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1  |  INTRODUCTION 
 
The need for electrical energy for homes and industries has shown 

a significant increase in the last few decades. Many power plants 

were built to meet the demand for electrical energy. However, in 
addition to their dwindling resources, these power plants have a lot 

of adverse side effects on the environment, such as water, soil, and 
air pollution due to solid and liquid waste produced from burning 

fossil materials as raw materials [1,2]. Recently, due to the shared 
awareness that has arisen in various circles, various radical efforts 

have been made to overcome these problems to provide a healthier 

environment. 
Renewable energy is one of the significant issues predicted to be 

the best alternative to fulfill the demand for electrical energy but 
without doing harm to the environment. Renewable energy sources 

such as solar photovoltaic (PV) systems, hydropower, wind-turbine, 
tidal-turbine, biomass, and biothermal [3,4] are being developed 

because of their capabilty in optimizing the potential of nature. Solar 

PV systems are one of the most popular because they are clean, do 
not cause noise, are cheap, and easy to install and maintain [5,6]. 

Furthermore, the advantage of solar PV systems as an alternative 
power plant is that they do not generate noise compared to wind 

turbines [7]. 

However, due to the direct relationship and dependence on nature, 
solar PV-based power generation is non-linear. As when the 

irradiation on the PV array changes drastically, at that time, an 
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Renewable energy is promoted massively to overcome problems that fossil fuel power 

plants generate. One popular renewable energy type that offers easy installation is a 

photovoltaic (PV) system. However, the energy harvested through a PV system is not 

optimal because influenced by exposure to solar irradiance in the PV module, which is 

constantly changing due to weather. The maximum power point tracking (MPPT) technique 

was developed to maximize the energy potential harvested from the PV system. This paper 

presents the MPPT technique, which is operated on a new high-gain voltage DC/DC 

converter that has never been tested before for the MPPT technique in PV systems. Fuzzy 

logic (FL) was used to operate the MPPT technique on the converter. Conventional and 

Adaptive Perturb and Observe (P&O) techniques based on variables step-size were also 

used to operate the MPPT. The performance generated by the FL algorithm outperformed 

conventional and variable step-size P&O. It is evident that the oscillation caused by the FL 

algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL’s 

tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.
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instantaneous shift in the peak power point occurs [8]. The non-linear 
nature resulting from changes in irradiation and temperature affecting 

the PV causes the efficiency of the PV itself to be lower [9,10]. It is 
even reported that PV loss of energy reaches up to 25% [11]. This 

loss of energy is one of the problems in optimizing energy harvesters 

with solar PV. Various efforts have been made to optimize energy 
harvesting from solar PV. One of the most effective ways to increase 

efficiency is to achieve solar PV power production under any 
conditions [12]. This technique is known as maximum power point 

tracking (MPPT), which works by feeding an appropriate duty cycle 

(D) to DC/DC converter in the PV system. 
Various methods can be used to operate MPPT, ranging from 

conventional methods such as Perturb and Observe (P&O) [13–15], 
Incremental Conductance (IncCond) [16–18], Hill Climbing (HC) 

[19–21], and their improved methods such as Learning based P&O 
(LPO) [22], Self-tuned P&O (SPO) [23], Learning-based ncCond 

(LIC) [24,25], Learning-based HC (L-HC) [26], which is based on 

the perturbation process in hill-climbing, to methods based on 
artificial intelligence algorithms such as fuzzy logic (FL) [27–31], 

artificial neural network (ANN) [32,33] and adaptive neuro-fuzzy 
inference systems (ANFIS) [34–36]. In general, a suitable MPPT 

implementation considers several aspects such as the type of 

application, efficiency, cost, lost energy, and suitability of the 
converter [37,38]. 

There are various types of DC/DC converters developed for 
various applications, generally boost, buck, buck-boost converters. 

For applications that require high voltage conversion, a DC/DC 
converter that can compensate for these needs is required. The boost 

converter can achieve high voltages by providing a large 𝐷 . 
However, the voltage increment multiplication is not more than 5, 
and at the expense of efficiency, increasing the voltage on the switch 

and causing electromagnetic inference [39–41]. A Coupled-inductor 
converter can provide high voltage gain. Nevertheless, the efficiency 

is low due to increased chopper losses in inductors and conduction 

losses in semiconductors [42]. Another converter topology that 
provides high gain voltage is the cascaded converter [43,44]. 

However, the efficiency is also low due to the need for two processes. 
Another alternative is to connect two converters in series with only 

one switch, which is often called a quadratic boost converter (QBC) 
[45–47]. This converter topology produces the same voltage ratio as 

the cascaded converter, but the efficiency is lower than the boost 

converter. 

The new high gain voltage DC/DC converter [48] provides a high 
voltage ratio and efficiency with lower current and voltage ripples. 

However, this converter still needs to be tested with MPPT to 
determine its suitability for PV systems. This paper employs the FL 

algorithm in a high gain voltage DC/DC converter for stand-alone PV 

systems. 

2  |  MODELING OF SOLAR CELLS 

As a fundamental element of a PV system, basic knowledge of solar 

cells is essential. Solar arrays commonly used consist of a 
combination of series and/or parallel PV cells to produce a specific 

value. Different circuit models of PV cells are presented by [49]. As 

in Figure 1, the single diode is the most common and most 
straightforward model, while the PV module characteristic curves are 

shown in Figure 2. The relationship between the voltage-current of 
the PV module is modeled as 

 𝐼 = 𝐼௉ு − 𝐼௦௔௧ × ቂ𝑒𝑥𝑝 ቄ𝑞 ×
௏ುೇାூುೇ×ோೄ

஺×௄×்
ቅ − 1ቃ −

௏ುೇାூುೇ×ோೄ

ோೄಹ
 (1) 

where 𝐼௉ு  and 𝐼௦௔௧  are light-generated and reverse saturation 

current, respectively, 𝑞 is the electron charge (1.66022 × 10-19 C), 
𝑉௉௏  and 𝐼௉௏  are the output voltage and current of the solar cells, 

respectively, 𝑅ௌ  and 𝑅ௌு  are shunt and series resistances, 
respectively, 𝐴  is the p-n ideally factor, 𝐾  is the Boltzmann's 

constant (1.38 × 10-23 J/K), and 𝑇 is the cell temperature in Kelvin. 

The 𝐼௉ு  value is strongly influenced by the ambient temperature, 
𝑇, as well as the irradiance, 𝐺, which is expressed as 

 𝐼௉ு = {𝐼ௌ஼
∗ + 𝑘௜(𝑇 − 𝑇∗)}

ீ

ீ∗
 (2) 

where 𝐼ௌ஼
∗  is the short-circuit current at 25 ℃, 𝑇∗ = 298 °𝐾 and 

𝐺 = 1000W/m2. While 𝑘௜  is the short-circuit current temperature 

coefficient. The * sign is the value at standard test conditions (STC). 

𝐼௦௔௧  is affected by ambient temperature as 

 𝐼௦௔௧ =
ூೄ಴

∗ ା௞೔(்ି்∗)

௘௫௣ቈ
ೇೀ಴

∗ శೖೇ(೅ష೅∗)

ೇ೟
቉ିଵ

 (3) 

where  𝑉ை஼
∗  is the open-circuit voltage at 25℃ with 𝑘௏  as the 

coefficient of open-circuit voltage, while  𝑉௧ = 𝐾 × 𝑇/𝑞  is the 
thermal voltage. 

 
F I G U R E 1  Single diode PV model. 
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(A) 

(B) 

F I G U R E 2  Trina Solar TSM-250PA05.08 PV module characteristic 
curves (a) under irradiation variation and (b) under temperature variation. 

 

The amount of current in the series-connected module per setting 
is 𝑁௦௘௥ , and the parallel connection is 𝑁௣௔௥ , then 

𝐼 = 𝑁௣௔௥𝐼௉ு − 𝑁௣௔௥𝐼௦௔௧ ൥𝑒𝑥𝑝 ൝𝑞

ೇ

ಿೞ೐ೝ
ାூ

ೃೄ
ಿ೛ೌೝ

஺௄்
ൡ − 1൩ −

ቀ
ಿ೛ೌೝ

ಿೞ೐ೝ
ቁାூோೄ

ோೄಹ
(4) 

3  |  MAXIMUM POWER POINT 
TRACKING 

The maximum power transfer theorem forms the basis for the 
working principle of the MPPT technique. The theorem states that 
when the load resistance matches the source, it is possible to transfer 
the maximum power. Therefore, the working principle of the MPPT 
technique is to ensure the load resistance with PV at the maximum 
power point (MPP), which is calculated by [50] 

 𝑅௠௣௣ =
௏೘೛೛

ூ೘೛೛
 (5) 

where 𝑅௠௣௣  , 𝑉௠௣௣  , and 𝐼௠௣௣   are the resistance, voltage, and 
current in MPP, respectively. 

Although the maximum power transfer can be carried out by 
considering 𝑅௠௣௣ , in reality, 𝑅௠௣௣ is not constant because of the 
𝐼 − 𝑉  curve of PV due to weather dependence where changes in 
irradiation and temperature are unavoidable. Therefore, a DC/DC 
converter between the source and voltage connections is required to 
compensate for this resistance mismatch instead of supplying power 
directly to the load [51]. Through the MPPT algorithm, the duty cycle, 
𝐷, is adjusted to ensure load resistance, and the 𝐷, which has been 
modified according to 𝑅௠௣௣  on PV under varying weather 
conditions. 

F I G U R E 3  Schematic of a converter with a high voltage ratio. 

4  |  HIGH-GAIN VOLTAGE DC/DC 
CONVERTER 

The DC/DC converter plays a vital role in the source and load 
interface of PV systems. This paper uses a high-gain voltage 
DC/DC converter, shown in Figure 3, based on a modified DC/DC 
buck-boost converter. This converter is capable of producing a high 
voltage ratio obtained from 

 
௏೚

ா೏
=

ଵ

ଵିఈ
 (6) 

where 𝛼 is the duty factor of the transistor 𝑄. 
The RMS value of the voltage ripple is given by (7), while the 

output voltage ripple when the duty cycle is more than half is given 
by (8). 

 𝑉෨௢ =
ప೚̅

஼௙ೞ

ఈ(ଵିଶఈ)

ଶ√ଷ(ଵିఈ)
 (7) 

 𝑉෨௢ =
ప೚̅

஼௙ೞ

(ଶఈିଵ)

ଶ√ଷ
 (8) 

where 𝑓௦  is the minimum switching of the converter. 

5  |  MPPT CONTROL ALGORITHMS 

There are many variations of the MPPT control algorithm. One of 
the most frequently applied MPPT control algorithms because of 
its convenience is P&O. In this paper, conventional and advanced 
P&O algorithms based on step-size variables will be compared with 
one of the artificial intelligence algorithms, namely fuzzy logic. 

5.1  |  Perturb and observe 

The P&O algorithm is in great demand in the MPPT technique 
because it does not require special information related to PV 
characteristics, so it can be applied to all types of PV modules [52]. 
Figure 4 shows a flow chart for the conventional P&O method. The 
working principle is to direct the working point on the MPP by 
perturbation. If the PV operating point is to the left of the MPP, the 
perturbation is done to the right, and vice versa. However, this 
algorithm is affected by the given step size. The wide step size can  
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F I G U R E 4  Flowchart of conventional P&O algorithm. 

 
speed up MPP tracking, but the oscillations around the MPP are 
also large. On the other hand, a small step size reduces oscillations 
around the MPP but slows down the tracking speed. 

Adaptive P&O based on step-size variables was developed to 
reduce oscillations around the MPP caused by conventional P&O 
algorithms [53]. The flow chart of the algorithm is shown in Figure 
5. In this algorithm, factor (𝐴) is used as a constant whose value 
is greater than 1. The duty cycle as the control output of the 
algorithm increases with the multiplication factor (𝐴)  when 
𝑑𝑃 > 0. Meanwhile, when the condition 𝑑𝑃 < 0, then the duty 
cycle is divided by (𝐴). 

5.2  |  Fuzzy logic 

The FL algorithm offers advantages in the form of ease of 
implementation, no requirement for mathematical modeling of data, 
and robustness in the field of control systems [27,54–56]. In a PV  

F I G U R E 5  Flowchart of P&O variable step size algorithm. 
 
system, the input FL is the Error (𝐸) resulting from the change in 
the PV output power divided by the change in the output voltage 
and the Change of Error (∆𝐸). While the output is the duty cycle 
which will regulate the PWM converter signal. Both inputs are 
given by 

 𝐸𝑟𝑟𝑜𝑟, 𝐸(𝑘) =
∆௉

∆௏
=

௉(௞)ି௉(௞ିଵ)

௏(௞)ି௏(௞ିଵ)
 (9) 

 𝐸𝑟𝑟𝑜𝑟 𝐶ℎ𝑎𝑛𝑔𝑒, ∆𝐸(𝑘) = 𝐸(𝑘) − 𝐸(𝑘 − 1) (10) 

 

where 𝑘  is sample time, 𝑃(𝑘)  and 𝑉(𝑘)  are PV power and 
voltage, 𝑃(𝑘 − 1) and 𝑉(𝑘 − 1) are previous PV power and 

voltage. 

In the fuzzification stage, a triangular subset with five 
membership functions is used. Both input and output use 
symmetrical membership functions. Each of these membership  

TA BLE 1 Knowledge base  

E/∆𝐄 
Negative Big 
(NB) 

Negative Small 
(NS) 

Zero 
(Z) 

Positive Small 
(PS) 

Positive Big 
(PB) 

Negative Big 
(NB) 

NB NB Z PB PB 

Negative Small 
(NS) 

NS NS Z PS PS 

Zero 
(Z) 

Z Z Z Z Z 

Positive Small 
(PS) 

PS PS Z NS NS 

Positive Big 
(PB) 

PB PB Z NB NB 
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F I G U R E 6  Surface inference system stage. 

 
functions is NB (negative big), NS (negative small), Z (zero), PS 
(positive small), and PB (positive big). The knowledge based on the 
Mamdani type inference system process is shown in Table 1, while the 

results of the rule base are depicted by the surface Figure 6. Thus, in the 

defuzzification process, the center of gravity method is used. 

6  |  RESULTS AND DISCUSSION 

In this paper, the Trina Solar TSM-250PA05.08 PV module with the 
parameters as described in Table 2 is used. The characteristics of the 

PV output that are affected by irradiance and ambient temperature are 
shown in Figure 2. The proposed system is constructed in 

MATLAB/Simulink for a standalone application with a resistive load 
which is comprehensively shown in Figure 7. 

System testing is done by varying the irradiance into six steps. The 

irradiance variations given in the sequence of steps 1-6 are 1000, 700, 
800, 600, 400, and 200 W/m2. This test was conducted to determine 

the agility of the MPPT algorithm employed in high gain voltage 
converters with varying weather conditions. Figure 8 shows the 

results of testing the FL algorithm on the MPPT technique when 
handling variations of simulated weather conditions by varying the 

irradiance. The FL algorithm was compared with conventional P&O 

and variable step-size P&O as described. 
As shown in Figure 8, both conventional P&O and variable step-

size P&O experience an overshoot of the curve. This phenomenon is 

known as drift caused by a misjudgment of the MPPT algorithm so 
that the operating point will deviate away from the true MPP [57,58]. 

Drift is common in algorithms with operations based on hill-climbing, 
such as P&O, which experience sudden changes in irradiation. In this 

test, drift also occurs in the step-size P&O variable, but it is not as 

severe as in conventional P&O. 
It is different from the FL algorithm, which does not experience the  

drift phenomenon at all. The FL algorithm is able to operate the 
MPPT technique on a high gain voltage converter properly. Besides 

not experiencing drift, the FL algorithm is also able to track MPP 

quickly. This is proven by the tracking speed, which is better than the 
P&O algorithm. It can be seen in Figure 9 that the curve generated by 

the FL algorithm is more stable than P&O, especially without the 
step-size variable. When the system is first subjected to high 

irradiation treatment (Figure 9a), both conventional P&O and 
variable step-size P&O oscillate around the MPP until they are finally 

able to track the true MPP. Of course, the process to the actual MPP 

after this oscillation takes time, causing losses in the system. Likewise, 
when given low irradiation treatment, the two P&O algorithms 

drifted, causing the system to be unresponsive. These two 
disadvantages do not occur in the FL algorithm. 

Furthermore, several parameters affecting the performance of the 

MPPT system were carefully examined from the three algorithms. 
These parameters are tracking speed, oscillation, and efficiency. 

Overall, the FL algorithm is able to track MPP faster, namely 0.25 

TA BLE 2 Trina Solar TSM-250PA05.08 PV module characteristics.  

Parameters Value 

Maximum Power, 𝑃ெ௉௉  249.86 (W) 

Cells per module, 𝑁௖௘௟௟  60 cells 

Open circuit voltage, 𝑉ை஼  37.6 (V) 

Short-circuit current, 𝐼ௌ஼ 8.55 (A) 

Voltage at maximum power point, 𝑉ெ௉ 31 (V) 

Current at maximum power point, 𝐼ெ௉ 8.06 (A) 

Temperature coefficient of 𝑉ை஼  -0.35 %/℃ 

Temperature coefficient of 𝐼ௌ஼ 0.06 %/℃ 

 
F I G U R E 7  The proposed system simulated with MATLAB/Simulink. 
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seconds, followed by the step-size P&O variable with a tracking time 
of 0.41 seconds. At the same time, conventional P&O is only able to 

track MPP after 0.52 seconds. The oscillations around MPP caused 
by the FL algorithm are also much smaller, 0.01 V, while the step-

size and conventional P&O variables are 0.86 V and 1.22 V, 

respectively. 

However, the efficiency generated by the three algorithms has the 
same level of 93.66 %. Figure 10 shows the comparison of 𝑃௢௨௧  PV 
against the three MPPT algorithms. Seen in Figure 10a, the P&O 
algorithm reacts to an extreme when there is a change in irradiation. 
The P&O algorithm causes an instantaneous drift when the 
irradiation changes and takes longer to return to a stable state. 

Different results are shown in the FL algorithm and the step-size P&O 
variable, where there is no extreme reaction when irradiation changes. 
Both tend to produce a smoother slope. Also, when viewed in more 
detail, as shown in Figure 9a, the step-size P&O algorithm tends to 
have oscillations even though they only look small. 

The FL algorithm can track MPP quickly because it does not go 
through a subtraction and addition process as the P&O algorithm 
does. MPP as fast as the FL algorithm. On the other hand, the 
oscillations caused by P&O are also more significant. The 
perturbation step length causes large oscillations around the MPP. In 
the conventional P&O algorithm that uses a fixed step-size, the 
magnitude of the oscillation is the same as the step-size used. This 

 

F I G U R E 8  𝑃௢௨௧  generated by given the variation of irradiance. 

  

 (A)  (B) 

F I G U R E 9  Details of drift and initial oscillation of 𝑃௢௨௧  (A) when the irradiation level increases and (B) when the irradiation level decreases 

 

(A) 
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paradigm of problems occurs in conventional P&O algorithms, 
where a wide step-size can shorten the MPPT tracking process, but 
the oscillations around the MPP become large. On the other hand, a 
small step-size will minimize oscillations, but it will take longer to 
reach MPP. 

In terms of efficiency, the three algorithms do not affect the power 
harvesting efficiency of the high-gain DC/DC converter used. All 
three algorithms can actually be applied to the new converter 
topology. However, the FL algorithm is able to outperform 
conventional and variable step-size P&O algorithms in terms of 
tracking speed and oscillation damping. 

7  |  CONCLUSION 

MPPT control with a new topology converter that has never been 
tested on MPPT PV system techniques has been completed. MPPT 
is operated using the FL algorithm as one of the various types of 
intelligent algorithms. MPPT performance with this FL algorithm is 
compared with the P&O algorithm as the most commonly used 
algorithm and adaptive P&O, which is based on step-size variables as 
the development of the P&O algorithm. The test is done by varying 
the irradiance as a representation of weather changes around the PV 
module. The results obtained indicate that the FL algorithm is able to 

outperform conventional P&O algorithms and step-size variables. 
This is evidenced by the faster tracking speed and smaller oscillations 
generated by the FL algorithm. The P&O algorithm reacts to 
extremes when there is a change in irradiation which causes a 
momentary deviation when the irradiation changes and takes longer 
to return to a stable state. On the other hand, the FL algorithm shows 
no extreme reaction when the irradiation changes. Therefore, the 
MPPT technique becomes more convergent, and the MPP is ensured 
to be tracked correctly by the FL algorithm. This advantage makes 
solar energy harvesting through the PV system with the MPPT 
technique, which is operated by the FL algorithm, more optimum. 

REFERENCES 

1. L. Xiaoping, Q. Yunyou and S. SaeidNahaei, A novel maximum power point 
tracking in partially shaded PV systems using a hybrid method, Int. J. Hydrogen 
Energy (2021), . 

2. I. Dincer, Renewable energy and sustainable development: a crucial review, 
Renew. Sustain. energy Rev. (2000), vol. 4,  157–175. 

3. A. Chatterjee, K. Mohanty, V.S. Kommukuri and K. Thakre, Design and 
experimental investigation of digital model predictive current controller for 
single phase grid integrated photovoltaic systems, Renew. Energy (2017), vol. 
108,  438–448. 

4. R. Gross, M. Leach and A. Bauen, Progress in renewable energy, Environ. Int. 
(2003), vol. 29,  105–122. 

5. Estimating one-diode-PV model using autonomous groups particle swarm 
optimization. 2021. 

 

(C) 

F I G U R E 1 0  Comparison of 𝑷𝒐𝒖𝒕 PV against (A) conventional P&O, (B) variable step-size P&O, and (C) FL. 

 

 

(B) 



    AUTHOR ONE ET AL. 

 

8 

6. Estimating pv models using multi-group salp swarm algorithm. 2021. 
7. M. Bahrami, R. Gavagsaz-Ghoachani, M. Zandi, M. Phattanasak, G. 

Maranzanaa, B. Nahid-Mobarakeh et al., Hybrid maximum power point 
tracking algorithm with improved dynamic performance, Renew. energy 
(2019), vol. 130,  982–991. 

8. A.O. Baba, G. Liu and X. Chen, Classification and Evaluation Review of 
Maximum Power Point Tracking Methods, Sustain. Futur. (2020), vol. 2,  
100020. 

9. S. Dubey, J.N. Sarvaiya and B. Seshadri, Temperature dependent photovoltaic 
(PV) efficiency and its effect on PV production in the world–a review, Energy 
Procedia (2013), vol. 33,  311–321. 

10. Efficiency performances of two MPPT algorithms for PV system with different 
solar panels irradiances. 2018. 

11. E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe and D. Goitia, 
Intelligent PV Module for Grid-Connected PV Systems, IEEE Trans. Ind. 
Electron. (2006), vol. 53,  1066–1073. 

12. S.D. Al-Majidi, M.F. Abbod and H.S. Al-Raweshidy, A novel maximum power 
point tracking technique based on fuzzy logic for photovoltaic systems, Int. J. 
Hydrogen Energy (2018), vol. 43,  14158–14171. 

13. J. Ahmed and Z. Salam, An enhanced adaptive P&O MPPT for fast and 
efficient tracking under varying environmental conditions, IEEE Trans. Sustain. 
Energy (2018), vol. 9,  1487–1496. 

14. A.-R. Youssef, H.H.H. Mousa and E.E.M. Mohamed, Development of self-
adaptive P&O MPPT algorithm for wind generation systems with 
concentrated search area, Renew. Energy (2020), vol. 154,  875–893. 

15. M. Abdel-Salam, M.T. El-Mohandes and M. El-Ghazaly, An efficient tracking 
of MPP in PV systems using a newly-formulated P&O-MPPT method under 
varying irradiation levels, J. Electr. Eng. Technol. (2020), vol. 15,  501–513. 

16. M.N. Ali, K. Mahmoud, M. Lehtonen and M.M.F. Darwish, An efficient fuzzy-
logic based variable-step incremental conductance MPPT method for grid-
connected PV systems, Ieee Access (2021), vol. 9,  26420–26430. 

17. A.K. Gupta, R.K. Pachauri, T. Maity, Y.K. Chauhan, O.P. Mahela, B. Khan et 
al., Effect of various incremental conductance MPPT methods on the charging 
of battery load feed by solar panel, IEEE Access (2021), vol. 9,  90977–90988. 

18. H. Shahid, M. Kamran, Z. Mehmood, M.Y. Saleem, M. Mudassar and K. 
Haider, Implementation of the novel temperature controller and incremental 
conductance MPPT algorithm for indoor photovoltaic system, Sol. Energy 
(2018), vol. 163,  235–242. 

19. V. Jately, B. Azzopardi, J. Joshi, A. Sharma and S. Arora, Experimental analysis 
of hill-climbing MPPT algorithms under low irradiance levels, Renew. Sustain. 
Energy Rev. (2021), vol. 150,  111467. 

20. W. Zhu, L. Shang, P. Li and H. Guo, Modified hill climbing MPPT algorithm 
with reduced steady-state oscillation and improved tracking efficiency, J. Eng. 
(2018), vol. 2018,  1878–1883. 

21. C.B.N. Fapi, P. Wira, M. Kamta, A. Badji and H. Tchakounte, Real-time 
experimental assessment of Hill Climbing MPPT algorithm enhanced by 
estimating a duty cycle for PV system, Int. J. Renew. Energy Res. (2019), . 

22. N. Kumar, B. Singh and B.K. Panigrahi, LLMLF-based control approach and 
LPO MPPT technique for improving performance of a multifunctional three-
phase two-stage grid integrated PV system, IEEE Trans. Sustain. energy (2019), 
vol. 11,  371–380. 

23. N. Kumar, B. Singh and B.K. Panigrahi, Integration of solar PV with low-
voltage weak grid system: Using maximize-M Kalman filter and self-tuned 
P&O algorithm, IEEE Trans. Ind. Electron. (2019), vol. 66,  9013–9022. 

24. N. Kumar, B. Singh, B.K. Panigrahi and L. Xu, Leaky-least-logarithmic-
absolute-difference-based control algorithm and learning-based InC MPPT 
technique for grid-integrated PV system, IEEE Trans. Ind. Electron. (2019), vol. 
66,  9003–9012. 

25. N. Kumar, B. Singh, B.K. Panigrahi, C. Chakraborty, H.M. Suryawanshi and 
V. Verma, Integration of solar PV with low-voltage weak grid system: Using 
normalized laplacian kernel adaptive kalman filter and learning based InC 
algorithm, IEEE Trans. Power Electron. (2019), vol. 34,  10746–10758. 

26. N. Kumar, B. Singh, J. Wang and B.K. Panigrahi, A framework of L-HC and 
AM-MKF for accurate harmonic supportive control schemes, IEEE Trans. 
Circuits Syst. I Regul. Pap. (2020), vol. 67,  5246–5256. 

27. H. Rezk, M. Aly, M. Al-Dhaifallah and M. Shoyama, Design and Hardware 
Implementation of New Adaptive Fuzzy Logic-Based MPPT Control Method 
for Photovoltaic Applications, IEEE Access (2019), vol. 7,  106427–106438. 

28. S. Farajdadian and S.M.H. Hosseini, Optimization of fuzzy-based MPPT 
controller via metaheuristic techniques for stand-alone PV systems, Int. J. 
Hydrogen Energy (2019), vol. 44,  25457–25472. 

29. X. Li, H. Wen, Y. Hu and L. Jiang, A novel beta parameter based fuzzy-logic 
controller for photovoltaic MPPT application, Renew. energy (2019), vol. 130,  
416–427. 

30. U. Yilmaz, A. Kircay and S. Borekci, PV system fuzzy logic MPPT method and 

PI control as a charge controller, Renew. Sustain. Energy Rev. (2018), vol. 81,  
994–1001. 

31. X. Ge, F.W. Ahmed, A. Rezvani, N. Aljojo, S. Samad and L.K. Foong, 
Implementation of a novel hybrid BAT-Fuzzy controller based MPPT for grid-
connected PV-battery system, Control Eng. Pract. (2020), vol. 98,  104380. 

32. R.B. Roy, M. Rokonuzzaman, N. Amin, M.K. Mishu, S. Alahakoon, S. 
Rahman et al., A comparative performance analysis of ANN algorithms for 
MPPT energy harvesting in solar PV system, IEEE Access (2021), vol. 9,  
102137–102152. 

33. B. Babes, A. Boutaghane and N. Hamouda, A novel nature-inspired maximum 
power point tracking (MPPT) controller based on ACO-ANN algorithm for 
photovoltaic (PV) system fed arc welding machines, Neural Comput. Appl. 
(2022), vol. 34,  299–317. 

34. K.J. Reddy and N. Sudhakar, ANFIS-MPPT control algorithm for a PEMFC 
system used in electric vehicle applications, Int. J. Hydrogen Energy (2019), vol. 
44,  15355–15369. 

35. K. Amara, A. Fekik, D. Hocine, M.L. Bakir, E.-B. Bourennane, T.A. Malek et 
al., Improved performance of a PV solar panel with adaptive neuro fuzzy 
inference system ANFIS based MPPT, in 2018 7th International Conference on 
Renewable Energy Research and Applications (ICRERA), 2018, pp. 1098–
1101. 

36. A.A. Aldair, A.A. Obed and A.F. Halihal, Design and implementation of 
ANFIS-reference model controller based MPPT using FPGA for photovoltaic 
system, Renew. Sustain. Energy Rev. (2018), vol. 82,  2202–2217. 

37. M. Birane, C. Larbes and A. Cheknane, Comparative study and performance 
evaluation of central and distributed topologies of photovoltaic system, Int. J. 
Hydrogen Energy (2017), vol. 42,  8703–8711. 

38. Z. Salam, J. Ahmed and B.S. Merugu, The application of soft computing 
methods for MPPT of PV system: A technological and status review, Appl. 
Energy (2013), vol. 107,  135–148. 

39. S. Ozdemir, N. Altin and I. Sefa, Fuzzy logic based MPPT controller for high 
conversion ratio quadratic boost converter, Int. J. Hydrogen Energy (2017), vol. 
42,  17748–17759. 

40. N. Zhang, D. Sutanto, K.M. Muttaqi, B. Zhang and D. Qiu, High-voltage-gain 
quadratic boost converter with voltage multiplier, IET Power Electron. (2015), 
vol. 8,  2511–2519. 

41. P. Saadat and K. Abbaszadeh, A single-switch high step-up DC–DC converter 
based on quadratic boost, IEEE Trans. Ind. Electron. (2016), vol. 63,  7733–
7742. 

42. A.C. Subrata, T. Sutikno, S. Padmanaban and H.S. Purnama, Maximum power 
point tracking in pv arrays with high gain DC-DC boost converter, in 
International Conference on Electrical Engineering, Computer Science and 
Informatics (EECSI), 2019. 

43. X. Zhang, Y. Hu, W. Mao, T. Zhao, M. Wang, F. Liu et al., A grid-supporting 
strategy for cascaded H-bridge PV converter using VSG algorithm with 
modular active power reserve, IEEE Trans. Ind. Electron. (2020), vol. 68,  
186–197. 

44. Y. Pan, A. Sangwongwanich, Y. Yang and F. Blaabjerg, A phase-shifting MPPT 
to mitigate interharmonics from cascaded H-bridge PV inverters, IEEE Trans. 
Ind. Appl. (2020), vol. 57,  3052–3063. 

45. S. Srinivasan, R. Tiwari, M. Krishnamoorthy, M.P. Lalitha and K.K. Raj, 
Neural network based MPPT control with reconfigured quadratic boost 
converter for fuel cell application, Int. J. Hydrogen Energy (2021), vol. 46,  
6709–6719. 

46. K. Kumar, S.R. Kiran, T. Ramji, S. Saravanan, P. Pandiyan and N. Prabaharan, 
Performance Evaluation of Photo Voltaic System with Quadratic Boost 
Converter Employing with MPPT Control Algorithms, Int. J. Renew. Energy 
Res. (2020), vol. 10, . 

47. S.K. Manas and B. Bhushan, Performance Analysis of Fuzzy Logic-Based 
MPPT Controller for Solar PV System Using Quadratic Boost Converter, in 
Advances in Energy Technology, Springer, 2022, pp. 69–79. 

48. P.A. Dahono, Derivation of High Voltage-Gain Step-Up DC-DC Power 
Converters., Int. J. Electr. Eng. Informatics (2019), vol. 11, . 

49. A.R. Jordehi, Parameter estimation of solar photovoltaic (PV) cells: A review, 
Renew. Sustain. Energy Rev. (2016), vol. 61,  354–371. 

50. M.A. Green, Accuracy of analytical expressions for solar cell fill factors, Sol. 
Cells (1982), vol. 7,  337–340. 

51. M.G. Batarseh and M.E. Za’ter, Hybrid maximum power point tracking 
techniques: A comparative survey, suggested classification and uninvestigated 
combinations, Sol. Energy (2018), vol. 169,  535–555. 

52. J. Kivimäki, S. Kolesnik, M. Sitbon, T. Suntio and A. Kuperman, Design 
guidelines for multiloop perturbative maximum power point tracking 
algorithms, IEEE Trans. Power Electron. (2017), vol. 33,  1284–1293. 

53. A. Bin Jusoh, O.J.E.I. Mohammed and T. Sutikno, Variable step size Perturb 
and observe MPPT for PV solar applications, Telkomnika (2015), vol. 13,  1. 



AUTHOR ONE ET AL. 

  

 

9

54. D.N. Luta and A.K. Raji, Comparing fuzzy rule-based MPPT techniques for 
fuel cell stack applications, Energy Procedia (2019), vol. 156,  177–182. 

55. S. Assahout, H. Elaissaoui, A. El Ougli, B. Tidhaf and H. Zrouri, A neural 
network and fuzzy logic based MPPT algorithm for photovoltaic pumping 
system, Int. J. Power Electron. Drive Syst. (2018), vol. 9,  1823–1833. 

56. T. Sutikno, A.C. Subrata and A. Elkhateb, Evaluation of Fuzzy Membership 
Function Effects for Maximum Power Point Tracking Technique of 
Photovoltaic System, IEEE Access (2021), 1. 

57. M. Killi and S. Samanta, Modified perturb and observe MPPT algorithm for 
drift avoidance in photovoltaic systems, IEEE Trans. Ind. Electron. (2015), vol. 
62,  5549–5559. 

58. X. Li, H. Wen, Y. Hu and L. Jiang, Drift-free current sensorless MPPT 
algorithm in photovoltaic systems, Sol. Energy (2019), vol. 177,  118–126. 

 

 

 



Tahap 5 
Recommendation for Accepted, 24 August 2022 

 
  



 
Tahap 6 
Proofread process, 02 November 2022 

 
 
Tahap 7 
Accepted, 22 November 2022 

 
 

 
 



Tahap 8a 
Production process, 24  November 2022 

 
 
Tahap 8b 
Production process, 25  November 2022 

 
 
Tahap 8c 
Production process, 27 November 2022 

 
 
 
 
 
 
 



Tahap 8d 
Production process, 08 December 2022 

 
 

 
 
 
 
 
 
 



26/05/23, 23.13 Online Proofing System

https://articlereview.pubmate.in/#/?templateID=c2173d1cc5614448a8c52b2d8661e1c2070519999 1/16

Proof Initiated
12/7/2022

Corresponding Author
Due date: 12/9/2022

Start date: 12/7/2022

End date: 12/8/2022

Editorial Office
Due date: 12/10/2022

Start date: 12/8/2022

End date: 12/13/2022

Proof Collator
Due date: 12/15/2022

Start date: 12/13/2022

End date: 12/16/2022

Completed

1

2

3

4

5











2

10



Article DOI : 10.4218/etrij.2022-0184

ORIGINAL ARTICLE

Optimum solar energy harvesting system using
artificial intelligence

Sunardi  Sangsang Sasmowiyono  ,  | Abdul  Fadlil  , | Arsyad Cahya  Subrata  ,

Department of Electrical Engineering, Universitas Ahmad Dahlan, Yogyakarta,
Indonesia

Correspondence
Sunardi Sangsang Sasmowiyono, Department of Electrical Engineering, Universitas
Ahmad Dahlan, Yogyakarta, Indonesia.
Email: sunardi@mti.uad.ac.id

Copyright

1225‐6463/$ © 2022 ETRI

Received Date: 12 May 2022  | Revised Date: 25 July 2022  |
Accepted Date: 24 August 2022

Abstract
Renewable energy is promoted massively to overcome problems that
fossil fuel power plants generate. One popular renewable energy type
that offers easy installation is a photovoltaic (PV) system. However, the
energy harvested through a PV system is not optimal because
influenced by exposure to solar irradiance in the PV module, which is
constantly changing caused by weather. The maximum power point
tracking (MPPT) technique was developed to maximize the energy
potential harvested from the PV system. This paper presents the MPPT
technique, which is operated on a new high‐gain voltage DC/DC
converter that has never been tested before for the MPPT technique in
PV systems. Fuzzy logic (FL) was used to operate the MPPT technique
on the converter. Conventional and adaptive perturb and observe
(P&O) techniques based on variables step size were also used to
operate the MPPT. The performance generated by the FL algorithm
outperformed conventional and variable step‐size P&O. It is evident
that the oscillation caused by the FL algorithm is more petite than
variables step‐size and conventional P&O. Furthermore, FL's tracking
speed algorithm for tracking MPP is twice as fast as conventional P&O.

Keywords
artificial intelligence | fuzzy logic control | maximum power point tracking

(MPPT) | perturb and observe (P&O) | variable step‐size P&O

1 | INTRODUCTION

The need for electrical energy for homes and industries has significantly
increased in the last few decades. Many power plants have been built to
meet the demand for electrical energy. However, in addition to their
dwindling resources, these power plants have several adverse side
effects on the environment, such as water, soil, and air pollution caused
by solid and liquid waste produced from burning fossil materials as raw
materials [1, 2]. However, due to the shared awareness in various circles,
radical efforts have been made to overcome these problems and provide
a healthier environment.
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Renewable energy is one of the significant issues predicted to be the
best alternative to fulfill the demand for electrical energy but without
harming the environment. Renewable energy sources such as solar
photovoltaic (PV) systems, hydropower, wind turbine, tidal turbine,
biomass, and biothermal [3, 4] are being developed because of their
ability to optimize the potential of nature. Solar PV systems are one of
the most popular because they are clean, do not cause noise, are cheap,
and easy to install and maintain [5, 6]. Furthermore, the advantage of
solar PV systems as an alternative power plant is that they do not
generate noise compared to wind turbines [7].

However, due to the direct relationship and dependence on nature, solar
PV‐based power generation is nonlinear. As when the irradiation on the
PV array changes drastically, at that time, an instantaneous shift in the
peak power point occurs [8]. The nonlinear nature resulting from
changes in irradiation and temperature affecting the PV causes the
efficiency of the PV itself to be lower [9, 10]. PV energy loss has reached
up to 25% [11]. This energy loss is one of the problems in optimizing
energy harvesters with solar PV. Various efforts have been made to
optimize energy harvesting from solar PV. One of the most effective ways
to increase efficiency is to achieve solar PV power production under any
conditions [12]. This technique is known as maximum power point
tracking (MPPT), which works by feeding an appropriate duty cycle to
DC/DC converter in the PV system.

Various methods can be used to operate MPPT, ranging from
conventional methods such as perturb and observe (P&O) [13–15],
incremental conductance (IncCond) [16–18], hill climbing (HC) [19–21],
and their improved methods such as learning‐based P&O (LPO) [22], self‐
tuned P&O (SPO) [23], learning‐based ncCond (LIC) [24, 25], learning‐
based HC (L‐HC) [26], which is based on the perturbation process in HC,
to methods based on artificial intelligence algorithms such as fuzzy logic
(FL) [27–31], artificial neural network (ANN) [32, 33], and adaptive neuro‐
fuzzy inference systems (ANFIS) [34–36]. Generally, a suitable MPPT
implementation considers several aspects such as the type of
application, efficiency, cost, lost energy, and suitability of the converter
[37, 38].

There are various types of DC/DC converters developed for various
applications, namely, boost, buck, and buck–boost converters. For
applications that require high‐voltage conversion, a DC/DC converter that
can compensate for these needs is required. The boost converter can
achieve high voltages by providing a large . However, the voltage
increment multiplication is not more than five and at the expense of
efficiency, increasing the voltage on the switch and causing
electromagnetic inference [39–41]. A coupled‐inductor converter can
provide high‐voltage gain. Nevertheless, the efficiency is low due to
increased chopper losses in inductors and conduction losses in
semiconductors [42]. Another converter topology that provides high‐gain
voltage is the cascaded converter [43, 44]. However, the efficiency is also
low due to the need for two processes. Another alternative is connecting
two converters in series with only one switch, which is often called a
quadratic boost converter (QBC) [45–47]. This converter topology
produces the same voltage ratio as the cascaded converter, but the
efficiency is lower than the boost converter.

The new high‐gain voltage DC/DC converter [48] provides a high‐voltage
ratio and efficiency with lower current and voltage ripples. However, this
converter still needs to be tested with MPPT to determine its suitability
for PV systems. Therefore, this paper employs the FL algorithm in a high‐
gain voltage DC/DC converter for standalone PV systems.

2 | MODELING OF SOLAR CELLS

D
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A basic understanding of solar cells is essential as a fundamental
element of a PV system. Solar arrays commonly used consist of a
combination of series and/or parallel PV cells to produce a specific value.
Different circuit models of PV cells are presented by Jordehi [49]. As in
Figure 1, the single diode is the most common and most straightforward
model, whereas the PV module characteristic curves are shown in
Figure 2. The relationship between the voltage–current of the PV module
is modeled as

where  and  are light‐generated and reverse saturation current,
respectively,  is the electron charge (1.66022   10  C),  and  are
the output voltage and current of the solar cells, respectively,  and 
are shunt and series resistances, respectively,  is the p‐n ideal factor, 
is the Boltzmann's constant (1.38  10  J/K), and  is the cell
temperature in Kelvin.

FIGURE 1.
Single‐diode PV model

FIGURE 2.
Trina Solar TSM‐250PA05.08 PV module characteristic curves (A) under
irradiation variation and (B) under temperature variation

I = IPH − Isat × [exp{q ×
VPV + IPV × RS

A × K × T
} − 1] −

VPV + IPV × RS

RSH
,

IPH Isat

q × −19 VPV IPV

RS RSH

A K

× −23 T
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(6)

The  value is strongly influenced by the ambient temperature, , as
well as the irradiance, , which is expressed as

where  is the short‐circuit current at 25°C,  = 298  and  = 1000 
W/m . Although  is the short‐circuit current temperature coefficient.
The * sign is the value at standard test conditions.

 is affected by ambient temperature as

where  is the open‐circuit voltage at 25°C with  as the coefficient of
open‐circuit voltage, whereas  is the thermal voltage.

The amount of current in the series‐connected module per setting is ,
and the parallel connection is , then

3 | MPPT

The maximum power transfer theorem forms the basis for the working
principle of the MPPT technique. The theorem states that when the load
resistance matches the source, it can transfer the maximum power.
Therefore, the working principle of the MPPT technique is to ensure the
load resistance with PV at the maximum power point (MPP), which is
calculated by Green [50].

where , , and  are the resistance, voltage, and current in
MPP, respectively.

Although the maximum power transfer can be carried out by considering
, in reality,  is not constant because of the  curve of PV due

to weather dependence where changes in irradiation and temperature
are unavoidable. Therefore, a DC/DC converter between the source and
voltage connections is required to compensate for this resistance
mismatch instead of supplying power directly to the load [51]. Through
the MPPT algorithm, the duty cycle, , is adjusted to ensure load
resistance, and the , which has been modified according to  on PV
under varying weather conditions.

4 | HIGH‐GAIN VOLTAGE DC/DC CONVERTER

The DC/DC converter plays a vital role in the source and load interface of
PV systems. This paper uses a high‐gain voltage DC/DC converter, shown
in Figure 3, based on a modified DC/DC buck–boost converter. This
converter is capable of producing a high‐voltage ratio obtained from

where  is the duty factor of the transistor .

IPH T

G

IPH = {I *
SC + ki(T − T *)} G

G*
,

I
*
SC T * °K G

2 ki

Isat

Isat =
I

*
SC + ki(T − T *)

exp[ V
*

OC+kV(T−T *)
Vt

] − 1
,

V
*

OC kV

Vt = K × T/q

Nser
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FIGURE 3.
Schematic of a converter with a high‐voltage ratio

The RMS value of the voltage ripple is given by Bahrami et al. (7),
whereas the output voltage ripple when the duty cycle is more than half
is given by Baba et al.(8).

where  is the minimum switching of the converter.

5 | MPPT CONTROL ALGORITHMS

There are many variations of the MPPT control algorithm. However, one
of the most frequently applied MPPT control algorithms because of its
convenience is P&O. In this paper, conventional and advanced P&O
algorithms based on step‐size variables will be compared with one of the
artificial intelligence algorithms, namely, FL.

5.1 | P&O

The P&O algorithm is in great demand in the MPPT technique because it
does not require special information related to PV characteristics, so it
can be applied to all types of PV modules [52]. Figure 4 shows a flowchart
for the conventional P&O method.

Ṽ o =
īo

Cfs

α(1 − 2α)

2√3(1 − α)
,

Ṽ o =
īo

Cfs

(2α − 1)

2√3
,

fs
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FIGURE 4.
Flowchart of conventional P&O algorithm

The working principle is to direct the working point on the MPP by
perturbation. If the PV operating point is to the left of the MPP, the
perturbation is done to the right, and vice versa. However, this algorithm
is affected by the given step size. The wide step size can speed up MPP
tracking, but the oscillations around the MPP are also large. On the other
hand, a small step size reduces oscillations around the MPP but slows
down the tracking speed.

Adaptive P&O based on step‐size variables was developed to reduce
oscillations around the MPP caused by conventional P&O algorithms [53].
The flowchart of the algorithm is shown in Figure 5. In this algorithm,
factor  is used as a constant whose value is greater than 1. The duty
cycle as the control output of the algorithm increases with the
multiplication factor  when . Meanwhile, when the condition

, then the duty cycle is divided by .

(A)

(A) dP > 0

dP < 0 (A)
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FIGURE 5.
Flowchart of P&O variable step‐size algorithm

5.2 | FL

The FL algorithm offers advantages in the form of ease of
implementation, no requirement for mathematical modeling of data and
robustness in the field of control systems [27, 54–56]. In a PV system, the
input FL is the Error ( ) resulting from the change in the PV output power
divided by the change in the output voltage and the Change of Error (
). Although the output is the duty cycle which will regulate the PWM
converter signal. Both inputs are given by.

where  is sample time,  and  are PV power and voltage, 
and  are previous PV power and voltage.

In the fuzzification stage, a triangular subset with five membership
functions is used. Additionally, symmetrical membership functions are
used for input and output. Each of these membership functions is
negative big (NB), negative small (NS), zero (Z), positive small (PS), and
positive big (PB). The knowledge based on the Mamdani‐type inference
system process is shown in Table 1, whereas the results of the rule base
are depicted by the surface Figure 6. Thus, in the defuzzification process,
the center of gravity method is used.

TABLE 1. Knowledge base

E

ΔE

Error, E(k) =
ΔP

ΔV
=

P(k) − P(k − 1)

V (k) − V (k − 1)
,

Error Change, Δ E(k) = E(k) − E(k − 1),

k P(k) V (k) P(k − 1)

V (k − 1)
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Negative
big (NB)

NB NB Z PB PB

Negative
small (NS)

NS NS Z PS PS

Zero (Z) Z Z Z Z Z

Positive
small (PS)

PS PS Z NS NS

Positive big
(Pb)

PB PB Z NB NB

FIGURE 6.
Surface inference system stage

6 | RESULTS AND DISCUSSION

In this paper, the Trina Solar TSM‐250PA05.08 PV module with the
parameters as described in Table 2 is used. The characteristics of the PV
output that are affected by irradiance and ambient temperature are
shown in Figure 2. The proposed system is constructed in
MATLAB/Simulink for a standalone application with a resistive load,
which is comprehensively shown in Figure 7.

TABLE 2. Trina Solar TSM‐250PA05.08 PV module characteristics

Maximum power, 249.86 (W)

Cells per module, 60 cells

Open‐circuit voltage, 37.6 (V)

Short‐circuit current, 8.55 (A)

Voltage at maximum power point, 31 (V)

Current at maximum power point, 8.06 (A)

Temperature coefficient of −0.35%/

PMPP

Ncell

VOC

ISC

VMP

IMP

VOC °C

E/ Negative
big (NB)

Negative
small (NS)

Zero (Z) Positive
small (PS)

Positive
big (PB)

ΔE

Parameters Value
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Temperature coefficient of 0.06%/

FIGURE 7.
The proposed system simulated with MATLAB/Simulink

System testing is done by varying the irradiance into six steps. The
irradiance variations given in the sequence of steps 1–6 are 1000, 700,
800, 600, 400, and 200 W/m . This test was conducted to determine the
agility of the MPPT algorithm employed in high‐gain voltage converters
with varying weather conditions. Figure 8 shows the results of testing the
FL algorithm on the MPPT technique when handling variations of
simulated weather conditions by varying the irradiance. The FL algorithm
was compared with conventional P&O and variable step‐size P&O as
described.

FIGURE 8.
 generated by given the variation of irradiance

As shown in Figure 8, conventional P&O and variable step‐size P&O
experience an overshoot of the curve. This phenomenon is known as
drift, which is caused by a misjudgment of the MPPT algorithm so that
the operating point will deviate from the true MPP [57, 58]. Drift is
common in algorithms with operations based on hill climbing, such as
P&O, which experience sudden changes in irradiation. In this test, drift
also occurs in the step‐size P&O variable, but it is not as severe as in
conventional P&O.

It is different from the FL algorithm, which does not experience the drift
phenomenon at all. The FL algorithm is able to operate the MPPT
technique on a high‐gain voltage converter properly. Besides not
experiencing drift, the FL algorithm is also able to track MPP quickly. This
is proven by the tracking speed, which is better than the P&O algorithm.
It can be seen in Figure 9 that the curve generated by the FL algorithm is
more stable than P&O, especially without the step‐size variable. When
the system is first subjected to high irradiation treatment (Figure 9A),
both conventional P&O and variable step‐size P&O oscillate around the
MPP until they are finally able to track the true MPP. Of course, tThe
process to the actual MPP after this oscillation takes time, causing losses

ISC °C

2

Pout

Parameters Value
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in the system. Likewise, when given low irradiation treatment, the two
P&O algorithms drifted, causing the system to be unresponsive. These
two disadvantages do not occur in the FL algorithm.

FIGURE 9.
Details of drift and initial oscillation of  (a) when the irradiation level
increases and (B) when the irradiation level decreases

Furthermore, several parameters affecting the performance of the MPPT
system were carefully examined from the three algorithms. These
parameters are tracking speed, oscillation, and efficiency. Overall, the FL
algorithm can track MPP faster, namely, 0.25 s, followed by the step‐size
P&O variable with a tracking time of 0.41 s. At the same time,
conventional P&O can only track MPP after 0.52 s. The oscillations
around MPP caused by the FL algorithm are also quite small (0.01 V),
whereas the step‐size and conventional P&O variables are 0.86 and 1.22 
V, respectively.

However, the efficiency generated by the three algorithms has the same
level of 93.66%. Figure 10 shows the comparison of  PV against the
three MPPT algorithms. Seen in Figure 10A, the P&O algorithm reacts to
an extreme when there is a change in irradiation. The P&O algorithm
causes an instantaneous drift when the irradiation changes and takes
longer to return to a stable state. Different results are shown in the FL
algorithm and the step‐size P&O variable, where there is no extreme
reaction when irradiation changes. Both tend to produce a smoother
slope. Also, when viewed in more detail, as shown in Figure 9A, the step‐
size P&O algorithm tends to have oscillations even though they only look
small.
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Pout
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FIGURE 10.
Comparison of  PV against (A) conventional P&O, (B) variable step‐size
P&O, and (C) FL

The FL algorithm can track MPP quickly because it does not go through a
subtraction and addition process as the P&O algorithm does. Although
the variable step-size P&O can provide large step perturbations away
from MPP, it still needs to track MPP as fast as the FL algorithm.
Furthermore, the oscillations caused by P&O are more significant. The
perturbation step length causes large oscillations around the MPP. In the
conventional P&O algorithm that uses a fixed step size, the magnitude of
the oscillation is the same as the step size used. This paradigm of
problems occurs in conventional P&O algorithms, where a wide step size
can shorten the MPPT tracking process, but the oscillations around the
MPP become large. On the other hand, a small step size will minimize
oscillations, but it will take longer to reach MPP.

In terms of efficiency, the three algorithms do not affect the power
harvesting efficiency of the high‐gain DC/DC converter used. All three
algorithms can actually be applied to the new converter topology.
However, the FL algorithm is able to outperform conventional and
variable step‐size P&O algorithms in terms of tracking speed and
oscillation damping.

7 | CONCLUSION

MPPT control with a new topology converter that has never been tested
on MPPT PV system techniques has been completed. MPPT is operated
using the FL algorithm as one of the various types of intelligent
algorithms. MPPT performance with this FL algorithm is compared with
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the P&O algorithm as the most commonly used algorithm and adaptive
P&O, which is based on step‐size variables as the development of the
P&O algorithm. The test is performed by varying the irradiance to
represent weather changes around the PV module. The results indicate
that the FL algorithm can outperform conventional P&O algorithms and
step‐size variables. This is evidenced by the faster tracking speed and
smaller oscillations generated by the FL algorithm. The P&O algorithm
reacts to extremes when there is a change in irradiation, which causes a
momentary deviation when the irradiation changes and takes longer to
return to a stable state. However, the FL algorithm shows no extreme
reaction when the irradiation changes. Therefore, the MPPT technique
becomes more convergent, and the MPP is ensured to be tracked
correctly by the FL algorithm. This advantage makes solar energy
harvesting through the PV system with the MPPT technique, which is
operated by the FL algorithm, more optimum.
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