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Abstract— Robot, as dictated by its assistive function for 

human, frequently needed to perform object manipulation (i.e. 

robotic manipulation). A successful robotic manipulation not 

only determined by the robot actuator, it is also strongly affected 

by the robot perception in capturing the world and the 

workpieces. Robotics has made extensive use of camera-based 

visual perception, especially robotic manipulation.  This 

perception will enable the robot to perform object(workpieces) 

detection and localization and generate suitable control policy 

to move the robot via a series of robot poses. This paper 

proposed an assistive robot manipulator pose prediction based 

on object orientation using CNN. The manipulator pose 

prediction will enable further action for a successful robotic 

manipulation by providing a relative pose between the object 

and manipulator. Experiment result shown that the presented 

method was able to predict the robot pose, especially on the fifth 

joint of the robot accurately based on the object orientation 

images. 

Keywords—convolutional neural network,  assistive robot 

manipulator, visual perception 

I. INTRODUCTION 

Humans are naturally capable of varying the interaction 
and manipulation of various objects in diverse environments, 
this ability is supported by the existence of a human 
perception system consisting of at least visual perception and 
tactile perception as well as manipulators and actuators 
possessed by humans in the human body. Robot as a device 
that is expected to help humans is of course also required to 
have interaction and object manipulation capability even 
though it is still within various limits. Research related to this 
includes sorting and retrieving objects [1], as well as on daily 
activities in the form of interaction or manipulation of room 
doors [2], [3] or cupboard doors [4].  

II. RELATED WORKS 

Studies in [5], [6]  have attempted to solve challenges 
related to cluttered scenes and novel objects by utilizing an 
Artificial Intelligence (AI) based approach. Bousmalis et 
al.[5] employed convolutional neural network (CNN) 
approach to teach a grasping system to grasp novel objects 
from unprocessed monocular RGB images, using simulated 
environments and domain adaption techniques.  In [6] Kumra 
& Kanan presents a CNN based robotic grasp detection 

method that uses an RGB-D scene image to predict the ideal 
parallel gripper grasping pose for novel objects. Whereas [7] 
solved grasping unknown objects with soft hands problem 
using a three-dimensional deep convolutional neural network 
(3D CNN) method. CNN based approach also found in [8]–
[11]. Meanwhile [12] proposed a reinforcement learning (RL) 
technique for manipulating and grasping for a mobile 
manipulator in order to address changing manipulation 
dynamics and unpredictable external disturbances. RL type of 
machine learning based on force and displacement data was 
also used in [13] to perform stiffness and position control 
optimization in a soft robot arm module. Another application 
of RL also found in [14].  AI-based approaches can also be 
found in studies related to manipulation [15]. In term of sensor 
or input modalities, most studies used RGB, RGB-D images 
or depth images, as mentioned in [5]–[12] . The perception 
that has been used in these studies is primarily a perception 
based on a vision system or visual perception which is 
generally based on a camera. The use of camera and CNN 
approach is quite successful, especially in object detection and 
object position sensing as well as generating control for object 
manipulation. Other types of modalities such as force and 
displacement, tactile can be found in [13], [15]. 

The study presented in this paper aims to provide an 
approach to infer robot manipulator pose using machine 
learning image classification technique. 

III. METHOD 

This paper proposed a pose prediction system for a 
digitally controlled 6 DOF manipulator equipped with a 
gripper and camera that relies on information from a visual 
sensor. Visual sensor will be used to acquire visual 
information about the manipulated object. Realization of the 
proposed system will be validated in experiment’s 
measurements, mainly on the detection success rate. In the 
software part a CNN based detection implemented. 

A. Manipulator hardware structure 

The experiment was conducted on a 6 DOF robot 

manipulator that equipped with a UVC webcam attached to 

its end effector. Geometrical design of the manipulator 

presented in Fig.1. 

 



 

Fig. 1. Gometrical Design of  the 6-DOF Manipulator  

 

The Manipulator consisting of six joints starting from 

joint 0 to joint 5 with link1(L1), link2(L2), link3(L3), 

link4(L4), link5(L5), link6(L6), link7(L7) as the links with each 

link dimensions as follows L1=36mm, L2=40.5mm 

L3=124mm, L4=64mm, L5=40.5mm, L6=28.5mm, 

L7=154.48mm. The manipulator had a parallel griper with 20-

75mm openings as its end effector.  

Each joint of the manipulator actuated by a servomotor 

having 0.088° rotation resolution and 4.1Nm torque when 

powered by a 12VDC power source.  Reference Coordinate 

(the world coordinate system) and each joint coordinate 

defined and depicted as Fig.2.  
 

  

 

Fig. 2. World & Joint Coordinate System  

As refer to Fig.1 and Fig. 2, it can be written that the 6 
DOF manipulator has transformation matrix as follows:  

  

For        

� � �cos �� 	sin �� 0 0sin �� cos �� 0 00 0 1 360 0 0 1 ���  

 

(1) 

� � � cos �� 0 sin �� 00 1 0 0	sin �� 0 cos �� 40.50 0 0 1 ���  

 

(2) 

� � � cos �� 0 sin �� 00 1 0 0	sin �� 0 cos �� 1240 0 0 1 ���  

 

(3) 

� � �1 0 0 640 cos �� 	sin �� 00 sin �� cos �� 00 0 0 1 ���  

 

(4) 

 

� � � cos �� 0 sin �� 00 1 0 0	sin �� 0 cos �� 40.50 0 0 1 ���  

 

(5) 

� � �1 0 0 00 cos �� 	sin �� 00 sin �� cos �� 28.50 0 0 1 ���  

 

(6) 

� � �1 0 0 154.480 1 0 00 0 1 00 0 0 1 ���  

 

 

(7) 

 

Then the coordinate transformation from the world 
coordinate system to the end effector robot is obtained as 
follows: 

  � � � ��� ��� ��� � ��� ���������  

 

 

where ���  and θi as transformation matrix between 
coordinate system m and n, whereas θi as the joint angle. 

 

B. Robot Manipulator Pose Prediction based on Object 

Orientation using CNN 

• Robot Manipulator pose prediction based on object 
orientation image constructed from training data 
acquired from the end effector camera, with 640x480 
resolution comprises of 11 classes from 11 different 
manipulator pose from fifth joint rotation i.e. joint 4 
(θ4) value variation while keeping all other joints fixed 
(θ0 = 0°, θ1 = - 45°, θ2 = 85°, θ3 = 0°, θ5 = 0°). Image 
data were acquired by placing a daily activity object on 
a 300 mm distance from the manipulator base as shown 
in Fig.3., followed by controlling the manipulator to an 
initial position, then a sequential 5° rotation commands 
were sent to the robot. There are short delays between 
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each command, in which the camera capture the 
object.  

 

 

Fig. 3. Proposed Assistive Robot Manipulator  

 

• The θ4 value and its corresponding object orientation 
images and presented in Table I below:  

TABLE I.  OBJECT ORIENTATION IMAGES 

No. 
Joint value and corresponding images 

joint 4  (θ4) value Image 

1. 45° 

 

2. 50° 

 

3. 55° 

 

4. 60° 

 

5. 65° 

 

6. 70° 

 

7. 75° 

 

No. 
Joint value and corresponding images 

joint 4  (θ4) value Image 

8. 80° 

 

9. 85° 

 

10. 90° 

 

11. 95° 

 
 

 

• Images acquired from the aforementioned scenario 
were fed to a Convolutional Neural Network having a 
model listed in TABLE II. 

 

 

TABLE II.  CNN MODEL 

No. 
CNN Model 

Layer (type) Output Shape Param # 

1. 
input_1 

(InputLayer) 
[(None, 128, 128, 3)]  0 

2. 
conv2d  
(Conv2D) 

 (None, 128, 128, 32) 896 

3. 
max_pooling2d 

(MaxPooling2D)                                                              

 (None, 64, 64, 32) 0 

4. 
conv2d_1 

(Conv2D) 

 (None, 64, 64, 32) 9248 

5. 
max_pooling2d_1 
(MaxPooling2D)                                                              

 (None, 32, 32, 32) 0 

6. conv2d_2  (None, 32, 32, 32) 9248 

7. flatten (Flatten)  (None, 32768)          0 

8. dense (Dense)  (None, 100) 3276900 

9. dense_1 (Dense   (None, 100)                10100 

10. dense_2 (Dense)  (None, 11) 1111 

Total params: 3,307,503 

Trainable params: 3,307,503 

Non-trainable params: 0 

 

• The CNN take an input size of 128x128, from a resized 
and normalized 640x480 image. The first convolution 
layer, a 2D convolution layer having 32 kernels with 
3x3 in size, and ReLU activation function, the padding 
resulting a same size output. Max pooling layer with 
2x2 filter used then resulting 64x64 output. The next 
convolution layer has the same number and size of 
kernel as the first convolution layer. The next max 
pooling layer has 2x2 filter followed by a 2D 
convolution layer with 32 kernel and 3x3 in size and 



ReLU activation. A Flatten layer followed by 3 dense 
layers resulting 11 outputs. 

• Training was conducted in 100 epochs using 110 
images with the result illustrated in Fig.4. 

 

Fig. 4. Training Result 

 

IV. RESULT & DISCUSSION 

The training result graphic shows that the training 
accuracy reach around 1.0 after 20 epochs, and became 
stabilized after 40 epochs. The loss value decreases rapidly 
from the beginning of training and stabilized after 50 epochs. 

The model was tested to perform classification of 44 
different images. The classification result shown in Table III 
below 

TABLE III.  CLASSIFICATION RESULT 

A
ctu

a
l 

Predicted joint value 

45 50 55 60 65 70 75 80 85 90 95 

45 0.75 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

50  0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

55 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

60 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

65 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

70 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

75 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.25 0.00 

90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

 

 

Based on the classification result it can be concluded that 
the proposed system is able to predict change of robot 
manipulator pose based on object orientation image captured 
from the attached camera. 
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