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Abstract Ecological systems can be quite complex, consisting
of an interconnected system of plants and animals, predators
and prey, flowering plants, seed dispersers, insects, parasites,
pollinators, and so on. In the case of the existence of a species
affecting the survival of other species and vice versa, it can
derive a competitive model in the form of a system of differential
equations. A competitive model involves a number of parameters
which grow in proportion to the number of interacting species.
The resistance of a state variable to tiny disturbances of some
parameter is referred to as sensitivity. The competitive model
of size N consists of N parameters for intrinsic growth, N
parameters for carrying capacity, N2−N parameters for species
interaction, and N parameters for initial conditions. As a result,
there will be N2(N + 2) distinct values of sensitivity. The
purpose of this paper is to derive a general formulation of the
sensitivity equations of dynamical system and then apply it to the
competitive model. This study also encompasses the formulation
of some algorithms and the implementation for solving the sen-
sitivity equation numerically. Finally, the sensitivity functions
are employed as qualitative instruments in the optimal design
of measurement for parameter estimation through a series of
numerical experiments. The results of this study are the ordinary
and the generalized sensitivity functions for interacting species.
Based on numerical experiments, each group of data provides
different information about the existing parameters.

Keywords Sensitivity Equation, Competitive Model, Sensi-
tivity Function, Optimal Sample, Parameter Estimation

AMS Subject Classification: 34A55; 49M05; 65L05; 65S05;
92D25.

1 Introduction
Parameter estimation is the process of using observation data

in a dynamic system to develop a mathematical model that de-
scribes the characteristics of that system. Mathematical model-
ing through parameter estimation is a way that leads to a deeper
understanding of the system characteristics [19, 11]. The mathe-
matical model is assumed to have a finite number of parameters
that must be estimated by some measurement data. In general,
the estimation technique is based on minimizing the error be-
tween the model response and the system response. The system
response is obtained through some discrete time measurements,
where each measured data is assumed to convey information to a
certain degree of the parameter being estimated [2, 24]. For an
illustration, suppose the discrete-time observation is given by

y(tk) = f(tk; θ) + ϵ(tk), k = 1, 2, · · · ,M (1)

where f is the model response and ϵ(tk) is the measurement
noise assumed to be independently identically distributed (i.i.d.)
with zero mean and variance σ2(tk). Suppose that f =
(f1, f2, · · · , fM ) and θ = (θ1, θ2, · · · , θp) represent the vec-
tor of states and parameters, respectively, then the time course
derivatives of fi with respect to parameter θj , i.e. ∂fi

∂θj
, i =

1, 2, · · · ,M , j = 1, 2, · · · , p are called the sensitivity functions.
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Figure 1. The measurement with noise

They describe how model output trajectories change in response
to modest changes in model parameters [22, 3, 5]. In most cases,
the model response f implicitly depends on the solution of some
initial value problem (IVP).

To gain an awareness of the issues to be discussed, consider
the explicit model of three parameters as follows.

y(t) = e−α1t + te−α2t + t2e−α3t + ϵ(t). (2)

In this case, the parameter vector is given by θ = (α1, α2, α3)
and the noise ϵ(t) is assumed to be zero mean with constant vari-
ance.

This signal was generated at discrete time t = 0 : 0.01 : 2
with the true parameters α1 = 5.12, α2 = 3.92, α3 = 0.96,
and noise σ = 0.01. The issue to be addressed is how to esti-
mate these parameters using distorted data as shown in Figure 1.
More specifically, how many and when measurements should be
performed in order for the observation data to provide as much
information about the parameter being estimated as possible. Let
{t1, t2, · · · , tM} be the measurement times, the performance in-
dex based on the mean square error (MSE):

MSE =
1

M

M∑
k=1

|y(tk)− f(tk; θ)|2 . (3)

Despite the fact that the signal was defined on [0, 2], measure-
ments are considered also separately in each subdomain [0, 1] and
[1, 2]. The following samples were purposefully chosen to assess
the information content of parameters provided by the data set:

Sample#1 : {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Sampel#2 : {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9}

Sample#3 : {0.25, 0.5, 0.75}

Sample4# :{1.25, 1.5, 1.75}

Sample#5 :{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8}

The estimate θ̂ is obtained by minimizing the MSE on specific
measurement points. The simulation results presented in Table 1

were obtained by using the MATLAB toolbox ”fminsearch” for
multidimensional unconstrained nonlinear minimization based
on Nelder-Mead method [10]. The results are presented in Ta-
ble 1. Samples 2 and 4 were drawn from the interval [1, 2] and
they provide worse estimates than samples 1 and 3 which taken
from the interval [0, 1]. For instance, sample 4 produces estimates
α̂1 = 32.869 and α̂2 = 34.171 for the true parameter α1 = 5.12
and α̂2 = 3.92, respectively, very worse even though their MSEs
are small enough.

Table 1. Results of simulation with the initial iteration θ(0) = (1, 1, 1) and the
true parameter θ0 = (5.12, 3.92, 0.96).

Measurement Estimate: θ̂ MSE(θ̂)
Sample#1 (5.036, 4.089, 0.991) 4.912× 10−5

Sample#2 (3.804, 160.589, 0.961) 1.643× 10−4

Sample#3 (5.298, 3.778, 1.027) 6.478× 10−14

Sample#4 (32.869, 34.171, 0.956) 1.441× 10−5

Sample#5 (5.280, 3.866, 0.956) 1.303× 10−4

Therefore, a reference is required in order to select the best
sample in terms of providing the most information about the pa-
rameters to be estimated. The sensitivity functions, both tradi-
tional and generalized, were frequently used as a reference for
optimal measurement. The sharp increase of generalized sen-
sitivity functions indicate a high concentration of information
about parameters, see [22, 5] and references therein. Figure
2 shows that fluctuations in both sensitivity functions occurred
more frequently in the interval [0, 1] than [0, 2] for α1 and α2.
On the other hand, the curves fluctuations relating to α3 were not
too often.

Sensitivity analysis refers to the procedures used in simula-
tion studies to determine the impact of parameter variations on
the time course of model output and also to identify which pa-
rameters in the model are the most sensitive or the least sen-
sitive [3]. On this hand, a complete description of a physical
system, i.e. the mathematical model and the parameter’s val-
ues are supposed, then it can be used to predict the outcome of
some measurements. The problem of predicting result of mea-
surements is called the modelization problem, the simulation
problem, or the forward problem [21]. On the other hand, the
inverse problem consists of using the actual result of measure-
ments to predict the value of the parameters that characterize the
system. The forward problem has a unique solution or is well-
conditioned, but the inverse problem has not or is ill-conditioned
[21, 12, 1, 17, 27]. It means that multiple measurements could
result in a single estimate. Another critical issue in the inverse
problem is the possibility of different parameter sets which de-
scribe the same system. For instance, as shown in Table 1 that
two estimates E1 = {α̂1 = 5.036, α̂2 = 4.089, α̂3 = 0.991} and
E2 = {α̂1 = 3.804, α̂2 = 160.589, α̂3 = 0.961} are completely
different for α̂1 and α̂2, but they produced similar outputs. As a
result, the quality of estimates is qualified not only by MSE but
also by their reliability with respect to disturbance.

According to previous simulation, it is clear that both types of
sensitivity functions play an important role in the optimal design
of measurement. The sensitivity functions are generally not ex-
plicitly available; nevertheless, they must be revealed by solving



Mathematics and Statistics 11(2): 421-433, 2023 423

Figure 2. The sensitivity functions of system (1.2): traditional (up) and general-
ized (bottom).

the sensitivity equation, which is a system of differential equa-
tions equipped with some initial condition. This paper will ad-
dress issues related to the derivation and numerical implemen-
tation of the sensitivity equation, and to the application in the
competitive models. The paper is structured as follows. Section
2 will describe an abstract formulation of the sensitivity equa-
tion. A construction of the sensitivity equation for competitive
model will be discussed in section 3. Section 4 will focus on the
algorithms composition for numerical implementation. Finally,
some numerical experiments concerned with the use of TSF and
GSF in selecting the best sample for parameter estimation will
be demonstrated in section 5. Various mean square errors will be
employed in some numerical experiments to assess the informa-
tion content of the parameters conveyed by each existing state.

2 Abstract Formulation of Sensitivity
Equation

Let X(t) := [x1(t), · · · , xN (t)]
T be the state function involv-

ing a parameter vector θ = [θ1, θ2, · · · , θp]T and F : [t0, tf ] ×

RN → RN be a vector function of the form

F (t,X; θ) = [f1(t,X; θ), f2(t,X; θ), · · · , fN (t,X; θ)]
T

where fi : [t0, tf ] × RN → R, i = 1, 2, · · · , N . Consider the
general nonlinear dynamical system

dX

dt
= F (t,X; θ), X(t0) = X0. (4)

In this case X0 := [x1(t0), x2(t0), · · · , xN (t0)]
T =

[x01, x02, · · · , x0N ]T is the initial value vector. The sensitiv-
ity equation is derived by taking the derivative of the state vec-
tor X with respect to the vector parameter θ on both sides of
(4). By employing the interchange property of derivative, i.e.
∂
∂θ

(
dX
dt

)
= d

dt

(
∂X
∂θ

)
, the following sensitivity equation is ob-

tained.
d

dt

(
∂X

∂θ

)
=

∂F

∂X

∂X

∂θ
+

∂F

∂θ
. (5)

It is a system of differential equations with state matrix
[
∂X
∂θ

]
.

The elements of matrices in the equation (5) are explicitly given
as

∂X

∂θ
=


∂x1

∂θ1
· · · ∂x1

∂θp
...

. . .
...

∂xN

∂θ1
· · · ∂xN

∂θp

 ,
∂F

∂X
=


∂f1
∂x1

· · · ∂f1
∂xN

...
. . .

...
∂fN
∂x1

· · · ∂fN
∂xN

 ,

∂F

∂θ
=


∂f1
∂θ1

· · · ∂f1
∂θp

...
. . .

...
∂fN
∂θ1

· · · ∂fN
∂θp

 .

Since xi(t0) does not contain parameter in θ then ∂xi(t0)
∂θj

= 0,
for i = 1, 2, · · · , N and j = 1, 2, · · · , p. Therefore, the initial
condition of system (5) can be written as

∂X(t0)

∂θ
= zeros(N, p), (6)

i.e. the null matrix of size N × p. The problem now is how to
determine the sensitivity matrix ∂X

∂θ that satisfies (5) with initial
condition (6). There are N × p elements of sensitivity matrix
where for i dan j fixed, ∂xi

∂θj
represents the trajectory change of

xi with respect to the small change of parameter θj . The solution
of state equation (4) is required for defining matrices ∂F

∂X and
∂F
∂θ in (5). For simplicity, the equation (5) is decomposed into
individual parameters. As an illustration, for i = 1, 2, · · · , p, this
equation can be written as

d

dt


∂x1

∂θi
...

∂xN

∂θi

 =


∂f1
∂x1

· · · ∂f1
∂xN

...
. . .

...
∂fN
∂x1

· · · ∂fN
∂xN




∂x1

∂θi
...

∂xN

∂θi

+


∂f1
∂θi
...

∂fN
∂θi

 .

(7)
This is a linear system of the form y′ = Ay + f and the theo-
retical studies of these types of equations can be found in some
differential equation textbooks, e.g. Borelli & Colleman [8]. In
this paper, the sensitivity equations (5) - (6) and the state equation
(4) are solved simultaneously by some numerical approaches in
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which the initial condition is treated as a parameter. As a conse-
quence, the quantities ∂xi

∂x0j
must be considered as a state variable

too. Since F does not involve X0 it fulfills ∂F
∂θ = 0, and thus the

sensitivity equation for X0 is obtained as follows:

d

dt

(
∂X

∂X0

)
=

∂F

∂X

∂X

∂X0
. (8)

The state variable ∂X
∂X0

is a matrix function of size N × N , i.e.
∂X
∂X0

: [t0,tf ] → RN×N where for each t ∈ [t0, tf ], it can be
written explicitly as

∂X

∂X0
(t) =


∂x1(t)
∂x01

· · · ∂x1(t)
∂x0N

...
. . .

...
∂xN (t)
∂x01

· · · ∂xN (t)
∂x0N

 .

The differential equation (8) is equipped by the initial condition

∂X(t0)

∂X0
= IN×N , (9)

where IN×N denotes an indentity matrix of size N . This matrix
is easily obtained by remembering that ∂xi(t0)

∂x0j
= 1 if i = j and

0 if i ̸= j.
It can be understood that a system of size N with p parameters

will govern the sensitivity equation of size N × p. In case the
initial condition is also considered as parameter, then there will
be one additional equation of size N × N . The large sizes of
system, the matrix function as unknown, and the dependence on
the state equation are some issues that give rise to challenges in
solving the sensitivity equations.

3 Derivation of Sensitivity Equation for
Competitive Model

A detailed discussion of models for population interactions has
been written by Murray in [18], particularly on two-species sys-
tem. There are three main types of interaction, i.e. predatorprey
situation if the growth rate of one population is decreased mean-
while the other increased, competition if the growth of each pop-
ulation is decreased, and mutualism or symbiosis when both the
growth rates are enhanced. In this paper, the three cases are not
distinguished and they are regarded as competitive models. In
some references, the predator-prey equations are also referred as
the kind of Lotka-Volterra equations.

The competitive model can be described as

dxi

dt
= rixi

(
1−

∑N
j=1 αijxj

Ki

)
, xi(t0) = xi0, (10)

where i = 1, 2, · · · , N . In this model, N species where N ≥ 2
are having interactions with one another. For each species i =
1, 2, · · · , N , xi indicates the size of species, ri signifies the in-
trinsic growth, Ki represents the carrying capacity, and αi,j de-
scribes the impact of i-th species on j-th species. It is assumed
that αii = 1, i = 1, 2, · · · , N and αij > 0 for i ̸= j. There are no
special constraints on the interaction parameters as long as they

do not generate the chaotic behavior, as explained in [26]. The
system (10) is regarded as the standard model of Lotka-Volterra
equations. The more complicated part of Lotka-Volterra model
has been discussed in [9] where the states emerged with the feed-
back control and deviating argument.

Clearly that the competitive equation (10) is the special
case of the abstract formulation (4), for which fi(t,X; θ) =

rixi

(
1−

∑N
j=1 αijxj

Ki

)
, i = 1, 2, · · · , N . Observe that αii :=

1, and thus the competitive equation for N species involves
N(N + 1) parameters for equation, viz. {ri,Ki, αij : i, j =
1, 2, · · · , N} \ {αii : i = 1, 2, · · · , N} and N additional param-
eters for initial values, i.e. xi(t0) = x0i, i = 1, 2, · · · , N . The
special case of (10) is when N = 2 which is well-known as the
Lotka-Volterrra equation [13, 16, 18].

dx1(t)

dt
= r1x1(t)

(
1− x1(t) + α12x2(t)

K1

)
, t ≥ t0(11)

dx2(t)

dt
= r2x2(t)

(
1− α21x1(t) + x2(t)

K2

)
, t ≥ t0(12)

These equations are equipped with the initial conditions x1(t0) =
x10 and x2(t0) = x20. The logistic growth model of Verhulst-
Perl is this type for N = 1 [2].

dx

dt
= rx

(
1− x

K

)
, x(t0) = x0 (13)

where r and K denote growth rate and carrying capacity, respec-
tively. Interestingly, the Verhulst-Perl equation has a simple ex-
plicit solution provided by

x(t) =
K

1 +
(

K
x0

− 1
)
e−rt

, (14)

where x0 = x(0) denotes the initial population size. The corre-
sponding parameters vector is θ = (K, r, x0).

The elements of matrices in the sensitivity equations (5) must
be revealed in order to solve the sensitivity equation numerically.
The results of some algebraic manipulations for defining the ele-
ments of those matrices are shown below. The elements of the Ja-
cobian matrix ∂F

∂X =
(

∂fi
∂xj

)
, i, j = 1, 2, · · · , N are determined

by

∂fi
∂xj

=

{
ri

(
1−

∑N
k=1 αikxk+xi

Ki

)
, j = i

− riαijxi

Ki
, j ̸= i.

(15)

Take note of the parameters groups attached to the compet-
itive equation (10), i.e. {ri : i = 1, 2, · · · , N}, {Ki : i =
1, 2, · · · , N}, and {αi,j : i, j = 1, 2, · · · , N, i ̸= j}. In the nu-
merical implementation, it will be advantageous for matrix ∂F

∂θ to
be decomposed into parameter groups ∂F

∂r , ∂F
∂K , and ∂F

∂α . The in-
trinsic growth rate and carrying capacity matrices are calculated
as follows:(

∂F

∂r

)
= diag

[
xi

(
1−

∑N
k=1 αikxk

Ki

)
, i = 1, 2, · · · , N

]
.

(16)
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(
∂F

∂K

)
= diag

[
rixi

(∑N
k=1 αikxk

K2
i

)
, i = 1, 2, · · · , N

]
.

(17)
Furthermore, the interaction parameters {αij,i, j =

1, 2, · · · , N, j ̸= i} must be rearranged, for instance, using
the lexicographic technique. For example, for N = 3, the new
indices are given by α12 := τ1, α13 := τ2, α21 := τ3, α23 :=
τ4, α31 = τ5, α32 = τ6. Accordingly, the following matrix is
obtained.

(
∂F
∂α

)
3×6

= −r1x1x2

K1

−r1x1x3

K1
0 0 0

0 0 −r2x2x1

K2

−r2x2x3

K2
0 0

0 0 0 0 −r3x3x1

K3

−r3x3x2

K3


(18)

The simple case is when N = 2 , i.e. α12 := τ1 and α21 := τ2,
so that(

∂F

∂α

)
2×2

=

(
∂fi
∂τj

)
i,j=1,2

=

[ −r1x1x2

K1
0

0 −r2x2x1

K2

]
.

As a result, there are as many as four groups of sensitivity
equations, three for parameters attached to the state equation and
the rest for initial value. They are summarized as follows:

• The intrinsic parameter ri, i = 1, 2, · · · , N , let Xr :=
∂X
∂r =

(
∂xi

∂rj

)
, i, j = 1, 2, · · · , N .

dXr

dt
=

∂F

∂X
Xr +

∂F

∂r
,Xr(t0) = zeros(N,N). (19)

• The carrying capacity Ki, i = 1, 2, · · · , N , let XK :=
∂X
∂K =

(
∂xi

∂Kj

)
, i, j = 1, 2, · · · , N .

dXK

dt
=

∂F

∂X
XK +

∂F

∂K
,XK(t0) = zeros(N,N). (20)

• The interaction parameter αij , i ̸= j, i, j = 1, 2, · · · , N , let

Xα := ∂X
∂α =

(
∂xi

∂αj,k

)
=
(

∂xi

∂τj

)
, i = 1, 2, · · · , N, j =

1, 2, · · · , N × (N − 1).

dXα

dt
=

∂F

∂X
Xα+

∂F

∂α
,Xα(t0) = zeros(N,N × (N − 1)).

(21)

• The initial value x0i, i = 1, 2, · · · , N , let Xx0 := ∂X
∂x0

=(
∂xi

∂x0j

)
, i, j = 1, 2, · · · , N .

dXx0

dt
=

∂F

∂X
Xx0

, Xx0
(t0) = IN×N . (22)

It can be seen that the coefficient matrices in the sensitivity
equations are almost diagonal so that it will be worthwhile in
terms of computational complexity. In the following section,
some numerical algorithms will be implemented using the 4-th
order Runge-Kutta method. The other approach to parameter es-
timation related to the predator-prey equations was proposed in
[14] by introducing a smoothing stage before the Runge-Kutta
method applied.

4 Numerical Implementation
Consider the initial value problem (IVP) of single dimension

x′ = f(t, x) dan x(t0) = x0 where x : [t0,∞] → R and
f : [t0,∞]×R → R. Assume the IVP has a unique, non-explicit
solution, which is approximated by the fourth-order Runge-Kutta
method. This method is widely used in practice because it is
simple to implement and has a high enough convergence order.
Instead of the infinite time horizon [t0,∞], only the finite part
[t0, tf ] is considered in the implementation. The method is car-
ried out by discretizing the time domain [t0, tf ] as tj = tj−1+h,
j = 1, 2, 3, · · · , where h represents the mesh size, probably not
uniform. For the sake of simplicity, assume that the discretiza-
tion of time is given by t0, t1, t2, · · · , tM where tj − tj−1 := hj

is the lenght of jth−subinterval. Let wj be the approximation of
x at t = tj , i.e. wj ≈ x(tj). Specifically, w0 = x0. The fourth-
order of Runge-Kutta method adheres to the following algorithm
stages.

Algortihm 4.1: Scalar variable
• start: w0 = x0 (given)

• for j = 1, 2, 3, · · · ,M calculate k1, k2, k3, and k4:

– k1 = f(tj−1, wj−1)

– k2 = f(tj−1 +
h
2 , wj−1 +

h
2k1)

– k3 = f(tj−1 +
h
2 , wj−1 +

h
2k2)

– k4 = f(tj−1 + h,wj−1 + hk3)

– wj = wj−1 +
h
6 (k1 + 2k2 + 2k3 + k4).

• The collection of points {(tj , wj) : j = 0, 1, 2, 3, · · · ,M}
visualizes the trajectory that approximates the solution of
IVP.

Consider the case x(t) = [x1(t), x2(t), · · · , xN (t)] of N−dim
and f := [f1, f2, · · · , fN ] where xi : [t0,∞] → R and
fi : [t0,∞] × RN → RN , i = 1, 2, · · · , N . Let
wj = [w1j , w2j , · · · , wNj ] be the approximation of x(tj) =
[x1(tj), x2(tj), · · · , xN (tj)], i.e. wij ≈ xi(tj), i = 1, 2, · · · , N ,
j = 0, 1, 2, 3, · · · ,M . The Runge-Kutta method is applied to
determine the vectors wj where wj ≈ x(tj), j = 0, 1, 2, · · · ,M .

Algorithm 4.2: Vector variable
• start: w0 = [x10, x20, · · · , xN0] (given)

• for j = 1, 2, 3, · · · ,M calculate vectors k1 =
[k11, k12, · · · , k1n], k2 = [k21, k22, · · · , k2n], k3 =
[k31, k32, · · · , k3n], and k4 = [k41, k42, · · · , k4n] as fol-
lows:

– for i = 1, 2, · · · , N :

* k1i = fi(tj−1, wj−1)

* k2i = fi(tj−1 +
h
2 , wj−1 +

h
2k1)

* k3i = fi(tj−1 +
h
2 , wj−1 +

h
2k2)

* k4i = fi(tj−1 + h,wj−1 + hk3)
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• wj = wj−1 +
h
6 (k1 + 2k2 + 2k3 + k4).

• collect the output in some matrixes, e.g.

W1 :=


w01 w11 · · · wM1

w02 w12 · · · wM2

...
...

. . .
...

w0N w1N · · · wMN


where the rows correspond to coordinate of the state x and
the columns indicate the time grid.

Let Z where Z : [t0, tf ] → RN×p be the unknown and G :
[t0, tf ] × RN×p → RN×p is given. For a scalar matrix Z0 of
size N × p, consider the following initial value problem:

dZ

dt
= G(t, Z), t ∈ (t0, tf ], Z(t0) = Z0. (23)

This formulation incorporates the sensitivity equation introduced
in the previous section. To begin constructing the algorithm, cre-
ate a 3-dimensional array W of size N×p×M , i.e. W = (wijk),
where wijk ≈ zij(tk), i = 1, 2, · · · , N , j = 1, 2, · · · , p, and
k = 1, 2, · · · ,M .

Algorithm 4.3: Matrix variable

• start: W0 = Z0 (given)

• for k = 1, 2, 3, · · · ,M calculate matrices K1,K2,K3, dan
K4 as follows:

– K1 = G(tk−1,Wk−1)

– K2 = G(tk−1 +
h
2 ,Wk−1 +

h
2K1)

– K3 = G(tk−1 +
h
2 ,Wk−1 +

h
2K2)

– K4 = G(tk−1 + h,Wk−1 + hK3)

– Wk = Wk−1 +
h
6 (K1 + 2K2 + 2K3 +K4).

• Extract Z(tk) ≈ Wk.

Surprisingly, the numerical procedure of the Runge-Kutta
method for matrix variables is as simple as that for scalar vari-
ables. The sensitivity equations (3.10)-(3.13) must be solved si-
multaneously with the state equation (10), so there are four pairs
of equations. On this occasion, the only intrinsic parameters ri
are derived in detail, others are treated similarly.

dxi

dt
= rixi

(
1−

∑N
j=1 αijxj

Ki

)
, xi(t0) = xi0, i = 1, 2, · · · , N,

(24)

dXr

dt
=

∂F

∂X
Xr +

∂F

∂r
,Xr(t0) = zeros(N,N), (25)

where ∂F
∂X and ∂F

∂r are matrices defined by (15) and (16), respec-
tively.

Algorithm 4.4
• for each i = 1, 2, · · · , N , define fi(t, x) :=

rixi

(
1−

∑N
j=1 αijxj

Ki

)
.

• apply Algorithm 4.2 to solve (24).

• store the elements matrix W1 := (wij) where wij ≈ xi(tj).

• define matrix functions G(t, Z) as G(t, Z) =
[
∂F
∂X (t)

]
Z +[

∂F
∂r (t)

]
• apply Algorithm 4.2 to solve (16).

• Xr(tk) =
∂X
∂r (tk) ≈ Z(tk), k = 1, 2, · · · ,M .

The elements of Jacobian ∂F
∂X =

(
∂fi
∂xj

(tk)
)

, i, j = 1, 2, · · · , N
at t = tk, k = 1, 2, · · · ,M are defined by evaluating (15) at
t = tk, i.e.

∂fi
∂xj

(tk) =

{
ri

(
1−

∑N
ℓ=1 αiℓxℓ(tk)+xi(tk)

Ki

)
, j = i

− riαijxi(tk)
Ki

. j ̸= i.

Likewise, the elements of ∂F
∂r are obtained according to

∂F

∂r
(tk) = diag

[
xi(tk)

(
1−

∑N
ℓ=1 αiℓxℓ(tk)

Ki

)]
.

where i = 1, 2, · · · , N . In the numerical realization, the values
xi(tk) are substituted by wik obtained from (24).

Example 1

The special case of competitive model is when N = 2 which
is described by the Lotka-Volterra equation.

dx1

dt
= r1x1

(
1− x1 + α12x2

K1

)
, t ∈ (t0, tf ]x1(t0) = x10

dx2

dt
= r2x2

(
1− α21x1 + x2

K2

)
, t ∈ (t0, tf ]x2(t0) = x20.

Since N = 2, then there will be N2(N + 2) = 16 sensitivity
functions corresponding to the sensitivity matrix represented in
the matrix ∂X

∂θ given by[
∂x1

∂r1
∂x1

∂r2
∂x1

∂α12

∂x1

∂α21

∂x1

∂K1

∂x1

∂K2

∂x1

∂x10

∂x1

∂x20
∂x2

∂r1
∂x2

∂r2
∂x2

∂α12

∂x2

∂α21

∂x2

∂K1

∂x2

∂K2

∂x1

∂x10

∂x1

∂x20

]
.

It will be beneficial to partition the sensitivity matrix ∂X
∂θ into

parameter groups.

∂X

∂r
=

[
∂x1

∂r1
∂x1

∂r2
∂x2

∂r1
∂x2

∂r2

]
,
∂X

∂α
=

[
∂x1

∂α12

∂x1

∂α21
∂x2

∂α12

∂x2

∂α21

]
,

∂X

∂K
=

[
∂x1

∂K1

∂x1

∂K2
∂x2

∂K1

∂x2

∂K2

]
,
∂X

∂x0
=

[
∂x1

∂x10

∂x1

∂x20
∂x2

∂x10

∂x2

∂x20

]
.

The following results were obtained using simulation data t0 =
0, tf = 150, x10 = 10; x20 = 30, r1 = 0.1, r2 = 0.3, a12 = 0.3,
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Figure 3. States trajectory

a21 = 0.25, K1 = 150, and K2 = 100. The trajectories of
states are presented in Figure 3. Initially, the number of species 1
(x10 = 10) is less than the number of species 2 (x20 = 30), how-
ever species 1 gradually outnumbers species 2. This is primarily
due to the fact that species 1 has a bigger carrying capacity than
species 2, i.e. K1 = 150 and K2 = 100. In fact, neither species’
maximum capacities is ever realized. Obviously, the growth of
species 1 directly depends on the parameters r1, α12, and K1

and implicitly depends on the parameters involved in species 2,
specifically r2, α21, and K2.

The graph of states is presented in Figure 3 and the normal-
ized sensitivity functions are displayed in Figure 4. They de-
scribe how these parameters affect each species. The sensitivity
of state xi with respect to parameter θj is denoted by ∂xi

∂θj
. The

greater the value of ∂xi

∂θj
, the more impact of parameter θj to xi.

The value ∂xi

∂θj
close to zero within an interval indicates that the

parameter θj has little effect on state xi. For example, Figure
4(a) shows that each parameter influences both states x1 and x2,
though their timing and duration may differ. For instance, based
on the curve of dx1

dr1
, the effect of parameter r1 with respect to x1

occurs significantly in [0, 100]. Similar patterns for the parameter
r1 to x2 and r2 to x1. On the other hand, the parameter r2 has
a significant effect on x2 only on a small part of interval at be-
ginning, around [0, 20], otherwise it is close to zero. Comparing
Figure 4(a) and 4(b), it can be seen that the patterns of ∂X

∂r and
∂X
∂x0

are similar and so are ∂X
∂K and ∂X

∂α . Furthermore, the pattern
of those curves will be used as a qualitative tool in the optimal
design of experiment.

5 Application to Parameter Estimation
The problem to be addressed in this section is how to select

a sample with a high information content about the parameters
to be estimated. This is known as the optimal design of experi-
ment, and it is a common challenge in many domains of applied
science, for instance [6, 7, 15, 20, 28, 29]. Some optimal crite-

(a) Sensitivity functions Xr := ∂X
∂r

.

(b) Sensitivity functions Xα := ∂X
∂α

.

Figure 4. Graph of sensitivity functions with respect to parameter r and α.
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(a) Sensitivity functions XK := ∂X
∂K

.

(b) Sensitivity functions Xxx0
:= ∂X

∂xx0
.

Figure 5. Graph of sensitivity functions with respect to parameter K and x0.

ria were based on the functional of FIM [24, 25, 5]. Here, the
sensitivity functions behavior will be utilized to make the selec-
tion [2, 3, 22]. The prior sensitivity function is known as the
traditional sensitivity function (TSF). Another criterion required
for this purpose is known as the generalized sensitivity function
(GSF).

In the nonlinear dynamical system

dX

dt
= F (t,X; θ), X(t0) = X0, (26)

where θ is the parameter system, suppose that a discrete time
observation is represented as

Yj = PX(tj ; θ) + ϵj , j = 1, 2, · · · , n, (27)

where P is the matrix of measurement process and the observa-
tion errors ϵj are assumed to be independently identically dis-
tributed (iid) Gaussian noise with zero mean. The problems of
finding the optimal sensor location and parameter estimation with
non-Gaussian model noise had been considered in [23].

Assume that there are M observation coordinates, and since
the state X consists of coordinates x1, x2, · · · , xN , the matrix
P should be of size M × N . Hence, the measurement could be
expressed explicitly as

y1j
y2j

...
yMj

 =


c11 c12 · · · c1N
c21 c22 · · · c2N

...
...

. . .
...

cM1 cM2 · · · cMN




x1j

x2j

...
xNj

+


ϵ1j
ϵ2j
...

ϵMj

 .

(28)
For example, the first measurement coordinate at time tj given by
y1j =

∑N
ℓ=1 c1ℓxℓ+ϵ1j , i.e. the observation data are represented

in terms of the state variable X . A special case of (28) is when
M = N and P is an identity matrix, it reduces the standard form

ykj = xkj + ϵkj ,

where k = 1, 2, · · · , N denotes the coordinate of state, j =
1, 2, · · · , n stands for the points of measurement, and xkj :=
xk(tj ; θ). Let σ2

i be the variance associated with the coordi-
nate of the error ϵi, i = 1, 2, · · · ,M , i.e. ϵj ∼ N (0, V ) where
V = diag(σ2

i , i = 1, 2, · · · ,M).
The fundamental assumption underlying parameter estimation

is the existence of a nominal (true) parameter θ0 that character-
izes the system. The least squares approach to estimate θ0 is
performed by seeking the minimizer of the cost functional

J(θ) :=

n∑
j=1

[Yj − PX(tj ; θ)]
T
V −1 [Yj − PX(tj ; θ)] . (29)

For M = N = 2, the cost functional becomes

J(θ) :=

n∑
j=1

[
1

σ2
1(tj)

(y1j − x1j)
2 +

1

σ2
2(tj)

(y2j − x2j)
2

]
.

(30)
The simulation assumes that the observation variances for each
measurement are similar, i.e. σ2

1(tj) = σ2
2(tj) for all j =

1, 2, · · · , n, therefore the cost functional now is simply to

J(θ) :=

n∑
j=1

[
(y1j − x1j)

2 + (y2j − x2j)
2
]
=

n∑
j=1

ϵTj ϵj , (31)
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where ϵj = [y1j − x1j , y2j − x2j ]
T is the error vectors at t = tj .

The simplest form of cost functional when the state consists of
the single coordinate.

J(θ) :=

n∑
j=1

|yj − xj |2 , (32)

where xj = x(tj ; θ). Furthermore, the Fisher information matrix
(FIM) is defined by

F =

n∑
j=1

1

σ2(tj)
[∇θX(tj ; θ0)] [∇θX(tj ; θ0)]

T
, (33)

where

∇θX(tj ; θ0) =
[

∂X(tj ;θ0)
∂θ1

∂X(tj ;θ0)
∂θ2

· · · ∂X(tj ;θ0)
∂θp

]T
,

(34)

∂X(tj ; θ0)

∂θk
=
[

∂x1(tj ;θ0)
∂θk

∂x2(tj ;θ0)
∂θk

· · · ∂xN (tj ;θ0)
∂θk

]T
.

(35)

As a consequence of the term ∇θX(tj ; θ0) being a column vector
of dimension N + p, the FIM is a symmetric squared matrix of
dimension N + p. The FIM is assumed to be invertible. The
FIM measures the information content of the data corresponding
to the model parameters [5]. The generalized sensitivity function
(GSF) is defined as

G(tℓ) =

ℓ∑
j=1

1

σ2(tj)

[
F−1 ×∇θ(tj ; θ0)

]
• [∇θ(tj ; θ0)] , (36)

where the notation “•” stands for element-wise vector multiplica-
tion. The actual information is associated with the rate of change
of GSF, and thus sharp increases of GSF indicate a high informa-
tion about parameters [22, 5]. For the sake of simplicity, and as-
suming that the variances are uniform across the observations, the
following step-wise algorithms are required to define the GSF.

Algorithm to define the vector ∇θX(tjθ0)

• for k = 1 : p

– for ℓ = 1 : N

Dj(k + ℓ− 1) =
∂xℓ(tj ;θ0)

∂θk

Algorithm to define the FIM F

• prepare a squared matrix of size (N + p), i.e. F =
zeros(N + p).

• for j = 1 : n

– F0 = DjD
T
j ,

– F = F + F0.

Algorithm to define the GSF G

• prepare a column vector of size N +p, i.e. G = zeros(N +
p, 1).

• for j = 1 : ℓ

– define the vector Hj of size N + p by Hj = F−1Dj ,

– G0 = Hj • Dj := [Hj(k)Dj(k), k = 1, 2, · · · , N +
p]T ,

– G = G+G0.

It is readily seen from the definition that the GSFs are the
vector-valued functions of dimension N+p where the k−th com-
ponent gk of G represents the generalized sensitivity function of
specific state coordinate with respect to certain parameter. For in-
stance, for N = 2 and p = 3, there will be 6 sensitivity functions
as shown in the following vector.

G = [g(x1, θ1), g(x2, θ1), g(x1, θ2), g(x2, θ2), g(x3, θ3), g(x3, θ3)]
T

where g(xi, θj) specifies the generalized sensitivity function of
xi with respect to θj .

Example 2

Consider back to the competitive model with N = 2 as given
in Example 4.1. The eight parameters contributing in the model
are θ1 := r1, θ2 := r2, θ3 := α12, θ4 := α21, θ5 := K1,
θ6 := K2, θ7 := x10, and θ7 := x20, and therefore there will
be 16 generalized sensitivity functions g(xi, θj), i = 1, 2; j =
1, 2, · · · , 8. The following simulation uses data x10 = 10; x20 =
30, r1 = 0.1, r2 = 0.3, a12 = 0.3, a21 = 0.25, K1 = 150, and
K2 = 100. The trajectories of GSFs are presented in Figure 6
and 7. The time horizon [0, tf ] is adaptively extended until the
steady state is reached.

This simulation suggests that the information content about
parameters may differ among state coordinates and along mea-
surements. Take a look at Figure 6(a), both x1 and x2 provide a
comparable degree of information about r1 and the most infor-
mation given by observations when t < 90. On the other hand,
the most information about r2 is given by x1 when t < 50 and
by x2 when t < 10. Similar phenomena are given by parameters
K and x0 as shown in Figure 6(b). The pattern of the parameter
α is considerably different. Even after extending the time span
to t = 300, the GSFs corresponding to α still do not reach the
steady state as displayed in Figure 7(a). This means that infor-
mation about the α parameter is dispersed throughout the obser-
vation. However, the sharp increases of GSFs were occurred in
the range [50, 100]. This indicates that the state variables contain
the most information about the parameters in this interval. Figure
7(b) shows the sensitivity of state with respect to carrying capac-
ity K. The patterns are similar to sensitivity of state with respect
to intrinsic growths r’s, i.e. the most information is provided in
[0, 90]. To verify this claim, the following example examines the
observation data for parameter estimation which are chosen from
the range for which GSFs increase sharply as well as the range
where steady state had been reached.
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(a) Generalized sensitivity functions g(X, r).

(b) Generalized sensitivity functions g(X,K).

Figure 6. Graph of generalized sensitivity functions with respect to parameter r
and K.

Example 3

This example illustrates a number of issues concerning the in-
formation content of the parameters included in the observation
data. The pertinent questions are when the measurements should
be taken so that the observation data contains as much informa-
tion about the parameters to be estimated as possible, how much
minimum data required to estimate these parameters, how pa-
rameter content of one coordinate to be contained in another, and
how to select the measurement moments using TSF and GSF.
The simulation here uses data: x10 = 10; x20 = 30, r1 = 0.1,
r2 = 0.3, a12 = 0.3, a21 = 0.25, K1 = 150, and K2 = 100.

Experiment 1

The parameters to be estimated here are r1 and r2 using data
taken from intervals [0, 20] and [90, 120]. Six evenly distributed
data points from each interval were selected for estimation.
The least squares error approach applies three criteria functions
LS1, LS2, and LS3 defined by LS1(θ) =

∑n
j=1 |x1j − y1j |2,

LS2(θ) =
∑n

j=1 |x2j − y2j |2, and LS3(θ) = LS1(θ) +

(a) Generalized sensitivity functions g(X,α).

(b) Generalized sensitivity functions g(X,x0).

Figure 7. Graph of generalized sensitivity functions with respect to parameter α
and xx0 .

LS2(θ) =
∑n

j=1

(
|x1j − y1j |2 + |x2j − y2j |2

)
where for each

k = 1, 2; j = 1, 2, · · · , n, the xkj and ykj are the model outputs
and observations including disturbance terms, respectively. The
experiment results are summarized in the following table.

Table 2. Result of experiment 1: the nominal parameters were set to be r1 = 0.1
and r2 = 0.3.

Domain LS1 LS2 LS3

[90, 120] (0.100, 0.100) (3.540, 18.343) (0.0012, 0.095)
[0, 20] (0.0986, 0.2344) (0.0999, 0.3002) (0.1000, 0.3007)

First, consider the estimates arising from [90, 120]. None of
the estimates given by the three criteria are satisfactory. This
indicates that the observation data obtained from this interval
contains insufficient information about the parameters r1 and
r2. This corresponds to the graph of GSF shown in Figure 6(a),
which shows that the GSF curve no longer changes after t > 90.
Next, consider the estimates obtained from the interval [0, 20].
The first criterion, LS1, provides a good estimate for r1 but a
poor estimate for r2. The second criterion, LS2, on the other
hand, yields very good estimates for both r1 and r2. This means
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that the data obtained through observation of x1 contains less in-
formation about parameter r2 than x2 about parameter r1. The
best result is given by LS3. It means that the observation from
interval [0, 20] contains a lot of information about the parame-
ters r1 and r2. The traditional and generalized sensitivity func-
tion curves shown in Figure 8 indicate the similar behavior, i.e.∣∣∣dx1

dr2

∣∣∣≪ ∣∣∣dx2

dr1

∣∣∣ (left) and |g(x1, r2)| ≪ |g(x2, r1)| (right). These
circumstances confirmed that the information content of param-
eters delivered by observation data of states could be identified
through their sensitivity functions.

(a) Traditional sensitivity functions Xr := ∂X
∂r

.

(b) Generalized sensitivity functions g(X, r).

Figure 8. Graph of two kinds sensitivity functions with respect to parameter r in
the same domain.

Experiment 2

The initial conditions x0 = (x10, x20) will be considered as
parameters in this experiment where data are collected from in-
terval [25, 50]. Figure 9 shows that | dx2

dx20
| and |g(x2, x20)| are

significantly smaller than others. This fact does not mean that
the state x2 contains less information about parameter x20. Intu-
itively, x2 should contain much information about parameter x20

because it directly affects the state x2. Results of experiment are

(a) Traditional sensitivity functions Xx0 := ∂X
∂xx0

.

(b) Generalized sensitivity functions g(X,x0).

Figure 9. Graph of two kinds sensitivity functions with respect to parameter x0

in the same domain.

collected in Table 3. Recall that criteria LS1 relates to informa-
tion given by state x1, LS2 by x2, and LS3 by both x1 and x2.
According to this table, state 1 contains much information for pa-
rameter x10 and x20, state 2 contains a lot of information for x20

but less for x10.

Table 3. Result of experiment 2: Estimates of parameter xx0 given by three
criteria, the true values x10 = 10, x20 = 30.

Domain LS1 LS2 LS3

[25, 50] (10.07, 30.32) (12.54, 30.12) (10.11, 29.96)

6 Concluding Remarks
The derivation of the sensitivity equations of a nonlinear pa-

rameterized dynamic system generates a system of linear differ-
ential equations in the form of a matrix whose size equals to the
product of the number of state variables and parameters involved,
plus a set of equations relating to the initial values. The sensi-
tivity equations must be solved simultaneously with the original
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state equations, and its solution yields the so-called traditional
sensitivity functions (TSF). The traditional sensitivity functions
(TSF) are then utilized to create the Fisher information matrix
(FIM), which is subsequently used to define the generalized sen-
sitivity function (GSF). These two kinds of sensitivity functions
are employed in an optimal measurement design for selecting the
sample that provides the most information about the parameters
to be estimated.

Numerical experiments on the competitive model were con-
ducted employing two types of sensitivity functions to perform
data measurement for parameter estimation. According to those
numerical experiments, the information content of the parameters
varies along the measurement samples. The information content
is determined by state coordinates employed and interval where
measurements are taken place. Both kinds of sensitivity functions
TSF and GSF have been shown to be the effective benchmark for
determining the measurement interval, ensuring that the data ac-
quired contains the most information of parameters. In parameter
estimation, it is recommended to use data that provides a lot of
information about these parameters.
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