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Abstract— In Indonesia, the significant role of perishable
products in food wastage has placed the country fourth globally
in household food waste. Managing inventory for such products,
with their short shelf life am&ringem safety standards,
emphasizes the need for efficient lot sizing planning. This study
introduces a novel Dynamic Lot-Sizing (DLS) model, addressing
perishable products and inventory constraints across multiple
products, periods, and varying demands. The model aims to
optimize production quantity and binary production,
minimizing overall system costs. Employing a Genetic
Algorithm (GA), this research solves the DLS model under
constrained and unconstrained inventory capacities. Real-case
data from a bread manufacturing company validates the model,
while sensitivity analysis examines perishability's impact on the
solution and model performance. The DLS-GA model not only
reduces system costs but also effectively considers product
perishability, offering optimal production plans.

Keywords—Dynamic  lot-sizing; Perishable product;
Genetic algorithm; production decisions: total system costs.

L INTRODUCTION

Perishable products, including bread, vegetables, fruit,
meat, seafood, and dairy, are an essential and widespread part
of our daily lives, contributing to high sales in supermarkets
and grocery stores. In Indonesia, the problems associated
with perishable products are one of the factors that contribute
to a significant amount of food waste and food loss.
According to Tiseo [1], Indonesia r45 fourth worldwide for
household food waste. The annual economic loss caused by
food loss and waste in IndgFRsia is between IDR 213 and 551
trillion. This represents 4-5% ofthe country's Gross Domestic
Product (GDP) [2]. As a country with significant barriers to
food security, minimizing food waste and losses is important.
Close collaboration among suppliers, manufacturers,
distributors, and retailers is required to address these issues.

Bread and other perishable goods have limited shelf lives.
If mishandled, this could lead to wastage. In addition, the
inventory management of bread products varies over time and
is affected by critical factors that limit their ability to store
large quantities of bread products. These limiting factors are
generally related to the perishable nature of bread, which has
limited shelf life and storage requirements that must meet
strict quality and food safety standards. Therefore, lot sizing

planning is essential for managing bread inventory to
consider the limitations of the existing inventory.

The concept of inventory lot sizing is critical in this
context because it allows companies to determine the optimal
number of orders or production lots based on dynamic
demand, thereby reducing the risk of excess inventory that
can be discarded. By implementing this approach and
adjusting for fluctuations in demand, companies can improve
their operational efficiency and reduce the waste associated
with expired products.

To minimize food waste and the loss of perishable
products, lot size planning must consider the perishable rate,
return rate, and inventory constraints. Manufacturers can plan
production accurately by considering the time it takes to
order, produce, and transport a product, ensuring that the
product reaches the market or consumer on time and under
optimal conditions [3]. This prevents products from reaching
the end of their sw life before reaching consumers.

Determining the optimal lot size for perishable products,
such as food and medicine, requires careful consideration of
the perishable rate, which is influenced by the expiration date
[4]. These products have a limited shelf life, necessitating
careful calculation of the quantity to be produced and stored
in a single lot to minimize waste from expired goods before
they can be sold [5]. Researchers have rarely included the
impact of perishability from consumers' perspectives in their
model. Freshness is one of the key factors affecting consumer
purchase decisions [6]. This approach improves inventory
management efficiency, reduces food waste, and maintains
product quality, while miniﬁi ng food loss.

Various mathematical models have been developed to
determine the most cost-effective solution with the goal of
minimizing overall costs. Nahmias [7] incorporated
constraints  and assumptions, such as demand rates,
production lead times, and shortage costs, which are
frequently incorporated into these models, along with the
product's fixed expiration date. However, uncertainties that
occur in the real world make sling the lot sizing
optimization problem more difficult [g].

Journal Web site: http://journal.umy.ac.id/index.php/jrc

Journal Email: jre(@umy.ac.id




Journal of Robotics and Control (JRC)

ISSN: 2715-5072 2

Several researchers have investigated @BJration dates
within the inventory model framework. Feng et al. [6] created
EZ) inventory model to maximize profits by considering
demand as a multivariate function that depends on unit price,
displayed stock, product frffhess, and expiration date. The
authors' primary goal was to determine the optimal selling
prices, replenishment cycle times, and final stock levels to
maximize the overall profit. Acevedo-Ojeda et al. [9]
introduced mixed-integer programming formulations and
sensitivity analysis to address multi-level classical lot-sizing
problems. They emphasized the integration of perishability
and raw material deterioration. Furthermore, Sazvar et al.
[10] proposed an innovative mathematical framework for an
optimal ordering problem across multiple periods and
products by considering expiration dates within a first-
expired-first-out (FEFQO) system. Sundararajan et al. [11]
proposed EOQ model with and without backlogging by
considering expiration date under shortage. They proposed a
mixed-integer nonlinear inventory model and sensitivity
analysis.

Additionally,  considering return  rates  enables
manufacturers to predict the likelihood of products being
returned from the market owing to defects, rejections, or lack
of sales [12]. Return rates can vary widely based on product
type, ranging from 3-4% for dairy items and 8% or higher for
delicate fresh produce [7]. Variations in both the quantity and
quality of returned products play a critical role in effectively
managing closed-loop supply chains effectively [13].
Incorporating return rates into lot-sizing strategies allows
companies to avoid overproduction, ultimately reducing food
waste. These policies enable companies to manage their
returns, while maintaining efficient operations.

Moreover, incorporating return rates into lot-sizing
strategies allows companies to avoid overproduction,
ultimately reducing food waste. These policies enable
companies to manage their returns, while maintaining
efficient operations. Foff#xample, Aazami and Saidi-
Mehrabad [14] proposed return, discount, and credit period
policies to optimize the productflJand distribution planning
of packed vegetables across a three-level supply chain
consisting of factories, distribution centers, and retailers.
Additionally, Yang etal. [15] developed a dynamic ordering
system with integrated cash and product flows for fresh food
retailers by utilizing a heuristic algoritim tffhcorporate
return rates. Koken et al. [16] investigated a Dynamic Lot
Sizing (DLS) problem involving product returns and
remanufacturing in a hybrid manufacturing system that
produces manufactured, remanufactured, and hybrid products
to meet separate demands. Furthermore, Parsopoulus et al.
[17] proposed a metaheuristic optimization apf@ach called
Differential Evolution (DE) to address the DLS problem with
product returns and remanufacturing. The simplicity of
implementing DE and its effectiveness in solving integer
optimization problems make it a promising approach for
tackling lot sizing problems of this type.

In addition to considering the return rate, inventory
constraints should also be considered when determining the
optimal lot sizing [18]. A limited storage capacity can restrict
the maximum inventory level and increase the risk of stock-

out. Therefore, inventory constraints must be incorporated

into the perishable lot-sizing model.

Al-e-hashem [19] proposed a novel mixed integer
programming model to minimize total costs with subject to
warehouse capacity. These costs include procurement,
inventory holding, ordering, backordering, and expiration
costs. Other recent research publications on the maximum
lifetime span were conducted by Kaya and Bayer [F). They
proposed a stochastic dynamic programming model to decide
when and how much inventory should be ordered and how
these products should be priced, considering their freshness
over timf The results show that, under certain parameter
settings, dynamic pricing can lead to significant savings over
static pricing. In addition, dynamic pricing leads to longer
replenishment cycles than static pricing, although similar
qu%ies are ordered for each replenishment.

To the best of our knowledge, no previous research has
combined three parameters, namely perishable rate, return
rate, and inventory constraint, from the case of lot size on
perishable products. Therefore, this study proposes a novel
DLS model that considers the perishable rate, inventory
constraint, and r§P#n rate under multiple products and
dynamic demand. The objective of this study is to minimize
the total system cost, including surveying, raw material,
EEkntory, return, perishable, and setup costs by using
Genetic Algorithm (GA) approach to find optimal or near-
optimal solution including production quantity and binary

pmﬁtion,
The primary contributions of this study are summarized
as follows.

1. This research develops a DLS model that takes into
account the perishability rate and return rate in multi-
product and dynamic demand scenarios. The model
is designed to address two cases: one with inventory
constraints and the other without inventory
constraints. The model is solved using GA.

2. Through a sensitivity analysis, this study investigates
the effects of the return rate and perishability rate on
lot sizing decisions and total system costs.

1L MATHEMATICAL FORMULATION

This section explores the challenge of determining the
EZAimal production quantity and binary production for
inventory management with multiple products and periods
while considering perishable products over time. To address
this issue, a mathematfEhll lot-sizing model is developed.
Before developing the model, the following notations and
assumptions are used:

A. Notations and Assumptions

The following notation was used:

Index Set
t :  Number of periods, t = 1,2,3, ..., T.
p : Number of products,p = 1,2,3,..., P.
i : Number of ingredients used for making the
bread, i=1,2,3,.... 1.
Parameter
D;p : Demand for product type p in period t.
Agp ¢ The costs associated with surveying the
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demand of product type p in period t.

The cost associated with setting up the
production process in period t.

The costs associated with total material
used for making the bread of product type p
in period t.

The cost of each ingredient, i, used to make
bread for every 25 kg sack of flour for all
products, P.

The weight of the dough is 60 grams for
each kind of bread product p.

The costs associated with storing the boxes
or crate for product type pEEJperiod t.s
The inventory balance for product type p at
the end of period t.

Inventory level constraint for product type

iumber of {@fxes or crates containing
product type p at the end of period t

The number of bags of flour {fkr bag
contains 25 kg) to make bread for product p
in period t.

The capacity of a box or crate to contain a
specific product p.

Return cost for product type p in period t.
Number of products returned based on the
previous set of periods T, ¥1T_, Ry_;

The expected product returns resulting from
expiration for product type p during time
period t.

Estimated duration to store products until
they can be shipped to the next period (in
hours).

Estimated duration for the product to expire
(days).

The perishable rate during inventory.
Deterioration rate of quality.

Original purchasing cost from manufacturer
to retailer for product type p in period t.
The costs associated with perishability due
to storing the excessive product type p in
period t.

Independent Variables
Production quantity for product type p in
period t.
1, if there is a number of products
produced for product type p in period ¢, 0,
otherwise.

Dependent Variables (binary variables)

»

1 if there ardEBhventory products of
product type p at the end of period ¢, 0,
otherwise.

A binary variable is used to indicate
production activity, where 1 represents
positive production of any product type
during a given time period, and 0
represents no production activity across

all product types in a given time period.

TC : Total system costs.

Owing to the complexities of the model, the following
assumptions were made.

a.  The demand for products is known to be dynamic

during the planning period.

b. Shortages are not allowed; demand must be
satisfied.

No quantity discounts were made.

d. The processing costs for manufacturing the products
are fixed over the planning period, except for the
return costs, which depend on the fluctuating return
rate.

e. No transportation costs are assumed for returning
defective/unsold products.

f. If there are products in the inventory in a certain
period, they will be used first in the next period.

g.  No costs are incurred specifically for each excess
unit of bread product in the box or crate inventory.
The overall inventory cost of bread in boxes or
crates is allocated equally to all bread units in the
inventory regardless of whether there are redundant
units.

[e]

B. Problem description

A bakery manufacturing company produces a range of
perishable products, as illustrated in Fig. 1. In practice, the
manufacturer conducts order demand surveys from retailers
three days before the shipment of ordered products. This
allows the production planning team to incorporate the latest
retailer demand information into decisions on how much of
each type of bakery product is produced.

The results of the demand survey three days prior to
shipment provide sufficiently accurate data and still leave
enough preparation time to carry out the manufacturing,
packaging, and shipping processes of the bakery products in
the specified period.

By surveying the retailer's order demand for different
types of bread, the company can adjust its production to meet
these needs three days before shipping the products.
However, several factors should be considered when
producing multiple bread products: (a) Perishability:
Manufacturers need to consider the perishability of bread
products and plan production accordingly to minimize
spoilage due to expiration; and (b) Refurns: Manufacturers
may receive returns of bakery products due to expiry or other
reasons.

These returns need to be managed carefully to avoid
wastage. (¢) fnventory: Manufacturers need to maintain an
adequate inventory of bakery products to meet customer
demand without overstocking, as excess inventory can lead
to product spoilage. In this case, once the bread product
leaves the company, the bread expires in four days.

To ensure the careful planning and optimization of
production decisions for multiple perishable bread products,
this study proposes a DLS model. This model effectively
determined the optimal production quantities for each bread
type, considering the perishable nature of the products.
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T Surveying the sales of bread products ﬂl
| to estimate the demand |
L 4
Retailers |
|
|
Bread product |
type 1 -
'
Bread duct
| D iy
Produdion
,  Manufacturer
[\-.
Bread product
/ Perishability mte o twen
productdue to inveniory
0
I Return products due to expiration
Transformation into variables, parameters, and performance
Decision Variables
Binary Production
* Production Lot Size
T
Manufacturer
Parameters
Demand of
Retailers + Total demand for
Product 1 Retailer survey each product
* Inventory Cost Performance
Product 2 constraints
Product 3 * Surveying costs
+ Setup costs
Product ... Return Product » Raw material costs
Product ... * Inventory costs
+ Return costs
Product n + Perishable costs

Fig. 1

Furthermore, the model incorporates binary production
decisions, allowing the manufacturer to determine whether to
produce a particular bread type during each period. This
flexibility enables the manufacturer to adapt production
schedules based on real-timf#8mand patterns and inventory
levels, thereby minimizing the risk of overproduction and
spoilage.

The manufacturer and retailers production inventory lot sizing system

The proposed DLS model provides a comprehensive
decision-making model for manufacturers of perishable
bread products, enabling them to optimize production,
minimize costs, and reduce waste. Based on Fig. 1, the
described system is transformed into quantifiable variables,
parameters, and cost performance t@jtablish the lot-sizing
model. Solving this model requires determining the optimal

Author, Title




Journal of Robotics and Control (JRC)

production quantity and binary production decisions. To
achieve this, the manufacturer must survey sales and return
data from retailers, which is a crucial step when considering
dynamic demand fluctuations and the risk of product
expiration before they can be sold. Additionally,
manufacturers need to factor in storage capacity constraints
when managing inventories for these limited shelf-life
products. The key parameters considered in the DLS model
for perishable products include dynamic demand, setup costs,
inventory costs, survey costs, return costs, and perishability
costs. Perishability costs arise from product storage over
specific periods. Therefore, developing a DLS model for
perishable products is essential to determine production
quantities and binary production that minimize the total
system costs while adhering to constraints, even without
inventory capacity constraints.

C. Mathematical Madel

This study presents a DLS model for optimizing the
production planning of various perishable food products over
a limited planning horizon. This integrated approach
incorporates the critical constraints related to product returns,
perishability, and limited inventory capacity across product
types. These dynamic factors significantly influence tactical
decisions (production quantities and binary production)
aimed at meeting demand while minimizing the total system
costs. The mathematical expressions for these costs are as
follows.

T P
MinTC = Z Z AgpYep + Ht,piJpB‘Lp
2

t=1p=1
+ Yt.th.p + Rﬂ}lpEer (1)
T
Pl Zopl, + Z SV
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VPE P
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v
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P VPE P
i YT,
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»
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The objective functions defined in % (1) minimizes the
total system costs, which include expenses related to
surveying, inventory, materials, returns, perishability, and
setup Constraint (2) derives the inventory balance for each
bread product in a given period, whereas constraint (3)
imposes an upper bound on inventory by restricting the levels
to less than or equal to the designated capacity for each
product and period. It should be noted that constraint (3) will
be applied to a certain condition for this model. Constraint (4)
was set such that no shortage occurred in this model.

Eq. (5) calculates the mmbcr of boxes or crates
containing the product type p at the end of the period ¢t by
considering the inventory @ @nce and capacity of the boxes.
In this case, the inventory is calculated based on the number
of boxes, because the boxes will take up storage space on the
production floor. Eq. (6) formulates the costs associated with
the total material used for making bread of product type p in
period t. This was done by considering the number of flour
bags, as calculated in Eq. (7) and the total cost of each
ingredient. Moreover, the constraint in Eq. (8) expresses the
estimated product return rate owing to expiration.

The formulations in Egs. (9), (10), and (11) defne the
perishable costs of storing a product over a given period. In
addition, the constraints in Eq. (12) describes the binary
production variable, where a value of 1 indicates that the
production of one product type p in period t has occurred and
a value of 0 indicates that no production has occurred. Unlike
Eq. (12), Eq. (13) sets a binary variable that indicates overall
production activity, where a value of 1 represents positive
production of any product type within a given time period,
whereas a value of 0 represents no production activity across
all product types within the same time period. Finally,
constraint (12) ensures that the production quantity and
inventory level are non-negative.
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ML SOLUTION APPROACH-BASED GENETIC
ALGORITHM

Metaheuristic algorithms have been widely utilized for
tackling complex global optimization problems across
diverse domains in engineering and science. Common
metaheuristic techniques described in the literature include
GAs [21]), particle swarm optimization [22], firefly
optimization [23], and more [24, 25]. Among these, the GA
has emerged as a popular intelligent search method owing to
its straightforward implementation logic and robust capacity
for exploring high-dimensional search spaces to find globally
optimal solutions [26]-[30]. The GA has proven effective
across various optimization problem classes, including
production lotsizing challenges [31]-[36]. By mimicking the
natural selection processes, GAs can efficiently navigate
complex search spaces and identify competitive solutions.
Therefore, this study employs a GA approach to identify the
optimal production quantities and binary production that
minimizes the total system costs.

The general workflow involves key steps, including the
initialization of a population of chromosome solutions,
evaluation of fitness based on an objective function,
selection, crossovers, maions, and repetition over
generations to converge on optimal or near-optimal solutions
tailored to the problem at hand. When tuned appropriately,
the GA provides an adaptive optimization technique suitable
for production lot-sizing problems.

A. Initial population

The GA in this study begins with initialization of the
population (PoP), which consists of chromosomes that
represent potential solutions to the optimization problem.
Each chromosome is defined by a structured representation
that includes both the production quantity and the binary
production status of a given product (referred to as "product
p") during a given time period (referred to as "period t"). The
details of this structured chromosomal representation are
shown in Fig. 2. Specifically, the population was initialized
by randomly generating a set of chromosomes, each
consisting of production quantity and binary production for
four products over seven discrete periods (7-days). This
initialized population provides a starting point for algorithm's
exploration. The subsequent steps of GA involve the
evolution of the population through selection, crossover, and
mutation operators. This iterative process in GA facilitates
ongoing chromosome improvement, iteratively refining the
optimal production strategy to solve inventory management
problems across different products and time periods.

Production r:]u:—mtit!,«I

Ql,l.Qz.l
Ql.p'Qz.p o T.

Binary production
3’)1,115"?:2.1 37‘1

le.pHFjZ.}J Hi‘

B. Evaluation 34

A key component of GA is the evaluation of the fitness of
each chromosome in the population. The fitness value is
calculated using the objective function given in Eq. (1) guides
the GA towards a more optimal solution. However, some
chromosomes generated during initialization or evolution
may be infeasible given the model constraints specified in Eq.
(4), which is defined as no shortages allowed for the product
type p in period t. The literature discusses various methods,
such as penalty policies, for handling infeasible solutions
[37]. Therefore, in this study, only feasible solutions were
generated to solve the model. In this case, infeasible
chromosomes were discarded. To accomplish this, the fitness
evaluation incorporates a penalty policy in the objective
function to account for constraint (4), which is calculated as
follows:

. _ {1000000, ifl,, <0 (15)
Lp 0, Otherwise

where P, is a penalty function given by the violating
constraint in Eq (4) for each product p in period t, and [EE)
applied to the fitness function, which can be formulated as
follows:

(16)

Therefore, the fitness function in Eq. (16) is used to
generate a feasible solution that can minimize the total system
cost while allowing no shortages for all specific periods. This
is considered a hard constraint, which refers to a constraint
that must be strictly satisfied for a feasible solution.

In addition, this study also considers the case of excessive
inventory resulting from improper production planning. To
address this problem, the fitness function in Eqgs. (16)
incorporates a new penalty function that discourages bread
production from exceeding a predetermined limit as follows:

. _ [1000000,iff,,,p =C, (1n
Lp 0, Otherwise

where Pfpis a penalty applied when the end-inventory per
product type p in period ¢ exceeds the specified capacity Cp.
The new fitness function F, for solving the model under the
inventory constraint is expressed as follows:

Production quantity per period t

5 DEIEIEEIEIE

Binary production per period t

5 HIEEETErEENE

Fig.2  Example of chromosome for pmducuon quantity and binary production

Author, Title




Journal of Robotics and Control (JRC)

ISSN: 2715-5072 7

(1%)

P
ZPEP

p=1

-

o
F2=TC+ZZPEP+

t=1p=1 t=

[y

where Eq. (18) is considered a fitness function that combines
the soft constraint. This soft constraint refers to a constraint
that can be violated or satisfied to some degree, unlike the
hard constraint that must be strictly satisfied.

C. Crossover

The crossover phase, which is an integral part of the GA,
involves mating selected chromosome pairs to produce
offspring solutions. To perform crossover, a pair of parent
chromosomes is randomly selected from the current
population with a crossover prob&lity, B.. Several crossover
operators exist in the literature, including single-point, two-
point, multi-point, and uniform crossover operators [30],
[38]. This study implements a two-cut point crossover, which
operates by randomly selecting two crossover points. The
parent chromosomes are split at these points and the segments
after the crossover point are exchanged, recombining the
genes to form two new offspring chromosomes. Fig. 3
illustrates this single-point crossover process on sample
parent chromosomes representing production quantity
vectors with seven periods for a given product; the newly
generated offspring chromosomes are then evaluated and
inserted into the population, replacing fewer fit individuals.
This crossover phase enables beneficial genetic material to be
mixed and passed on to future generations, driving the
population towards more optimal solutions.

Two cut point crossover

a0 = e
0. £ ]

v o 7 o
a2 5

Fig. 3
D. Mutation

The mutation operator is an important component of the
GA as it helps prevent premature convergence and maintains
diversity within the population. Mutation introduces genetic
diversity by randomly altering the values of the elements
within a selected chromosome based on mutation probability
P,,. This mutation rate, B, refers to the probability that any
given chromosome in the population will be mutated. This
study implemented mutations through a combination of jump
and creep mutations. According to Miner et al. [39], jump
mutation involves randomly changing one or more genes to
entirely new values, allowing for a more drastic search space
exploration. Creep mutations incrementally alter genes by a
small amount, enabling minor refinement. Each gene was
assigned a separate mutation probability for jump and creep

The representation of two-cut point crossover

mutations, denoting the likelihood that the gene will undergo
that type of mutation. By occasionally introducing random
modifications through this dual-mutation approach, new
genetic material can be introduced over generations, allowing
escape from local optima and continued exploration. An
example illustrating the mutation process using the jump and
creep method on a sample chromosome is shown in Fig. 4.

Jump mutation before

Jump mutation after

Creep mutation before

Creep mutation after

Fig.4  The representation of mutation process

E. Selection

The chromosome selection step for the next generation
plays a key role in guiding the GA towards the optimal
solution. Several selection methods are commonly used in
GA, including elitist strategy, tournament selection, and
roulette wheel selection. In this study, roulette-wheel
selection was implemented, in which chromosomes were
selected based on their fitness proportion. Subsequently, a
random spin of the weighted wheel is used to select the
chromosomes. This allows diverse genetic material to persist,
while still giving preference to more fit individuals.
Chromosomes with higher fitness, such as lower total system
costs In a cost minimization problem, are assigned a larger
slice of the roulette wheel and, therefore, have a higher
chance of being selected. However, chromosomes with lower
fitness still have a chance of being selected because they
occupy a smaller fraction of the wheel rather than being
entirely excluded. A reffEentation of the selection process
using the roulette wheel method is shown in Fig. 5.

W12 ®3 @4 W5

Individual ) oy
chromosome | FTMess 1/Fitness |proportion
)
1 1137545&‘ 8,791E-09| 19,69%
2 109171736] 9,166-09 | 20,51%
3 105837697 9,498E-00 | 21,16%
a 116347208] 8,505E09 | _19,25%
5 115506462| 8,658E-09| 19,39%

Fig.5  The best fitness selection using roulette wheel

method
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F. Stopping criteria

The termination stage is an important component of the
GA method. Specific stopping criteria must be established to
determine when a satisfactory solution has been reached.
Common stopping conditions described in the literature
include reaching a certain number of generations (Gy),
reaching a threshold fitness value, or observing imprd&zinent
over the iteration period [40]. This study used a fixed number
of generations as the stopping criterion and concluded that the
GA had clapsed after 800 generations.

Iv. EXPERIMENTAL RESULTS

This section presents a formal analysis of the primary
experiments conducted on DLS, utilizing a case study from a
bread industry company. This study encompasses dynamic
demand for four distinct product types across seven discrete
periods (one week), as shown in TABLE 1.

TABLE 1. DEMAND OF BREAD PRODUCT

Period 1 2 3 4 5 6 7

Product- 1 | 2417 | 3900 | 4100 | 2750 | 3420 | 4779 | 3318
1554 | 1950 | 2270 | 1550 | 1480 | 2025 | 1425

Product- 2
Product- 3 250 | 400 300 350 350 450 300

Product. 4 | 1626 | 1318 | 1200 | 882 | 1567 | 1963 | 934

Moreover, detailed problem parameters were used to test
and validate the proposed model, as presented in Table IL
Note that TABLE II only discusses the base value for each
product; however, these values remain the same throughout
the period.

TABLEIL DATA PARAMETER

Parameters | Produci-1 Product-2 | Produci-3 Product-4
A¢p (IDR) 75000 50000 100000 75000
H¢p (IDR) 132000 144000 168000 86400
K; (IDR) 574530 574530 574530 574530
St (IDR) 2969000 2069000 2969000 2969000
RC;, (IDR) 1320 1440 1680 2400
R (units) 545 387 248 212
Wy, (grams) 60 60 60 60
Cp (units) 200 200 200 108
CB,, (units) 100 100 100 36

Ly (days) 4 4 4 4

Jp (hours) 24 24 24 24
05 (IDR) 2200 2400 2800 4000

To conduct an empirical analysis, the proposed DLS
model was implemented using spreadsheet modelling
(Microsoft Excel) integrated with the XL optimizer ® add-in
33 GA optimization. The Excel-based model was executed
on a personal computer with an Intel(R) Core (TM) i3-
1115G4 central processing unit clocked at 3.0 GHz with 8
GB of random-access memory. This configuration allov§)
for efficient computational experiments to assess the
performance of the dynamic optimization model under
different parameter settings and demand scenarios. The use
of a spreadsheet and GA provides a flexible and accessible
platform for representing the lot-sizing problem, as shown in
Fig. 6.

This study proposes an experimerfifi methodology that
employs a GA to optimize the DLS model for perishable
proffits with and without inventory constraints. To enhance
the production planning performance and provide a thorough
analysis, the research first examined a wide range of GA
parameter combinations, including population PoP sizes
ranging from 80 to 180 in increments of 20, crossover rates
P, from 0.7 to 0.95 in increments of 0.05, mutation rates P,
from 0.01 to 0.05 in increments of 0.01, and generation G,
limits of 800. The specific GA parameter values are listed in
Table II1. By adjusting the parameter settings of the GA, it is
possible to thoroughly assess the algorithm's ability to
generate optimal lot-sizing decisions. The experimental
design offers fresh perspectives on the optimal GA

configuration to address actual production planning
challenges.
TABLE Hﬁ- STED GA PARAMETER COMBINATION
Combination PoP P B- Gy
1 80 0.75 0.02 300
2 100 0.80 0.05 00
3 120 0.95 0.01 800
4 140 0.7 0.03 00
5 160 0.85 0.04 800
6 180 09 0.025 00

In this study, GAs is employed to enhance the efficacy of
a dynamic perishable inventory lot-sizing model that features
two distinct inventory scenarios: undBhstrained and
constrained. The GA parameters, including a population size
of 160, crossover probability of 0.85, mutation probability of
0.04, and 750 generations, were meticulously chosen after
conducting extensive testing of various combinations, as
shown in TABLE III. Five separate trials were executed for
each set of parameters, examining the fitness function's
performance and consistency of convergence across trials.
The combination of PoP = 160, P. = (.85, B,, = 0.04, and G,
= 800, as displayed in the fifth row of TABLE III,
demonstrated the lowest average best fitness value and the
lowest fitness standard deviation across runs. This suggests
that the convergence properties are superior and reliable.

Compared to the other GA settings evaluated in TABLE
111, the chosen parameter set balances sufficient population
diversity through crossover and mutation mechanisms with
sufficient generations that allow for convergence. A
population size of 160 ensured that sufficient unique
solutions were evaluated for cach generation. Meanwhile,
crossover probability allows for efficient recombination
between competitive solutions. In addition, a low mutation
rate introduces variations without compromising the integrity
of the solution. Over 800 generations, configuring the GA
search operator at this level seems to encourage exploration
and exploitation that reveal quality optima. The effectiveness
of these optimized GA parameters was subsequently assessed
by applying them to a lotsizing model with both
unconstrained and constrained inventory capacity. The
outcomes of incorporating the GA into the two
aforementioned model scenarios are detailed below,
showcasing how these optimized parameters influence the
performance of the models under unconstrained and
constrained inventory capacity.
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Fig. 6

A representation of spreadsheet DLS model simulation

A. Scenario 1: Unconstrained inventory capacity

THE) production planning policy optimized by the GA
using a population size of 160, crossover probability of 0.85,
mutation probability of 0.04, and run for 800 generations to
simulate the perishable product DLS model under
unconstrained inventory conditions is presented in TABLE
IV, assuming that the constraint in Eq. (3) was not considered
in testing this model.

TABLE IV. RESULT OF FIVE-RUN GA INOPTIMIZING DLS MODEL WITH
UNCONSTRAINED INVENTORY CAPACITY

No. Test | Total system cost (IDR)
! 74355170
2 77187120
3 77363320
4 74625650
5 72363750
Average 75179002

This scenario demonstrates the effects of removing the
inventory-level constraint, enabling the evaluation of the GA-

optimized plan's ability to minimize costs, managing returns
from expired products, and managing the impact of
perishable products on inventory levels over a longer and
variable holding period.

The purpose of TABLE 1V is to present the total system
cost after conducting five trials using GA optimization with
the selected parameters. Initially, the fitmess function is a
combination of the initial system cost and a penalty function
aimed at preventing inventory shortages and maintaining
operational feasibility. The removal of the penalty function is
very important due to the GA's exceptional ability to find
feasible solutions. Therefore, TABLE IV displays only the
total system cost, excluding the penalty. In particular, the
results in TABLE 1V showing the lowest cost of IDR
72,363,750 in Test 5 with an average cost of IDR 75,179,002
are positive results, demonstrating the effectiveness of the
GA in reducing costs. The continuous decrease in cost
highlights the GA's proficiency in navigating the solution
landscape and converging toward a more optimal and cost-
effective solution by the fifth test. Fig. 7 illustrates the
iterative search process of the GA showing convergence from
generation to generation to find the best performing solution
shown in the fifth trial.
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B. Scenario 2: Constrained inventory capacity

The infSlementation of a GA with customized parameters,
including a population size of 160, mutation probability of
0.04, crossover probability of 0.85, and generation limit of
800, has proven to be an effective method for finding near-
optimal solutions for a perishabl@@}oduct DLS model that
considers inventory constraints. The results of the model
tests, as presented in Table V, demonstrate the effectiveness
of the GA in analyzing the effects of inventory constraints on
total system costs. In this scenario, it is assumed that the
constraint in Eq. (3) was considered in model testing.

TABLE V. RESULT OF FIVE-RUN GA IN OPTIMIZING DLS MODEL WITH
CONSTRAINED INVENTORY CAPACITY

No. Fitness Penalty for excessive Real system costs
Test function inventory (IDR)

1 80405980 15000000 T4405980

2 90390410 11000000 79390410

3 88739760 13000000 75739760

4 85282590 11000000 T4282590

5 86473250 11000000 75473250
"‘:;“1 88058308 75858398

21
TABLE V presents the results of five tests designed g

minimize the total cost in a system that employs a fitness
function that combines the overall system cost with a penalty
function, with the aim of addressing inventory shortages and
inventory holding limitations. Throughout the tests, an
evident upward trend in the fitness function value emerged,
indicating continuous improvements in system optimization.
Notably, Test 4 achieved the lowest real system cost of IDR
74282590, whereas Test 2 recorded the highest cost of IDR
79,390,410, consistent with the trend of the fitness function.
The average fitness function of IDR 88,058,398 reflects
satisfactory overall system performance.

Penalty excess is not a representation of an absolute value,
but rather a relative indicator that reflects how often and how
much the constraints in the lot sizing model are violated. For
example, the best result in test 4 with a penalty excess of
11,000,000 shows that there were only violations in 11 out of

L PSPPSR

senerations

The search process of GA (test-5) in finding the optimal solution for the DLS model with an unconstrained inventory capacity.

atotal of 28 periods against the inventory capacity constraints
of the four defined products. However, when looking at the
results in TABLE IV that consider penalty excess,
specifically at the lowest cost value in Test 5 with a penalty
excess of 14,000,000, there are 14 out of a total of 28 periods
that have violations of the constraint. The fact that the penalty
excess value in Test 4 (TABLE V) is lower than the DLS
model without constraints indicates that in the context of
inventory constraints, greater effort is made to minimize the
number and intensity of constraint violations, confirming the
effectiveness of the GA approach with constraint setting in
inventory management.

The GA demonstrated its efficiency in discovering
feasible solutions that progressively eliminated the penalty
for shortages and reduced the penalty for excessive
inventories. Most importantly, the penalty for excessive
inventory operates as a soft constraint; the less the constraint
1s breached, the more feasible the system becomes. However,
the total system cost remains calculated independently of any
penalties, emphasizing the GA's primary focus on
minimizing operational expenses. Fig. 8 illustrates the
iterative convergence of the GA towards the optimal solution,
navigating the balance between inventory constraints and
cost minimization within the system.

C. Comparison for two scenarios

Fig. 9 presents a comparison between two models in DLS
that consider both unlimited and limited inventory capacity.
The table details several cost components associated with
each model, including survey costs, inventory costs, return
costs, perishable inventory costs, material costs, and setup
costs. The significant differences in these cost components
give an idea of the effect of the inventory capacity setting on
the overall cost within the scope of inventory management in
the DLS model. Fig. 9 shows that there is a considerable
difference between the DLS model with constrained and
unconstrained inventory capacity in terms of the mentioned
cost components. From this, it can be seen that the model with
constrained inventory capacity tends to show a significant
increase in inventory compared to the unconstrained model.
This increase may reflect the more careful management of
inventory allocation when capacity is limited, which is likely
to incur additional costs in inventory management.
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Limitations in bread production, such as those in the DLS
model that place restrictions on inventory capacity, can lead
to unique dynamics in total system costs. For example, in Fig.
9, inventory costs tend to vary significantly. In a model with
inventory constraints, inventory costs may be higher because
production constraints force the manufacturer to store more
finished goods in inventory. Because the inventory constraint
is a soft constraint, in some periods production is increased to
produce more bread. Although violations occurred in certain
periods, the number of violations did not exceed the number
of violations that occurred in the DLS model without
inventory constraints. This may be due to the fact that the
production constraints cannot efficiently match supply with
demand, forcing the company to hold more inventory and
ultimately increasing inventory costs.

Managing perishable goods in a constrained scenario is
also more challenging. Perishable costs, indicating losses due
to deterioration or spoilage of goods before they are sold, may
also be more significant in a constrained model. Production
limitations can make it harder to maintain fresh stock, leading
to a higher number of unsaleable items.

However, certain cost components remain constant
between the two models. For instance, material costs and
setup costs may show the same value because the essential
characteristics of these costs do not directly depend on the
amount of production. Material costs, which are associated
with the raw materials used, may remain stable because
limited production does not significantly change the need for
certain raw materials.

Moreover, setup costs associated with production setup
may not fluctuate significantly, as the relationship between
production preparation and output is not always proportional.
However, in this study, the emphasis is more on the presence
of production in any given period. This indicates that whether
the number of products produced is limited or abundant, the
costs incurred in setting up the production line, organizing
equipment, or configuring the workspace have a tendency to
stabilize. An interesting aspect is that the effort, time, and
resources allocated to the preparation phase are not
necessarily determined by the amount of output exclusively
but rather relate more to the need to start the production
process in each predefined period. This difference in cost
patterns explains the interesting dynamics of preparation
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costs, where their stability is not determined by the size of
production, but rather depends on activating the production
process rather than the scale of the product produced.

Understanding how production limitations affect cost
components provides valuable insights for planning efficient
production strategies. This emphasizes the importance of
considering not only direct operational costs, but also
understanding how production constraints can directly
impact other costs, particularly those related to inventory and
perishables management.

The comparison between the DLS model with and
without constrained inventory capacity reveals differences in
production decisions, such as production quantity and binary
results, which ultimatefERfTect the final inventory per period
and total system costs as shown in Fig. 10 and Fig. 11. Such
figures show the impact of production quantity and binary
production on the process of survey, production, and
inventory. The DLS model optimized using GA in the context
of unconstrained inventory capacity able to provide
significant system cost reduction. With the ability of the GA
to comprehensively explore the solution space, the resulting
production decisions tend to be more efficient. This enables
better adjustment to market needs and demand without being
burdened by inventory constraints. The impact on inventory,
especially in the unconstrained context, is that the right
amount of inventory can be held, providing greater flexibility
in the face of demand fluctuations.

In this context, determining production quantity and
binary production becomes very important. When faced with
inventory constraints in DLS, a thoughtful production
strategy is necessary. Due to limited inventory capacity,
production decisions must account for the balance between
market demand and available inventory. Concurrently, it is
crucial to ensure product availability meets demand without
causing excessive inventory accumulation.

The binary production is a crucial factor in inventory
management within the given constraints. It determines
whether products are produced each period, and not
producing can impact the availability of the product,
potentially resulting in loss of market share or dissatisfied
customers. Therefore, in DLS with inventory constraints, the
decision to produce in binary form is not solely concerned
with production efficiency, but also with achieving the
appropriate balance between product availability and
inventory availability. This underscores the significance of
conducting thorough analyses to achieve an ideal balance
between market demand, inventory capacity, and production
costs.

As shown in Figs. 10 and 11, both DLS models with and
without inventory capacity constraints have the same
business process from sales survey to delivery of bread
products to retailers. Sales surveys are conducted three days
before bread production begins. Whether the model has
inventory constraints or not, the information from this survey
is crucial to determine the orders received by retailers. This
data becomes the basis for determining the amount of
production required and when production is carried out to
fulfill demand. After the sales survey, 2 days before, the
bread production process begins. The number and time of

production is predetermined and lasts for 7 periods,
equivalent to 1 week. In both models, there are two important
aspects to be considered: quantitative production quantities
and binary production settings (l1=production and
O=otherwise). This aims to address the perishable problem of
bread products that only have a shelf life of 4 days after
leaving the factory. Production should match the demand
identified from the sales survey while taking into
consideration the product's durability limitation. While a
binary production setup is important to ensure bread is
produced according to type, reducing potential production
wastage and improving overall efficiency.

On the day before delivery, the packaging process is
carried out in both models. This stage is crucial because the
bread that has been produced must be prepared for delivery
to retailers. This process requires special attention to product
quality, proper packaging, and logistical arrangements to
ensure that the bread arrives at retailers in the best possible
condition in accordance with established quality standards.
This is where inventory management and logistics
coordination become crucial to ensure the bread reaches the
end consumer with upt'ml quality.

D. Sensitivity analvsis of the DLS model

Sensitivity analysis is an important approach in systems
analysis that aims to measure how sensitive system results or
performance are to changes in one or more parameters.
Specifically in the cofgt of DLS models without inventory
capacity constraints, sensitivity analysis will be a powerful
tool to evaluate the extent to which system performance is
affected by variations in certain parameters. The focus on
crucial parameters such as return rate and perishable rate,
which are closely related to expiration date, is an important
foundation for making the right decisions regarding inventory
management and production decisions.

In performing sensitivity analysis on the DLS model
without inventory constraints, the return rate and perishable
rate parameters are the main focus. By changing the values of
these parameters by +25% on their baseline values, this
analysis aims to understand the extent to which changes in
return rate and perishable rate. Note that, the return rate is the
function of actual return data, meanwhile perishable rate is
the function of the expiration days. Therefore, changes in
parameter values that affect the return rate and perishable rate
are shown in TABLE VI.

TABLE VI. CHANGING OF RETURN AND PERISHABLE PARAMETER DATA

Pammeter Values
Changes Data retum per Expire days for perishable
product p (units) rate per product p

+50% 954; 678; 434; 371 N7
+25% 68 1; 484; 310; 265 5;5,5,5:5

(] 545; 387, 248; 212 4 44,4
-25% 409; 290; 186; 159 3333
-50% 273;194; 1245 106 2;2;2;2
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e Product 3 d. Product 4

Fig. 10 The impact of the production decision under four products for the DLS model with unconstrained inventory capacity extend to
the management of process business in bread making, encompassing both production volume and binary production decisions

g Product 3 d. Product 4

Fig. 11 The impact of the production decision under four products for the DLS model with constrained inventory capacity extend to the
management of process business in bread making, encompassing both production volume and binary production decisions

Author, Title




Journal of Robotics and Control (JRC)

ISSN: 2715-5072 14

51

%c results of the sensitivity analysis on the return rate
and perish§f} rate in the DLS model without inventory
constraints are shown in TABLE VII and TABLE VIIIL. The
results of this analysis indicate that changes in return rate and
perishable rate can have substantial implications on the total
system costs and provide important information for decision
makers in devising inventory management strategies that are
more adaptive and responsive to market dynamics.

TABLE VII shows that the return rate is an important
parameter to consider when designing a DLS with a
perishable product. By understanding the impact of return
rate on prodffBllon quantity, binary production, and total
system costs, managers can make better decisions about how
to manage their inventory.

The impact of returnfffle on production quantity is
nonlinear. This means that the change in production quantity
is not proportional to the change in return rate. For example,
a 25% increase inreturn rate does notresult in a 25% decrease
in production quantity. However, in practical application, the
return rate proves to be a crucial factor that influences the
production quantity as the return rate increases, the
production quantity decreases. This is because a higher return
rate means that more products are being returned, which
reduces the need to produce as many new products.

Moreover, the impact of the return rate on binary
production is also nonlinear. However, the impact is not as
strong as the impact on production quantity. Similarly, binary
production, the practice of producing in larger batches,
demonstrated a sensitivity to return rate fluctuations. With
increasing return rates, binary production declined, reflecting
the reduced demand for new products and the efficiency
gained from producing in larger quantities.

Lastly, the impact of the return rate on total system costs
is relatively linear. This means that the change in total system
costs is approximately proportional to the change in return
rate. Total system costs, encompassing all expenses
associated with production, inventory management, and
return handling, exhibited a moderate sensitivity to return rate
variations. As return rates increased, total system costs also
rose, reflecting the additional costs incurred in processing
returned products.

Delving into the sensitivity of DLS models for perishable
products, this study explores the impact of varying expiration
day (due date) parameters on production quantity, binary
production, and total system costs as shown in TABLE VIIIL.
The expiration day, representing the time beyond which
products cannot be sold or consumed, is a crucial factor in
perishable product inventory management. Therefore, the
perishability rate is the function of the expiration day of the
bread product. The analysis systematically altered the
expiration day by increments and decrements of 25% from its
baseline value, effectively simulating different perishability
rates.

The impact of expiration day on productionfjantity and
binary production is nonlinear. This means that the change in
production quantity is not proportional to the change n

expiration day. On the one hand, what usually happens in
practice fulfills the following logic: as the expiration day
increases, the production quantity decreases. This is because
a longer expiration day means that products have more time
to be sold, so there is less need to produce as many new
products. Moreover, expiration day has a moderate impact on
binary production. As the expiration day increases, the binary
production decreases. This 1s because a longer expiration day
means that there is less demand for new products, so it is more
efficient to produce in larger batches.

Meanwhile, expiration day has a moderate impact on total
system costs. As the expiration day increases, the total system
costs increase slightly. This is because a longer expiration day
means that there are more products in the system at any given
time, which increases the cost of holding inventory.

Overall, analyzing the impact of rate of return and damage
rate on production quantity, binary production, and total
system cost is a complex task due to the nonlinear and
dynamic nature of these variables. Therefore, itis challenging
to predict the exact impact of changing these parameters. The
interaction between the rate of return, damage rate, and
production parameters creates a system with many feedback
loops and complicated relationships. Analyzing the impact of
the rate of return and perishable rate poses challenges due to
various factors.

a.  Nonlinearity of Demand and Production: Product
demand does not always correspond to supply, and the
production process often entails fixed costs and batch
processing. These nonlinearities create complexities
in predicting the effects of alterations in the rate of
return and perishable rate on the total cost and
production quantity.

b. Dynamic Nature of Perishability: Perishable products
have a limited shelf life, leading to a decrease in value
over time. This dynamic nature adds complexity to the
analysis and production decisions should consider the
risk of spoilage and associated costs.

c. Theinteraction between return rate and perishability:
Return rates and perishable rates are not independent
variables; they can influence each other. For instance,
an increased return rate could result in more perishable
losses due to the extra handling required for returned
items. This aspect further complicates the analysis.

d. Search Behavior of Optimization Algorithms: To
tackle complex optimization problems like dynamic
lot sizing, optimization algorithms like GA are
commonly utilized. However, GAs demonstrates
nonlinear  search  behavior, which  amplifies
nonlinearity within the system and complicates the
prediction of parameter change impacts.

Ultimately, determining the effects of return rates and
perishable rates proves challenging due to the combined
influence of nonlinear dependencies, dynamic processes, and
complex optimization behavior. Understanding these factors
is crucial to developing a durable DLS model that can
efficiently handle perishable inventory and enhance system
performance.
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V. CONCLUSION

This research is an important step in improving DLS model
that consider the perishable nature of products, a crucial
aspect in inventory management. DLS, which is flexible in
managing multiple products and multiple periods, provides a
solid foundation in managing inventory in complex
production environments. This paper proposes a model that
is able to adapt to two different situations, namely
unconstrained inventory and constrained inventory capacity,
providing a solution that suits the specific needs of the
company.

This research highlights the wvital role of GA in
approximating the optimal solution to the DLS model,
especially in managing production decisions such as
production quantity and binary production. In both situations,
the GA was able to produce efficient solutions, tailored to the
company's needs, while significantly reducing the total
system cost. The use of GA in testing the model with real data
from a bread manufacturer is a crucial step in validating and
improving the DLS model. GA, as a broad computational
method, is able to thoroughly explore the solution space in
optimization problems such as DLS.

Sensitivity analysis of return rate and perishable rate
provides an in-depth understanding of the impact of changing
these key parameters on model performance and solution.
The findings provide a solid foundation for decision makers
in inventory management, enabling adaptation of optimal
strategies in the face of fluctuations in key parameters.

The adoption of carbon emission parameters n DLS
reflects an important step towards green manufacturing.
Future studies can explore the integration of environmental
aspects into the DLS model by considering carbon impacts in
the supply chain, making a major contribution to sustainable
production dccisionﬁking
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