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ABSTRACT: Drug-resistant tuberculosis (TB), which results mainly from the selection of naturally resistant strains awfycobac terium tuberc ulosis
(MTB) due to mismanaged treatment, poses a severe challenge to the global control of TB. Therefore, screening novel un|que drug targets

against this pathagen is urgently needed. The metabolic

ays of Home sapiens and MTB were compared using the Kyoto Encyclopedia

of Genes and Genomes tool, and further, the proteins that are involved in the metabolic pathways of MTB were subtracted and proceeded to

protein-protein interacticeel\mrk analysis, subcellular localization, drug ability testing, and gene ontology. The study aims to identify enzymes

for the unigue pathways for further screening to determine the feasibility of the therapeutic targets. The gualitative characteristics of 28 proteins

identified as drug target candidates were studied. The results showed that 12 were cytoplasmic, 2 were extracellular, 12 were transmembrane,

and 3 were unknown. Furthermore, druggability analysis revealed 14 druggable proteins, of which 12 were novel and responsible for MTB pep-

tidoglycan and lysine biosynthesis. The novel targets obtained in this study are used to develop antimicrobial treatments against pathogenic
teria. Future studies should further shed light on the clinical implementation to identify antimicrobial therapies against MTB.
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Introduction
Tuberculosis (TB), which rangcsgn asymptomatic infection
to fatal disease, is an airborne ctious disease caused by
Mycobacterium tuberculosis (IMTB). Furthermore, ir@stimarcd
that these pathogenic bacteria have infected one-third of the
1d’s population, and more than 250 people die of TB daily.!
%; emergence of multidrug-resistant tuberculosis (MDR-TB)
has exacerbated the situation, making the disease a top priority
to be resolved globally.
The conventional drug discovery and development approach
uses expensive methods that are time-consuming, complex, and

only uncover a small number of potential targets.? However,

computational approaches leveraging Omics data analyses have
been widely used in pharmaceuticals to identify and accelerate
drug discovery with lower failure rates in clinical trials.>* The
search for potential pharmacological targets has become more
accessible due to the development of sequenced human and
pathogen genomes accessible in public databases.

The current methods for discovering therapeutic targets are
greatly based on non-homologous enzymes, chokepoint

enzymes, critical genes unique to a pathogen, and genes linked to
resistance and virulence.® There is a previous report on MTB’s
metabolic pathways and protein-protein interaction (PPI).58
However, a deep gene ontology (GO) analysis to identify the
putative targets has not been performed. These actions are essen-
tial because GO investigation paves the way for identifying sig-
nificant features, such as molecular function (MF) and cellular

prc@scs g

e metabolic pathways of the pathogen and the host are
compared to discover enzymes critical to the MTB’s sur-
vival. The procedure started witlgilentifying host and path-
ogen metabolic pathways from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. Subsequently, the
specific pathways to the pathegen were compared by analyz-
ing the distinctive pathways of the extracted enzymes and
submirtted to an online platform for identification. The dis-
covered essential enzymes used as therapeutic targets are
determined by the similarity of innovative drug targets
(DT) using DrugBank, cellular localization, and GO
analysis.
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Figure 1. A schematic representation of the methodology.
—
Eiaterials and Methods the enzymes in shared and unique pathwaya:f MTB were

extracted from KEGG, and the protein sequences were
retrieved in FASTA format from the NCBI (National Center
for Biotechnology Information) database (Figure 1).

Comparative analysis of host and pathogen
metabolic pathways

e metabolic pathways for the host (Homo sapiens, KEGG
ID: T01001) and the pathogen (MTB H37Rv-sensitive strain L . . .
to anti-tuberculosis drugs, KEGG ID: T00015) were collected Identification of non-homologous essential proteins
from the KEGG database (acce on April 8,2022) (hetps:// e protein sequences were submirted to Geprop ool 2.0
www.genomejp/kegg/).** The pathways were compared to (http://guolab.whu.edu.cn/geptop/) to identify their essential-
identify the unique routes only present in MTB. Furthermore, ityin MTB."* The webserver discovers essential genes of MTB
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by comparing their orthology and phylogeny with the crucial
gene database and differential expression gene. These essential
genes were searched against proteins from t uman RefSeq
protein database for non-homology using BI-BLASTP
(hteps://blast.nclggmlm.nih.gov/)."?  Proteins with identity
below 35% and an E-value cut-off of 0.005 were selected as
non-hosts.13

PPI network analysis
The PPI network of non-homologous proteins was analyzed

using string analysis (https://string-db.org/) in Cytoscape
v.3.9.0 (htps://cytoscape.org/).** The interaction of network
data was examined by the network analyzer module.’®
Furthermore, the functional modules of non-homologous pro-
teins were detected using the Cytoscape plugin MCODE. The
scores and parameters include the degree cut-off of 2, maxi-
mum depth of 100, k-core of 2, and node score cut-off of 0.2.1¢
The uppermost hierarchical module was selected as the possi-
ble metabolic functional association of the interacting proteins
and was assigned for further analysis.

Subcellular localization and identif ication of novel
drug targets through PPI network analysis

Subcellular localization of the essential non-hum: oteins
selected from network analysis was predict y PSORTb
v3.0.2 (htps://www.psort.org/psorth/ )" and CELLO v2.518
(htp://cello.life.nctu.cdu. ::W/c:cllo?!?).1R Transmembrane pro-
teins were identified by TMHMM-2.0 (https://services. health-
tech.du.dk/service.php? TMHMM-2.0) based on the hidden
Markov model. The most probable topology of a membrane
protein was determined using the N-best algorithm. Proteins
with transmembrane helices estimated to have less than 50
amino acid residues from the N terminus were extracted as pos-
sible candidates for signal peptides. Furthermore, when a cleav-
age site is predicted to be =0.5, the signal peptide was cleaved
off, and the prediction was redone.’” The proteins selected as
novel drug targets were cytoplasmic and transmembrane.?’ The
DrugBank database (https://go.drugbank.com/) was used to
identify novel targets with an E-value of less than 10-%, sequence
identity more significant than 35%, and score slightly greater
than 100.2!

gunm'onaf enrichment analysis

The Database for Annotation, Visualization, and Integrated
Discovery (DA v.6.8 (https://david.nciferfgov/)?? was
used to perform and KEGG enrichment analysis to
investigate functional annotation and pathways involved in
novel drug targets. The complete list of all selected proteins
was sent to GO enrichment analysis under the headings of the
cellular compartment (CC), biological process (BP), MF, and
KEGG. Finally, the significance threshold was set at a P value
<.05.

Results

Metabolic pathway analysis and identification of
essential proteins

A rotal of 345 and 131 metabolic pathways of H sapiens (S1)
and MTB (S2), respectively, were extracted from the KEGG
pathway database. Furthermore, 43 of the 131 pathways of
MTB were unique and comprised 548 enzymes. The essential-
ity of these enzymes for the pathogen was analyzed using
Geprop 2.0, and it was discovered that 313 (53) of them were
predicted as essential genes. NCBI-Blastp was performed to
identify the homology of the enzyme with human proteins. Of
the 313 essential proteins, 197 proteins (S4) identified as
human non-homologous protein.

PPI analysis

According to STRING analysis, 192 nodes and 1154 interac-
tion lines were analyzed from 197 essential proteins of MTB
(55). The PPI data originating from STRING into Cytoscape
were further analyzed to explore the significance of proteins in
the protein networks and the primary cluster using the
MCODE plugin (56). This was conducted due to the com-
plexity and originality of the network. The highest cluster with
the lowest P value comprised 29 nodes and 194 edges and was
selected as the possible metabolic functonal association
between identified proteins (Figure 2).

GO enrichment analysis

Because 1 protein-coding gene (uppP) is not mappable in the
MCODE, we decided to use 28 proteins for further analysis.
Gene ontology enrichment analysis was performed on these 28
proteins (S7) to explore their underlying mechanisms in MTB
using the DAVID tool (Figure 3). There were 1
ment terms for BP. The top 5 enriched terms are cell eyele, cell
division, shape regulation, peptidoglycan biosynthetic process,
and cell wall organization (false discovery rate [FDR] =0.0001).
Only 2 CC items were obtained from GO enrichment cyto-

enrich-

plasmic and an integral membrane component. There were 5
GO terms for MF enrichment, and the most enriched
(FDR <0 0.0001) were transferase activity, transferring glycosyl
group, and arabinosyltransferase activity. Moreover, KEGG
analysis revealed 3 pathways correlated with the respected pro-
teins: vancomycin resistance, lysine biosynthesis, and pepti-
doglycan biosynthesis.

Prediction of subcellular localization and
identification of novel drug targets

The subcellular localization of 28 proteins revealed that 12
were cytoplasmic, 2 were extracellular, and 13 were transmem-
brane, with the exclusion of 1 protein that did not fulfill the
requirements (number of predicted transmembrane helix <50
amino acid residues and total probability of peptide cleavage
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Figure 2. Protein-protein interaction of 29 proteins from non-host essential proteins from Mycobacterium tuberculosis.

=0.5)." Subsequently, the novel targets were queried against
the DrugBank database. Proteins showing no matching hits
against the DrugBank database at the threshold were nomi-
nated as nove g targets. The results showed 12 proteins
were uniquely involved in pathogen-specific unique pathways,
and peptidoglycan and lysine biosynthesis (Table 1).

Discussion

This study focused on subtractive genome analysis, which
resulted in identifying proteins that could serve as prospective
drug targets against the pathogenicity of MTB. Developing a
drug, particularly for non-homologous targets, does not affect
the host’s biology and has a specific effect on the pathogen.
Furthermore, 12 unique proteins from MTB were proposed,
and 4 of them are cytoplasmic and 8 are transmembrane
unique. Furthermore, 12 non-homologous proteins were dis-
covered in different pathways, such as arabinogalactan bio-
synthesis, lipoarabinomannan (LAM) biosynthesis, lysine
biosynthesis pathway, and O-antigen nucleotide sugar
biosynthesis.

Kushwaha et al used a similar strategy to identify therapeu-
tic targets in MTB. Subsequently, 18 prospective drug targets
were identified using metabolic pathway and chokepoint anal-
ysis.” However, this study is more refined as GO and non-
homology analysis, as well as druggability, functionality,
essentiality, and cellular localization, were included. These pro-
vided detailed information, such as their location in the cell,
abour the drug rargets.

Phosphatidylinositol mannoside acyltransferase &t}\) isan
essential enzyme involved in the biosynthesis of phosphatidyl-
myo-inositol mannosides (PIMs), which are vital components
of glycolipids/glycoglycans of the mycobacterial cell envelope.??
Phosphatidyl-myo-inositol mannosides are an important viru-
lence factor during MTB infection and have been shown to be
an important enzyme in both in vitro and in vivo growth.?#?
Defects in these proteins do not directly affect the life of the

pathogenic bacteria but reduce the integrity of the cell wall.
Therefore, these results suggest that patA is a promising drug
target candidate.?*2¢

Galactan 5-O-arabinofuranosyltransferase, terminal beta-
(1—>2) arabinofuranosyltransferase, and decaprenylphosphate
N-acetylglucosamine phosphotransferase are involved in arabi-
nogalactan and LAM biosyngesis, which are essential compo-
nents of the MTB cell wall. The myeobacterial cell wall is the
most frequently adopted target for anti-TB drugs due to the
fundamental nature of its synthesis and assembly.?® This intri-
cating structure, which consists of 3 separate layers of pepti-
doglycan, arabinegalactan, and mycolic acid, enhances cell
proliferation, virulence, and antibiotic resistance.’” Targeting
the enzymes for synthesizing and assembling the arabinan
domains of arabinogalactan and LAM presents opportunides
for new therapies.

Diaminopimelate epimerase is an important enzyme for
lysine biosynthesis, a significant component in the bacterial
peptidoglycan cell wall.?® It plays an essential role in converting
LL-DAP into meso-DAP in the lysine biosynthesis pathway
in bacteria by converting LL-DAP into meso-DAP. The prod-
ucts of this pathway, namely, meso-DAP and v-lysine, are
a:lvcd in eross-linking of the peptidoglycan cell wall of
gram-negative and gram-positive mcriaﬂs The v-lysine bio-
synthesis pathway is considered an attractive target for anti-TB
drugs due to its unavailalgry in animals.?”

N-acetylglucosamine-I-phosphate
(GlmU) is a bifunctional enzyme with urid
acetyltransferase activities catalyzed by the
C-terminal domains, respectively.’® It plays a crucial role in syn-
@iziﬂg UDP-N-acetylglucosamine, a fun ntal precursor
of the cell wall peptidoglycan of MTB.3132 A study by Soni et al
showed that GlmU depletion led to decreased MTB survival. ®
TPSA, a GlmU inhibitor, was reported to impair the cell wall
and membrane integrity of MTB.® Therefore, this bifunctional
enzyme could be a promising target for new TB drugs.

uridyltransferase
sferase and
~terminal and
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Table 1. List of proteins selected as novel drug targets.

PROTEIN NAMES

LLULAR LOCALIZATION

NP_2171271 Phosphatidylinositol mannoside acyltransferase (Rv2611c) Cytoplasm

NP_217242 1 Diaminopimelate epimerase (dapF) Cytoplasm

NP_215534.1 Bifunctional protein GimuU Cytoplasm

NP_2157171 2,3.4,5-tetrahydropyridine-2,6-dicarboxylate N- Cytoplasm

cinyltransferase (dapD)

NP_215675.1 Polyprenol-phosphate-mannose-dependent alpha-(1-2) Transmembrane
phosphatidylinositol pentamannoside (pimE)

NP_214750.1 a-(1—»3)-arabinofuranosyltransferase (aftD) Transmembrane

NP_216697.1 Polyprenol-phosphate-mannose-dependent alpha-(1-2)- Transmembrane
phosphatidylinositol mannoside (Rv2181)

NP_216690.1 Alpha-(1—8)-mannopyranosyltransferase A (mptA) Transmembrane

NP_215975.1 Alpha-(1—6)-mannopyranosyltransferase Rv1450¢ Transmembrane

218309.1 Galactan 5-O-arabinofuranosyltransferase (aftA) Transmembrane
NP_218322.1 Terminal beta-(1—2) arabinofuranosyltransferase (aftB) Transmembrane
NP_215818.1 Decaprenyl-phosphate N-acetylglucosamine phosphotransfe Transmembrane

rase (rfe)

Abbreviation: GImU, N-acetylglucosamine-1-phosphate uridytransferase.

There are some limitations based on this study. Several drug
targets were identified, but not all were in pharmacelogical
activity; hence, they could potentially miss the medication tar-
get (undruggable). In addition, functional studies and clinical
trials are still required to confirm the safety and efficacy of the
drugs.

%nclusiuns

e availability of complete genome sequences and computer-
aided analysis to discover potential anti-TB drug targets has
become a new trend. This study performed comparative meta-
bolic pathways to identify the probable anti-TB targets. These
results highlight an innovative method to discover therapeutic
targets for treating MTB infection. Twelve novel drug targets
were reported in this research and are involved in different
pathways, including arabinogalactan biosynthesis, LAM bio-
synthesis, lysine biosynthesis pathway, and O-antigen nucleo-
tide sugar biosynthesis. These results can be further exploited
for rational drug design for MTB.
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