tu) = zeros(N, N). (19)
e The carrying capacity K;,7 =1,2,--- | N, let X :=
2% 5’;;}_),@,;;‘:1,2. N,
dXk = EX}(—%,X}((M) = zeros(IN, N). (20)
dt 0X oK

oaua interaction parameter og;,i #F  j.i, ] =

. OX A i _ i
1,2,‘”,1\?, let Xﬂ, = Ba — Fﬂ;.k - (:3—1_‘1 N
i=1,2 N,j=12-,Nx(N—1).

dXo _ OF \  OF
dt X" da

s Xalfn) = zeros(N, N x(N—1)).
(21)




e The initial value zqg;, @ = 1,2, N, let X, :
dx;

ox [ B\ . . .
r().g,”_(Hw‘u)-'i'j_l-'z’.” AV

dX,

o

dt

oX

- X:A;”:Xw”(f[}) :-{Nx‘\"' (22)

the coefficient matrices in the sen-
almost diagonal so that it will be
worthwhile in terms of computational complexity. In
the following @fgtion, some numerical algorithms will be
implemented using the 4-th order Runge-Kutta method.
The other approach to parameter estimation related to
the predator-prey equations was proposed in [14] by intro-
ducing a smoothing stage before the Runge-Kutta method
applied.

It can be seen that
sitivity equations are

4 Numerical Implementation

Consid} the initial value problem (IVP) of single di-
mension ' = f(t,x) dan z(ty) = zy where z : [fy, 0] = R
and f : [tp,o0) x R — R. Assume the IVP has a
qique, non-explicit solution, which is approximated by
the fourth-order Runge-Kutta method. This method is
widely nsed in practice becaunse it is simple to implement
and has a high enough convergence order. Instead of the
infinite time horizon [fy, 0o, only the finite part [ty, ] is
considered in the implementation. The method is carried
out by discretizing the time domain [to, ff] ast; = t;_1+h,
j=1,2,3,-- - @ here h represents the mesh size, probably
not wniform. For the sake of simplicity, assume that the

discretization of time is given by #y,fy,t,--- .5 where
tj—t;_1 = hyj is the lenght of j’h—subinterval Let w; be
the approximatimn of = at t = #;, i.e. wy = x(t). Sper‘lﬁ-

cally, wy = xp. e fm.Lr‘th-order of Runge-Kutta method
adheres to the following algorithm stages.

Algortihm 4.1: Scalar variable

e start: wy = xy (given)
, M calculate k-g, k3, and ky:

kv = f(tja, "f"—l)
ko = fl(t;
ky = f(t;—1 + %:”"J—l T %k?)
ka= f(tj 1 +hwj 1+ hka)
wj =wj-1+ %(!;1 + 2ko + 2ks + k).

e for j=1,2,3,

by
1+ E s Wi—1 —f"bl]

e The collection of points {(t;,w;) : j
0,1,2,3,--- , M} visualizes the trajectory that ap-
proximate the solution of IVP.

4
Consider the case z(t) = [zq(f),z2(t),--
N—dim and f := [fl,fg, -, fn] where z; : [fo,00] —
R and f; : [tg,00] x RV — RV, i 1,2,-++, N.

w; = [wij,wey, - wy;] be the approximation of
%3’) = [IL(fj),ru(fa)v“ ,'-‘fN(fles e wiy o~ wi(t)),
1 =1,2,--- N, j =0,1,2,3,--- , M. The Runge-Kutta
method is applied to determine the vectors w; where
i 7=0,1,2,--- M.

s:r‘\"(t)] of

= x(t

'i.(.';, =T

Algorithm 4.2: Vector variable

e start: wy = [r19. T20, -+, TNo] (given)

. j = 1,2,3,--- M calculate wvectors k; =
1, k1o, Lk, ke = [kor koo, Jkon], ka =
[k31sk32: “ kfin] and ky = [k41,k42, “ ,k4n] as fol-
lows:

~ fori=1,2,--- /N:
w ko= fi(ti-1, H'J 1)

* hy = filtjo1+ 5 H'J.,_L + —kl]

* ki = fif

* kg = filtj—1

B (ko + 2k2 + 2z + k).

e collect the output in some matrix, e.g.

fj—l T % i.{']_L - —}pg]
1—!?.!13)

!: w;

® Wy = wi— +

wplr Wil Wil

. Woz Wiz Whrz
Wi =

Won  ULN WaN

where the rows correspond to coordinate of the state
r and the columns indicate the time grid.

Let Z where Z : [to,t;] — RY*P he the unknown and G :

[to.t7] x RN RN is given. For a scalar matrix Zj
of size N x p, consider the following initial value problem:
dZz
EZGU,Z]JE (to: ts]: Z(to) = Zo- (23)

This fornmmlation incorporates the sensitivity equation in-

troduced in the previous section. To begin constructing

the algorithm, create a 3-dimensional array W of q
2t

Nxpx M, ie. W = (wyp), where wyj, =~
i=1,2 - ,N,j=1,2,--- ,p,and k=1,2,--- , M.

Algorithm 4.3: Matrix variable
o start: Wy = Z; (given)

e for k=1,2,3.---
dan Ky as follows:

, M calculate matrices K, Kq, Kq,

—- K1 =Gte1, Wi1)

- K5 ZG(h_L—— H’-_l——fxl)
— K3 :G(fg_L—— H!-_l——f\g)
- Ky =Gty +h,Wy_1 + hK3)

Wi = Wiy + L(Ky + 2K, + 2K;3 + Ky).

o Extract Z(t;) = W;.

Surprisingly, the numerical procedure of the Runge-Kutta
method for matrix variables is as simple as that for scalar
variables. The sensitivity equations (3.10)-(3.13) must be
solved simultaneously with the state equation (10), so
there are four pairs of equations. On this occasion, the
only intrinsic parameters r; are derived in detail, others
are treated similarly.

d;rt-

af =TT 1-—

PO
j=1 Yy
K;




dX. oF oF R -

7 = ﬁx" + W’Xr(f“) = zeros(N, N}, (25)
where % and < dF are matrices defined by (15) and (16),
respectively.

(2]
Algorithm 4.4

e for each « = 1,2,--- N, deline fi(t,z)

N
__q Xy
— (1 _ E;—}l(;”)

e apply Algorithm 4.2 to solve (24).

e store the elements matrix W1 := (wy;) where wi; =~
:i‘.‘i(fj).
e define matrix functions g(t,l) as G(t,Z) =
(5% ®] Z + [5®)]
e apply Algorithm 4.2 to solve (16).
o Xo(te) = GX(te) = Z(tk), k= 1,2, , M.
- P 3
The elements of Jacobian % = :)”‘ (t;‘.]) i =
]
1,2,--- \Natt=tp, k=12--- , M are defined by eval-
uating (1.1] at t =y, i.e.
afl ( o {rx' (1 _ Z‘:I:] “ue%{f‘k]‘*’%{h}) e
dr; JF i

Likewise, the elements of %F

r

fg):diﬁg |;ri(t”(l_ )] .

where 1 = 1,2,--- , N. In the numerical realization, the
values x;(f;.) are substituted by w;; obtained from (24).

or

oF, Z;\:l o p(ty)
ar

K,

Example 1
The special case of competitive model is when N = 2
which is described by the Lotka-Volterra equation.
ﬁ—1V'-1" L P t e (to.ts|o(ty) =2
pralREts! , : 0. trlTilto) = T1o
dxy g1, + Ty
— =71omgp | 1 — b (fp, tp|woltn) = Top.
pn 2 z( e : (o, tf] wa(ta) 20

Since N = 2, then there will be N?( N +2) = 16 sensitiv-
ity functions corresponding to the the sensitivity matrix
represented in the matrix dX given by

day daq By day J s g ey g
ary dra drria dagy Oy OKa dryy  dagg
dia dia g dia g dia iy iy .
dry dra deryz Pz, 0Ky K, dx1y  Dxap

It will be beneficial to partition the sensitivity matrix %
into parameter groups.

; Guy da : Ay Gy
X _ dry dra X - v vy
ar - dig o " Bex - g Ay ]
ary iry vy fivay
; Ory dwg iy iy
X _ 9K OKs f}X Gw0 Oezo
E1e dig diaa ] () T dira g
K1 (J}('z o dr1n drean

150

Figure 3. States trajectory

The following results were obtained using simulation data
to = 0,1 = 150, 799 = 10; w9y = 30, 7y = 0.1, 10 = 0.3,
a1z = 0.3, az; = 0.25, K| = 150, and K, = 100. The
trajectories of states are presented in Figure 3. Initially,
the nmumber of species 1 (19 = 10) is less than the number
of species 2 (zo0 = 30), however species 1 gradually out-
numbers species 2. This is primarily due to the fact that
species 1 has a bigger carrying capacity than species 2, i.e.
Ky = 150 and Ko = 100. In fact, neither species’ maxi-
mum capacities is ever realized. Obviously, the growth of
species 1 directly depends on the parameters ri, a0, and
K7 and implicitly depends on the parameters involved in
species 2, specifically ra, apy, and K

The graph of states is presented 1 Figure 3 and the
normalized sensitivity functions are displayed in Figure 4.
%V describe how these parameters affect each '-;p('vi("-;

e sensitivity of state x; with respect to pa_rameter o,
denoted by 3 a“ The greater the value of (;;‘ the more

impact of p'i.r'tm('t('r fl; to x;. The value Z2+ d‘

rlom to zero
within an interval 1nd1mteb that the p'tr'a.meter f; has lit-
tle effect on state x;. For example, Figure 4(a) shows that
each parameter influences both states x, and 2, though
their timing and duration may differ. For instance, based
on the curve of rj“ , the effect of parameter rq with respect
to 11 occurs significantly in [0, 100]. Similar patterns for
the parameter r; to zy and ry to r;. On the other hand,
the parameter ro has a significant effect on z» only on a
small part of interval at beginning,mmnd [0,20], other-
wise it is close to zero. (‘ompfiring Figure 4( ) and 4(b),
it can be seen that the patterns of 2 d and 2% are similar

I (}.L.
and so are F;K and ‘?}X Furthermore, the pattern of those

curves will be used as a qualitative tool in the optimal
design of experiment.

5 Application to Parameter Esti-
mation

The problem to be addressed in this section is how to
select a sample with a high information content about
the parameters to be estimated. This is known as the
optimal design of experiment, and it is a common chal-
lenge in many domains of applied science, for instance
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[6, 7, 15, 20, 28, 29]. Some optimal eriteria were based
on the functional of FIM [24, 25, 5]. Here, the sensitivity
functions behavior will be utilized to make the selection
[2, 3, 22]. The prior sensitivity function is known as the
traditional sensitivity function (TSF). Another criterion
required for this purpose is known as the generalized sen-
sitivity function (GSF).
In the nonlinear dynamical system

22— F(t, X;6), X (to) = Xo,

= (26)

where # is the parameter system, suppose that a discrete
time observations is represented as

13:1?%tj:9)—sj,j:1,2,---,n, (27)
where P is the matrix of measurement process and the ob-
servation errors €; are assumed to be independently iden-
tically distributed (iid) @u&sian noise with zero mean.
The problems of finding the optimal sensor location and
parameter estimation with non-Gaussian model noise had
beg considered in [23].

Gﬂssume that there are M observation coordinates, and
since the state X consists of coordinates x,,x5, -+ , 5,
the matrix PP should be of size M x N. Hence, the mea-
surement could be expressed explicitly as

Yij 11 C12 CIN Ty €15
Yz 21 Caz CaN Tyj €
UM j CM1  CM2 CMN TNj EMj

28)

For example, the first measurement coordinate at time #;
given by yy; = Zf\':l c1¢T¢ + €1, 1.e. the observation data
are represented in terms of the state variable X. A special
case of (28) is when M = N and P is an identity matrix,
it reduces the standard form

Yy = Thj T Ekjs

3
where £ = 1,2,--- , N denotes the coordinate of state,
j=1,2,.  n stands for the points of measurement, and
zi; := 7i(t;;8). Let o} be the variance associated with
the coordinate of the error ¢, i = 1,2,--- , M, ie. € ~
N{(0,V) where V = diag(o?, i =1,2,--- , M).

The fundamental assumption underlying parameter es-
timation is the existence of a nominal (true) parameter fy
that characterizes the system. The least squares approach
to estimate #y is performed by seeking the minimizer of
the cost functional

n 51
10) =3 1Y; - PX(ty:0)T VLY, - PX(8:0)).
i=1
(29)
For M = N = 2, the cost functional becomes

n

Py— 1 — 2_ 1 - _ v 2
J(g)-—jzzl ﬂf(tj)(yu Tiy) Ug(tj)(yzj Tz;)

(30)
The simulation assumes that the observation variances for
each measurement are similar, i.e. of(t;) = o3(t;) for all
i=1,2,---  n, therefore the cost functional now is simply




to

n
[(31‘1;‘ - 371;;)2 + (Y25 — T2 )2] = Zﬁfﬁjr
j=1

(31)
where € = [le — T1j. Y2y — ;rQJ]T is the error vectors at
t = t;. The simplest form of cost functional when the
state consists of the single coordinate.

J(#) = Z ly; — x; .
j=1

j=1

(32)

where x; = z(t;: ). Furthermore, the Fisher information
matrix (FIM) is defined by

n 1
F= 227 (Vo X (£1:00)] [VoX(E:00)]" . (33)
i) (£;)

where
OX(t;:00) X (t;00) axit;0,) 17
; Oy 53t jia) - XUti00)
VeX(t;:00) = [ ECR LR a0, ]
(39)
OX(15:00) [ owibo)  eaitsion) drn(tzon) |7
a0, D0x T a0
(35)

As a consequence of the term Vp X (t;: fp) being a column
vector of dimension N+p, the FIM is a symmetric squared
matrix of dimension N + p. The FIM is assumed to be
invertible. The FIM measures the information content of
the data corresponding to the model parameters [5]. The
generalized sensitivity function (GSF) is defined as

1
G'Q(tj)

[F 1 % Vo(tj:60)] o[V (t:60)] , (36)

£
Gt) =)
i=1

where the not@n ‘o” stands for element-wise vector
multiplication. The actual information is associated with
the rate of change of GSF, and thus sharp increases of GSF
indicate a high information about parameters [22, 5]. For
the sake of simplicity, and assuming that the variances
are uniform across the observations, the following step-
wise algorithms are required to define the GSF.

Algorithm to define the vector V,X(t;6)

e fork=1:p
—for{=1:N
La _ Bxe(t;0a)
D+ — 1) = 22el%)

Algorithm to define the FIM F

e prepare a squared matrix of size (N + p), ie. F =
zeros(N + p).

eforj=1:n

- Fy=D;D7,
- F=F+F,.

Algorithm to define the GSF
e prepare a m@n vector of size N + p, ie. G =
1).

zeros(N +p,
e forj=1:+¢
— define the vector H; of size N +p by H; =
F-1D;,
~ Go=H;eD;:=[H;(k)D;(k). k=1,2,--- N+
ol

- G:G—G[}.

Es readily seen from the definition that the GSI's are
the vector-valued functions of dimension N + p where the
k—th component g; of GG represents the generalized sen-
sitivity function of specific state coordinate with respect
to certain parameter. For instance, for N =2 and p =3,
there will be G sensitivity functions as shown in the fol-

lowing vector.

G= [Q(irlsﬁl)sg(irb 01), g(z1,02), glze, b2), glzs, 5), g(zs,

where g(x;,6;) specifies the generalized sensitivity func-
tion of z; with respect to ;.

Example 2

Cousider back to the competitive model with N = 2 as
given in Example 4.1. The eight parameters contributing
in the model are & = r1, o := 1o, B3 := 10, 04 := a0y,
f; = Ky, g := Ko, 67 := 115, and #; := x5, and
therefore fgre will be 16 generalized sensitivity functions
glxi,f;). 1 = 1,2; j = 1,2, 8. The following simmla-
tion using data z1y = 10; x99 = 30, r; = 0.1, r, = 0.3,
a1e = 0.3, ag; = 0.25, Ky = 150, and K> = 100. The tra-
jectories of GSF's are presented in Figure 6 and 7. The
time horizon [0, ] is adaptively extended until the steady
state is reached.

This simulation suggests that the information content
about parameters may differ among state coordinates and
along measurements. Take a look at Figure G(a), both x
and z» provide a comparable degree of information about
r1 and the most information given by observations when
t < 90. On the other hand, the most information about
ro is given by x1 when ¢ < 50 and by zo when ¢ < 10.
Similar phenomena are given by parameters K and z; as
shown in Figure 6(b). The pattern of the parameter o
is considerably different. Ewven after extending the time
span to t = 300, the GSF's corresponding to a still do
not reach the steady state as displayed in Figure T(a).
This means that information about the o parameter is
dispersed throughout the observation. However, the sharp
increases of GSF’s were occurred in the range [50,100].
This indicates that the state variables contains the most
information about the parameters in this interval. Figure
7(b) shows the sensitivity of state with respect to carrying
capacity /. The patterns are similar to sensitivity of
state with respect to intrinsic growths r's, i.e. the most
information is provided in [0,90]. To verify this claim,
the following example examine the observation data for
parameter estimation which are chosen from the range for
which GSI's increase sharply as well as the range where
steady state had been reached.

f)]"
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Figure 6. Graph of generalized sensitivity functions with respect
to parameter r and K.

Example 3

This example illustrates a number of issues concerning
the information content of the parameters included in the
observation data. The pertinent@uestions are when the
measurements should be taken so that the observation
data contains as much information about the parameters
to be estimated as possible, how much minimum data re-
quired to estimate these parameters, how parameter con-
tent of one coordinate to be contained in another, and
how to select the measurement moments using TSF and
GSF. The simulation here uses data: x5 = 10; x4 = 30,
ry =01, res = 0.3, a;p = 0.3, ag; = 0.25, Ky = 150, and
K, = 100.

Experiment 1

The parameters to be estimated here are 1 and ry us-
ing data taken from intervals [0,20] and [90,120]. Six
evenly distributed data points from each interval were
selected for estimation. The least squares error ap-
proach applies three criteria @ hctions LSy, LSs, and
LS5 defined by LS1(0) = iy |oa; — |, LS (A
Yjer lwos —gayl°, and LS3(8) = LSi(f) + LS2(6) =
Z?:L (Jr; — wjl® + w2 — yo;|?) where for each k = 1,2;
j = 1.2,---,n, the x;; and y.; are the model out-
puts and observations including disturbance terms, re-
spectively. The experiment results are summarized in the
following table.

First, consider the estimates arising from [90, 120].
None of the estimates given by the three criteria are sat-
isfactory. This indicates that the observation data ob-
tained from this interval contains insufficient information
about the parameters ry and ry. This corresponds to the

a 50 100 150
(b) Generalized sensitivity functions g(X, xzg).

Figure 7. Graph of generalized sensitivity functions with respect
to parameter o and re,.

Table 2. Result of experiment 1: the nominal parameters were set
to be 1y = 0.1 and r2 = 0.3.

Domain LSy LSs LSy
190, 120] (0.100. 0.100) (3.540, 18.343) (0.0012, 0.095)
[0, 20] (0.0986,0.2344)  (0.0999, 0.3002)  (0.1000,0.3007)

graph of GSF shown in Figure 6(a), which shows that the
GSF curve no longer changes after ¢+ > 90. Next, con-
sider the estimates obtained from the interval [0,20]. The
first criterion, LSy, provides a good estimate for ry but a
poor estimate for ry. The second criterion, LS,, on the
other hand, yields very good estimates for both r and
ro. This means that the data obtained through observa-
tion of x; contains less information about parameter r,
than xy about parameter 1. The best result is given by
LS. It means that the observation from interval [0, 20)
contains - of information about the parameters r; and
ro. The traditional and generalized sensitivity function
curves shown in Figure 8 indicate the similar behavior, i.e.

i) < |42 (left) and |g(x1, )| < [g(xa,m1)| (right).

These circumstances confirmed that the information con-
tent of parameters delivered by observation data of states
could be identified through their sensitivity functions.

Experiment 2

The the initial conditions x4y = (z1h,x2n) will be con-
sidered as parameters in this experiment where data are
collected from interval [25,50]. Figure 9 shows that |rf—j2ﬁ|
and |g(xs, rop)| are significantly smaller than others. This
fact does not mean that the state x, contains less informa-




(b) Generalized sensitivity functions g(X,r).

Figure 8. Graph of two kinds sensitivity functions with respect to
parameter r in the same domain.

tion about parameter xy,. Intuitively, zo should contain
nmuch information about parameter xoy because it directly
affects the state zp. Results of experiment are collected
in Table 3. Recall that criteria LS, relates to information
given by state x1, LSy by s, and LS3; by both z; and
ry. According to this table, state 1 contains much infor-
mation for parameter x1p and rg, state 2 contains a lot
of information for x4, but less for zy.

Table 3. Result of experiment 2: Estimates of parameter rz,; given
by three criteria, the true values @y = 10, zop = 30.

Domain LS, LS: LSy
[25,50]  (10.07,30.32) (12.54,30.12)  (10.11,29.96)

6 Concluding Remarks

The derivation of the sensitivity equations @ a nonlin-
ear parameterized dynamic system generates a system of
linear differential equations in the form of a matrix whose
size equals to the product of the number of state variables
and parameters involved, plus a set of equations relating
to the initial values. The sensitivity equations must be
solved simultaneously with the original state equations,
and its solution yiel@ the so-called traditional sensitiv-
ity functions (TSF). The traditio nsitivity functions
(TSF) are then utilized to create the Fisher information
matrix (FIM), which is subsequently used to define the
generalized sensitivity function (GSF). These two kinds
of sensitivity functions are employed in an optimal mea-
sure t design for selecting the sample that provides the
most mformation about the parameters to be estimated.

Numerical experiments on the competitive model were
conducted employing two types of sensitivity functions to

10

(b) Generalized sensitivity functions g( X, xy).

Figure 9. Graph of two kinds sensitivity functions with respect to
parameter ry in the same domain.

perform data measurement for parameter estimation. Ac-
cording to those numerical experiments, the information
content of the parameters varies along the measurement
samples. The information content is determined by state
coordinates employed and interval where measurements
are taken place. Both kind of sensitivity functions TSF
and GSF have been shown to be the effective benchmark
for determining the measurement interval, ensuring that
the data acquired contains the most information of pa-
rameters. In parameter estimation, it is recommended to
use data that provides a lot of information about these
parameters.
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