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ABSTRACT  41 

Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system (CNS) 42 

marked by inflammation, demyelination, and axonal loss. Currently available MS medication 43 

is limited, thereby calling for a strategy to accelerate new drug discovery. One of the strategies 44 

to discover new drugs is to utilize old drugs for new indications, an approach known as drug 45 

repurposing. Herein, we first identified 421 MS-associated SNPs from the Genome Wide 46 

Association Study (GWAS) catalog (p-value < 5x10-8), and a total of 427 risk genes associated 47 

with MS using HaploReg version 4.1 under the criterion r2 > 0.8. MS risk genes were then 48 

prioritized using bioinformatics analysis to identify biological MS risk genes. The prioritization 49 

was performed based on six defined categories of functional annotations, namely missense 50 

mutation, cis-expression quantitative trait locus (cis-eQTL), molecular pathway analysis, 51 

protein-protein interaction (PPI), genes overlap with knockout mouse phenotype, and primary 52 

immunodeficiency (PID). A total of 144 biological MS risk genes was found and mapped into 53 

194 genes within an expanded PPI network. According to the DrugBank and the Therapeutic 54 

Target Database, 27 genes within the list targeted by 68 new candidate drugs were identified. 55 

Importantly, the power of our approach is confirmed with the identification of a known 56 

approved drug (dimethyl fumarate) for MS. Based on additional data from ClinicalTrials.gov, 57 

eight drugs targeting eight distinct genes are prioritized with clinical evidence for MS disease 58 

treatment. Notably, CD80 and CD86 pathways are promising targets for MS drug repurposing. 59 

Using in silico drug repurposing, we identified belatacept as a promising MS drug candidate. 60 

Overall, this study emphasized the integration of functional genomic variants and 61 

bioinformatic-based approach that reveal important biological insights for MS and drive drug 62 

repurposing efforts for the treatment of this devastating disease.   63 
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  89 

1. Introduction  90 

Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system (CNS) 91 

marked by inflammation, demyelination, and axonal loss since the onset of the disease. The 92 

onset of MS usually occurs between 20 and 40 years of age and more predominantly in women 93 

[1]. MS also causes a series of other heterogeneous symptoms due to varying involvements of 94 

the motor, sensor, visual, and autonomous systems. It is characterized by optic neuritis (optic 95 

nerve inflammation), Uhthoff’s phenomenon (temporary fluctuation and worsened MS 96 

symptoms with increased body temperature), and Lhermitte’s sign (abnormal electrical-97 

shocklike sensation over the spinal cord or body parts during neck flexion) [2], and tends to 98 

develop in genetically susceptible individuals who are exposed to a diversity of triggering 99 

environmental factors (e.g., Epstein-Barr virus, tobacco use, and vitamin D deficiency) [3]. The 100 

genes involved in MS have long been sought after. A number of approaches to this problem 101 

have been applied with varying degrees of success. The candidate gene approach has been in 102 

use over several decades, where potentially MS-associated genes are selected based on 103 

autoimmune MS prognosis, involving class I and II immune-response-gene-controlling human 104 

leukocyte antigen (HLA) [4].  105 

Treatments for MS have been divided into three categories: 1) acute relapse management; 2) 106 

disease-modifying therapies; and 3) symptomatic treatments [2]. One MS treatment available 107 

and approved is dimethyl fumarate (Tecfi dera) [2][5]. So far, these medications can help 108 

people with MS that have fewer and less severe relapses. However, the problem is still arising 109 

from those medications, including resistance and toxicity [6]. Under such circumstances, drug 110 

repurposing emerges as one of the solutions to identify new candidate drugs for MS disease. In 111 

addition, further investigations such as clinical validation and in vivo experimental are needed 112 

to accelerate new discoveries for the treatment of MS disease, which aims to maximize the 113 

likelihood of success during pre-clinical development and validation [7].   114 

The concept of drug repurposing is to find new indications for existing drugs that are already 115 

available on the market [8]. The drug repurposing approach has several advantages compared 116 

to the traditional such as time and cost-effectiveness [9], safety profile (drugs have previously 117 

passed clinical trials), dosage, and that the toxicity of existing drugs have already been vetted 118 

[10]. Genome-wide association studies (GWASs) can potentially be leveraged for precision 119 

drug repurposing by applying functional annotation [11]. Several studies were applied to the 120 

risk variants from GWAS, and have prioritized the biological risk genes based on the functional 121 
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annotations to drive drug repurposing for various diseases, including chronic hepatitis B [12], 122 

atopic dermatitis [13], asthma [14], colorectal cancer [15] and the drug repurposing for 123 

rheumatoid arthritis [16]. In addition, GWAS has revolutionized MS genetic analyses, 124 

including the MS variants. These variants consistently implicate genes associated with 125 

immunological processes, mostly lie in regulatory rather than coding areas, and are often 126 

associated with other autoimmune diseases [17]. This research aimed to implement the 127 

bioinformatics strategy and identify biological MS candidate genes through an integrated gene 128 

network. Six functional annotations (missense mutation, cis-expression quantitative trait locus 129 

(cis-eQTL), molecular pathway analysis, protein-protein interaction (PPI), overlap knockout 130 

mouse phenotype, and primary immunodeficiency (PID)) were used to find biological MS risk 131 

genes. Finally, we overlapped the biological MS risk genes with the drug database and 132 

prioritized the candidate drug to be repurposed for MS disease.   133 

  134 

2. Methods  135 

A detailed description of the study design of drug repurposing utilizing the genomic 136 

information for MS is provided in Figure 1. MS-associated single nucleotide polymorphisms 137 

(SNPs) were obtained from the GWAS catalog under the criterion p-value > 10-8 and expanded 138 

using HaploReg (v4.1) based on the criterion of r2 ≥ 0.8 in Asian (ASN) populations retrieved 139 

from the 1000 Genome Project Phase I data [18][19]. Genes matching MS-associated SNPs are 140 

denoted as “MS-associated genes”. Then, genomic data were prioritized based on six functional 141 

annotation criteria. Every functional annotation is assigned a score of 1, and genes with a score 142 

≥ 2 are defined as “biological MS risk genes”. Biological MS risk genes were used in advanced 143 

analysis using the STRING database to extend the list of candidate genes as drug-target genes. 144 

This research mapped an approved expanded list of drug-target genes in the DrugBank and 145 

Therapeutic Target Database. The drug-target genes were checked with ClinicalTrials.gov to 146 

determine the clinical status.  147 

  148 

2.1. Functional annotations of MS risk genes  149 

Functional annotation describes a gene's biological identity by compiling the relevant 150 

biological information for a particular gene. Herein, six categories of functional annotations 151 

were used to build an assessment system representing the candidate genes most likely to be MS 152 

targets. The first category of annotation was missense or nonsense mutation according to 153 

HaploReg v4.1, which contains functional consequence annotations of the SNP database (db). 154 
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HaploReg v4.1 also connected genetic variants to cis-expression quantitative trait loci 155 

(ciseQTLs) [16]. If a gene has an MS risk SNP with cis-eQTL effect throughout the blood, the 156 

gene was assigned one point. Then, to gain an understanding of the relationship between a 157 

mutant gene and the phenotype, WebGestalt 2019 was used for functional enrichment analysis. 158 

The data source was the Mammalian Phenotype Ontology (MP), which contains information 159 

on the mouse and other mammalian phenotypes [15]. The genes from human Ensembl ID were 160 

converted into mouse Ensembl ID using BioMart. Clusters of genes with FDR < 0.05 in the 161 

enrichment analysis were considered significant. Specifically, the gene ontology (GO) 162 

biological process categories were analyzed for this stage. The result significance was set at 163 

FDR < 0.05. Enrichment analysis was performed on molecular pathways using the Kyoto 164 

Encyclopedia of Genes and Genomes (KEGG). Genes enriched on the KEGG pathway (FDR 165 

< 0.05) were assigned a score of 1. Primary immunodeficiency (PID) was the last annotation 166 

criterion. It refers to inborn immunity diseases that are genetic disorders associated with 167 

increased severity [15][13]. Data enrichment analysis was performed using the hypergeometric 168 

test; p < 0.05 was used in this stage as the significance criterion [13]. It is important to note that 169 

each functional annotation is assigned a score of 1, and genes with a score ≥ 2 are defined as 170 

“biological MS risk genes”. Biological MS risk genes were used in advanced analysis using 171 

the STRING database.  172 

  173 

2.2. STRING database  174 

The use of the STRING database (http://string-db.org) aimed to integrate functional 175 

interactions related to protein expressions by inputting and regulating data associated with the 176 

predicted protein-protein interactions [20][21]. The majority of protein networks in various 177 

diseases can be the targets of the diseases [22]. The biological MS risk genes were expanded 178 

using the STRING database to gain more candidate drug targets. This step emphasized that the 179 

genomic information of MS has given insight into the biological risk gene for MS.   180 

  181 

2.3. Validation and drug discovery  182 

The drug target gene's candidate was overlapped with drug databases such as the  183 

DrugBank (https://www.drugbank.ca/) and Therapeutic Target Database (TTD) 184 

(http://db.idrblab.net/ttd/) to find the candidate drug to be repurposed for MS disease. 185 

DrugBank and TTD are databases widely used to identify the drug target precisely. It also 186 

contributes to driving drug repurposing for various diseases [23]. Drug-target genes were used 187 

http://string-db.org/
http://string-db.org/
http://string-db.org/
http://string-db.org/
https://www.drugbank.ca/
https://www.drugbank.ca/
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to analyze the database based on several criteria, such as drugs with pharmacological activity, 188 

effectiveness in humans, and approved annotations in clinical trials or drug experiments [24].  189 

Furthermore,  the  identified  drugs  were  reviewed  with  ClinicalTrials.gov  190 

(https://clinicaltrials.gov) to identify clinical examinations for MS or other diseases. The drugs 191 

under clinical investigation for MS were built by using R language (Chord diagram) with the 192 

circlize package (R Studio 4.0.3 program).  193 

  194 

3. Results  195 

The susceptibility of various MS genomic variants was retrieved from genomic database. A 196 

variety of genomic databases can be used including GWAS databases. GWAS not only 197 

provides information on the susceptibility of diseases but also provides information on the 198 

biological insight of diseases. In this study, 420 MS-associated SNPs were obtained from the 199 

GWAS database (Table S1). The expansion was then performed using HaploReg v4.1 under 200 

the criterion r2 > 0.8, resulting in 427 MS-associated risk genes (Table S2).  201 

  202 

3.1. Functional annotations of MS risk genes  203 

Six biological functional annotations were applied to prioritize biological MS risk genes. One 204 

point was assigned to each functional annotation. The assessment of each of the 427 candidate 205 

genes under the six criteria was as follows: (1) genes with missense mutation MS risk variants 206 

(n = 29); (2) cis-eQTL genes (n = 134); (3) genes in knockout mouse phenotypes (n = 101); (4) 207 

engaged genes in terms of GO for evaluating PPI (n = 146); (5) genes overlapped with the 208 

KEGG pathways (n = 93); and (6) number of genes overlapped with the PID (n = 13) (Figure 209 

2 and Figure 3)(Table S2). Biological scoring was conducted after data collection. There were 210 

173 genes with a score of 0, 110 genes with a score of 1, 67 genes with a score of 2, 47 genes 211 

with a score of 3, 7 genes with a score of 5, and 2 genes with a score of 6. A total of 144 genes 212 

had a score > 2 (Figure 4). We found that interferon-gamma receptor 2 (IFNGR2) and 213 

interleukin 7 receptor (IL7R) were the top two biological MS risk genes, each with a score of  214 

6.  215 

  216 

3.2. Expansion of biological MS risk genes list  217 

The STRING database was utilized to expand the investigation of biological MS risk genes. 218 

The expansion is based on the rationale that, the more biological MS risk genes we find, the 219 

more candidate drug targets for MS drug repurposing can be identified. We successfully 220 

https://clinicaltrials.gov/
https://clinicaltrials.gov/
https://clinicaltrials.gov/
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obtained 194 genes on the list (Table S3). These genes were included on the list of new 221 

candidate drug genes for further analysis.   222 

  223 

3.3. MS drug targets finding  224 

Finally, the drug target genes were prioritized based on the network analysis and the drug 225 

databases. Herein, we obtained 2,904 gene pairs from the PPI network (Table S4) and 27 genes 226 

targeted by 68 new candidate drugs based on DrugBank and TTD (Tabel S5). We found one 227 

drug, dimethyl fumarate that has been clinically approved for MS treatment (Figure 5). This 228 

drug is an effective medicinal option, administered twice a day in MS medication [25][26]. 229 

This study emphasized that the biological functional annotation we applied can be validated 230 

through the drug used in the clinic for MS disease.   231 

This research also found eight drug-target genes bound to 8 drugs approved for other diseases 232 

and under clinical investigation for MS, including human immunoglobulin G, antithymocyte 233 

immunoglobulin (rabbit), liothyronine, abatacept, topiramate, and phenytoin (Table S6). These 234 

drugs can potentially repurpose MS medication (Figure 6). An example of a drug repurposed 235 

for MS is abatacept, which is approved for rheumatoid arthritis, targeting CD80 and CD86 gene 236 

pathways. This drug is currently under clinical investigation for MS in a phase II trial 237 

(NCT01116427) and has a considerable potential to be used for MS [27]. Thus, we would like 238 

to emphasize that integrating genomic variants and gene networking can potentially guide the 239 

drug repurposing for MS disease.   240 

  241 

4. Discussion  242 

The focus of our present work is to narrow down candidate drugs of a debilitating disease, 243 

multiple sclerosis, through leveraging large bioinformatics datasets together with human 244 

genetics data. More specifically, we use personalized genomic data and genetic mapping to 245 

guide drug repurposing for MS. In particular, this study focused on using new candidate drugs 246 

for MS by prioritizing candidate genes derived and identified from the GWAS databases. Six 247 

categories of functional annotations were used to build an assessment system, in order to 248 

prioritize the MS risk genes as leads for new candidate drugs. We hypothesized that the broad 249 

strategy of genetic variant prioritization, using the functional annotations described in this 250 

study, would enable us to translate the risk genes to meaningful, actionable insights on MS. 251 

According to our analyses, we ensure the sensitivity of our study results by setting the threshold 252 
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of a biological score ≥ 2 to find a much higher number of genes as biological MS risk genes, 253 

and thereby candidates for MS drug targets.    254 

In this research, 27 drug-target genes were found to be bound to 68 drugs. In addition, 8 drug-255 

target genes were found to be bound to 8 drugs, of which some were still under clinical testing 256 

for MS, namely human immunoglobulin G (NCT00220779), anti-thymocyte immunoglobulin 257 

(rabbit) (NCT03342638), liothyronine (NCT02760056), abatacept (NCT01116427), 258 

topiramate (NCT00217295), and phenytoin (NCT01451593). From the data collected, one 259 

available drug approved for MS is dimethyl fumarate (Figure 5). Dimethyl fumarate, also 260 

known as BG-12, was licensed as first-line therapy and oral therapy for MS in 2013. It is also 261 

known as neuroprotective and immunomodulatory [28][29]. The mechanism of action of 262 

dimethyl fumarate is to react with cysteine residues from KEAP1 (Kelch-like ECHassociated 263 

protein 1), which causes KEAP1 to be dissociated from the nuclear factor (erythroidderived 2)-264 

like 2 (Nrf2) pathway toward Nrf2 nuclear translocation. Nrf2 then binds antioxidant response 265 

element (ARE) and drives antioxidant target gene expression toward neuronal protection, 266 

reduces astrocyte activation, and prolongs cell life [30].  267 

We identified eight promising targets that overlapped with drugs that could potentially be 268 

repurposed to treat MS. These include C3, CD4, CD86, THRA, CSF2RB, CD80, IFNGR2, and 269 

CACNA1S. Among them, we highly proposed CD80 and CD86 as potential targets for MS, 270 

since these targets are closely related to IL7R as biological MS risk genes with high functional 271 

annotation scores (Figure 6). The CD80/CD86 pathway is essential for controlling T cell 272 

activation and preserving immunological tolerance to self-antigens. The findings of functional 273 

and genome-wide investigations demonstrate that genes encode molecules that fit in. This 274 

pathway may increase the likelihood of developing autoimmune illnesses and may be viewed 275 

as a potential MS candidate gene [31][32][33]. In addition, we identified CD80- and CD86- 276 

targeting drugs, including anti-thymocyte immunoglobulin (rabbit), abatacept, and belatacept. 277 

Among these drugs, in fact, anti-thymocyte immunoglobulin (rabbit) (NCT03342638) and 278 

abatacept (NCT01116427) are currently under clinical investigation for MS. Therefore, from 279 

this perspective, targeting CD80 and CD86 might become novel therapeutic options for MS 280 

therapy. Further clinical evidence generation would be needed to validate these targets.  281 

 Combining results from genome-wide association studies and bioinformatic, gene-level 282 

annotation of human genetic variants is a powerful approach to identify candidate new drugs 283 

for MS. However, it is important to consider that this approach is not without limitations, such 284 
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as not all the identified target genes can either be targeted and/or demonstrate pharmacological 285 

activity with the desired profile for use in clinic. The genes identified in this manner would 286 

therefore miss the drug targeting window for the particular disease. Further investigation is thus 287 

required to determine the effect of the candidate drugs towards the clinic. Hence, we suggest 288 

that the use of current finding with subsequent investigation in functional studies to ascertain 289 

the role of drug target genes discovered in this study. The validation from existing results is 290 

necessary and important to ensure whether our drug candidates produced the desired interaction 291 

(intended from the study), any undesired side effects, or ineffective effects.   292 

  293 

  294 

5. Conclusions  295 

Our study utilizes MS functional genomic variants to open up additional avenues for the 296 

repurposing of existing drugs. Herein, we identify CD80 and CD86 as potential targets for MS 297 

treatment. The involvement of these genes with MS might be highly significant, thereby 298 

requiring further examination. By targeting CD80 and CD86, belatacept could be a promising 299 

therapy option for MS therapy. However, more studies from animal models and clinical trials 300 

are needed to confirm the biological mechanisms of the drug for new diseases. In this research, 301 

we combined the drug repurposing approach with integrated bioinformatics methodology to 302 

identify drugs with new indications for MS. Finally, this study emphasizes the vast potential of 303 

utilizing functional genomic variants as a basis to drive repurposing for MS disease.  304 
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Figure 1. Scheme of drug repurposing using genomic database for multiple sclerosis (MS)  343 
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Figure 2. Biological annotations prioritized for multiple sclerosis (MS) genes with score ≥ 2.  356 
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  358 

Figure 3. Histogram of the number of genes (y-axis) meeting each of the six biological criteria 359 

(x-axis) for drug prioritization..  360 

  361 

Figure 4. Histogram of the number of genes (y-axis) meeting each of the six biological criteria 362 

(x-axis) for drug prioritization. It is shown that there were 173 genes with score 0, 110 genes 363 

with score 1, and 144 (67+47+21+7+2) genes with total score ≥ 2, denoted as “biological MS 364 

risk genes”.  365 
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  367 

Figure 5. Relationship between biological MS risk genes and available drugs for MS.  368 
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  370 

Figure 6. Relationship between biological MS genes, and drugs approved for other indications 371 

and under clinical investigation for MS.  372 
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Highlights  

• Utilizing genomic data from GWAS catalog to provide novel biological insight for drug 

repurposing for multiple sclerosis.  

• The leveraging of genomic information can be translated into clinical implementation and 

guide the drug discovery for multiple sclerosis.  

• Our findings suggested the plausibility of multiple sclerosis genomic variants-driven drug 

repurposing for multiple sclerosis.   
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ABSTRACT  

Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system 

(CNS) marked by inflammation, demyelination, and axonal loss. Currently available MS 

medication is limited, thereby calling for a strategy to accelerate new drug discovery. One 

of the strategies to discover new drugs is to utilize old drugs for new indications, an 

approach known as drug repurposing. Herein, we first identified 421 MS-associated SNPs 

from the Genome Wide Association Study (GWAS) catalog (p-value < 5x10-8), and a total 

of 427 risk genes associated with MS using HaploReg version 4.1 under the criterion r2 > 

0.8. MS risk genes were then prioritized using bioinformatics analysis to identify 

biological MS risk genes. The prioritization was performed based on six defined categories 

of functional annotations, namely missense mutation, cis-expression quantitative trait 

locus (cis-eQTL), molecular pathway analysis, protein-protein interaction (PPI), genes 

overlap with knockout mouse phenotype, and primary immunodeficiency (PID). A total of 

144 biological MS risk genes was found and mapped into 194 genes within an expanded 

PPI network. According to the DrugBank and the Therapeutic Target Database, 27 genes 

within the list targeted by 68 new candidate drugs were identified. Importantly, the power 

of our approach is confirmed with the identification of a known approved drug (dimethyl 

fumarate) for MS. Based on additional data from ClinicalTrials.gov, eight drugs targeting 

eight distinct genes are prioritized with clinical evidence for MS disease treatment. 

Notably, CD80 and CD86 pathways are promising targets for MS drug repurposing. Using 

in silico drug repurposing, we identified belatacept as a promising MS drug candidate. 

Overall, this study emphasized the integration of functional genomic variants and 

bioinformatic-based approach that reveal important biological insights for MS and drive 

drug repurposing efforts for the treatment of this devastating disease.   

  

Keywords:  Autoimmune disease; Bioinformatics; Drug repurposing; Genomic variants; 

Multiple sclerosis;    
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1. Introduction  

Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system 

(CNS) marked by inflammation, demyelination, and axonal loss since the onset of the 

disease. The onset of MS usually occurs between 20 and 40 years of age and more 

predominantly in women [1]. MS also causes a series of other heterogeneous symptoms 

due to varying involvements of the motor, sensor, visual, and autonomous systems. It is 

characterized by optic neuritis (optic nerve inflammation), Uhthoff’s phenomenon 

(temporary fluctuation and worsened MS symptoms with increased body temperature), and 

Lhermitte’s sign (abnormal electrical-shocklike sensation over the spinal cord or body 

parts during neck flexion) [2], and tends to develop in genetically susceptible individuals 

who are exposed to a diversity of triggering environmental factors (e.g., Epstein-Barr virus, 

tobacco use, and vitamin D deficiency) [3]. The genes involved in MS have long been 

sought after. A number of approaches to this problem have been applied with varying 

degrees of success. The candidate gene approach has been in use over several decades, 

where potentially MS-associated genes are selected based on autoimmune MS prognosis, 

involving class I and II immune-response-gene-controlling human leukocyte antigen 

(HLA) [4].  

Treatments for MS have been divided into three categories: 1) acute relapse management; 

2) disease-modifying therapies; and 3) symptomatic treatments [2]. One MS treatment 

available and approved is dimethyl fumarate (Tecfi dera) [2][5]. So far, these medications 

can help people with MS that have fewer and less severe relapses. However, the problem 

is still arising from those medications, including resistance and toxicity [6]. Under such 

circumstances, drug repurposing emerges as one of the solutions to identify new candidate 

drugs for MS disease. In addition, further investigations such as clinical validation and in 

vivo experimental are needed to accelerate new discoveries for the treatment of MS 

disease, which aims to maximize the likelihood of success during pre-clinical development 

and validation [7].   

The concept of drug repurposing is to find new indications for existing drugs that are 

already available on the market [8]. The drug repurposing approach has several advantages 

compared to the traditional such as time and cost-effectiveness [9], safety profile (drugs 

have previously passed clinical trials), dosage, and that the toxicity of existing drugs have 
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already been vetted [10]. Genome-wide association studies (GWASs) can potentially be 

leveraged for precision drug repurposing by applying functional annotation [11]. Several 

studies were applied to the risk variants from GWAS, and have prioritized the biological 

risk genes based on the functional annotations to drive drug repurposing for various 

diseases, including chronic hepatitis B [12], atopic dermatitis [13], asthma [14], colorectal 

cancer [15] and the drug repurposing for rheumatoid arthritis [16]. In addition, GWAS has 

revolutionized MS genetic analyses, including the MS variants. These variants consistently 

implicate genes associated with immunological processes, mostly lie in regulatory rather 

than coding areas, and are often associated with other autoimmune diseases [17]. This 

research aimed to implement the bioinformatics strategy and identify biological MS 

candidate genes through an integrated gene network. Six functional annotations (missense 

mutation, cis-expression quantitative trait locus (cis-eQTL), molecular pathway analysis, 

protein-protein interaction (PPI), overlap knockout mouse phenotype, and primary 

immunodeficiency (PID)) were used to find biological MS risk genes. Finally, we 

overlapped the biological MS risk genes with the drug database and prioritized the 

candidate drug to be repurposed for MS disease.   

  

2. Methods  

A detailed description of the study design of drug repurposing utilizing the genomic 

information for MS is provided in Figure 1. MS-associated single nucleotide 

polymorphisms (SNPs) were obtained from the GWAS catalog under the criterion p-value 

> 10-8 and expanded using HaploReg (v4.1) based on the criterion of r2 ≥ 0.8 in Asian 

(ASN) populations retrieved from the 1000 Genome Project Phase I data [18][19]. Genes 

matching MS-associated SNPs are denoted as “MS-associated genes”. Then, genomic data 

were prioritized based on six functional annotation criteria. Every functional annotation is 

assigned a score of 1, and genes with a score ≥ 2 are defined as “biological MS risk genes”. 

Biological MS risk genes were used in advanced analysis using the STRING database to 

extend the list of candidate genes as drug-target genes. This research mapped an approved 

expanded list of drug-target genes in the DrugBank and Therapeutic Target Database. The 

drug-target genes were checked with ClinicalTrials.gov to determine the clinical status.  

  

2.1. Functional annotations of MS risk genes  

Functional annotation describes a gene's biological identity by compiling the relevant 

biological information for a particular gene. Herein, six categories of functional 
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annotations were used to build an assessment system representing the candidate genes most 

likely to be MS targets. The first category of annotation was missense or nonsense mutation 

according to HaploReg v4.1, which contains functional consequence annotations of the 

SNP database (db). HaploReg v4.1 also connected genetic variants to cis-expression 

quantitative trait loci (ciseQTLs) [16]. If a gene has an MS risk SNP with cis-eQTL effect 

throughout the blood, the gene was assigned one point. Then, to gain an understanding of 

the relationship between a mutant gene and the phenotype, WebGestalt 2019 was used for 

functional enrichment analysis. The data source was the Mammalian Phenotype Ontology 

(MP), which contains information on the mouse and other mammalian phenotypes [15]. 

The genes from human Ensembl ID were converted into mouse Ensembl ID using 

BioMart. Clusters of genes with FDR < 0.05 in the enrichment analysis were considered 

significant. Specifically, the gene ontology (GO) biological process categories were 

analyzed for this stage. The result significance was set at FDR < 0.05. Enrichment analysis 

was performed on molecular pathways using the Kyoto Encyclopedia of Genes and 

Genomes (KEGG). Genes enriched on the KEGG pathway (FDR < 0.05) were assigned a 

score of 1. Primary immunodeficiency (PID) was the last annotation criterion. It refers to 

inborn immunity diseases that are genetic disorders associated with increased severity 

[15][13]. Data enrichment analysis was performed using the hypergeometric test; p < 0.05 

was used in this stage as the significance criterion [13]. It is important to note that each 

functional annotation is assigned a score of 1, and genes with a score ≥ 2 are defined as 

“biological MS risk genes”. Biological MS risk genes were used in advanced analysis 

using the STRING database.  

  

2.2. STRING database  

The use of the STRING database (http://string-db.org) aimed to integrate functional 

interactions related to protein expressions by inputting and regulating data associated with 

the predicted protein-protein interactions [20][21]. The majority of protein networks in 

various diseases can be the targets of the diseases [22]. The biological MS risk genes were 

expanded using the STRING database to gain more candidate drug targets. This step 

emphasized that the genomic information of MS has given insight into the biological risk 

gene for MS.   

  

2.3. Validation and drug discovery  

The drug target gene's candidate was overlapped with drug databases such as the  

http://string-db.org/
http://string-db.org/
http://string-db.org/
http://string-db.org/
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DrugBank (https://www.drugbank.ca/) and Therapeutic Target Database (TTD) 

(http://db.idrblab.net/ttd/) to find the candidate drug to be repurposed for MS disease. 

DrugBank and TTD are databases widely used to identify the drug target precisely. It also 

contributes to driving drug repurposing for various diseases [23]. Drug-target genes were 

used to analyze the database based on several criteria, such as drugs with pharmacological 

activity, effectiveness in humans, and approved annotations in clinical trials or drug 

experiments [24].  

Furthermore,  the  identified  drugs  were  reviewed  with  ClinicalTrials.gov  

(https://clinicaltrials.gov) to identify clinical examinations for MS or other diseases. The 

drugs under clinical investigation for MS were built by using R language (Chord diagram) 

with the circlize package (R Studio 4.0.3 program).  

  

3. Results  

The susceptibility of various MS genomic variants was retrieved from genomic database. 

A variety of genomic databases can be used including GWAS databases. GWAS not only 

provides information on the susceptibility of diseases but also provides information on the 

biological insight of diseases. In this study, 420 MS-associated SNPs were obtained from 

the GWAS database (Table S1). The expansion was then performed using HaploReg v4.1 

under the criterion r2 > 0.8, resulting in 427 MS-associated risk genes (Table S2).  

  

3.1. Functional annotations of MS risk genes  

Six biological functional annotations were applied to prioritize biological MS risk genes. 

One point was assigned to each functional annotation. The assessment of each of the 427 

candidate genes under the six criteria was as follows: (1) genes with missense mutation 

MS risk variants (n = 29); (2) cis-eQTL genes (n = 134); (3) genes in knockout mouse 

phenotypes (n = 101); (4) engaged genes in terms of GO for evaluating PPI (n = 146); (5) 

genes overlapped with the KEGG pathways (n = 93); and (6) number of genes overlapped 

with the PID (n = 13) (Figure 2 and Figure 3)(Table S2). Biological scoring was 

conducted after data collection. There were 173 genes with a score of 0, 110 genes with a 

score of 1, 67 genes with a score of 2, 47 genes with a score of 3, 7 genes with a score of 

5, and 2 genes with a score of 6. A total of 144 genes had a score > 2 (Figure 4). We found 

that interferon-gamma receptor 2 (IFNGR2) and interleukin 7 receptor (IL7R) were the top 

two biological MS risk genes, each with a score of  

6.  

https://www.drugbank.ca/
https://www.drugbank.ca/
https://clinicaltrials.gov/
https://clinicaltrials.gov/
https://clinicaltrials.gov/
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3.2. Expansion of biological MS risk genes list  

The STRING database was utilized to expand the investigation of biological MS risk 

genes. The expansion is based on the rationale that, the more biological MS risk genes we 

find, the more candidate drug targets for MS drug repurposing can be identified. We 

successfully obtained 194 genes on the list (Table S3). These genes were included on the 

list of new candidate drug genes for further analysis.   

  

3.3. MS drug targets finding  

Finally, the drug target genes were prioritized based on the network analysis and the drug 

databases. Herein, we obtained 2,904 gene pairs from the PPI network (Table S4) and 27 

genes targeted by 68 new candidate drugs based on DrugBank and TTD (Tabel S5). We 

found one drug, dimethyl fumarate that has been clinically approved for MS treatment 

(Figure 5). This drug is an effective medicinal option, administered twice a day in MS 

medication [25][26]. This study emphasized that the biological functional annotation we 

applied can be validated through the drug used in the clinic for MS disease.   

This research also found eight drug-target genes bound to 8 drugs approved for other 

diseases and under clinical investigation for MS, including human immunoglobulin G, 

antithymocyte immunoglobulin (rabbit), liothyronine, abatacept, topiramate, and 

phenytoin (Table S6). These drugs can potentially repurpose MS medication (Figure 6). 

An example of a drug repurposed for MS is abatacept, which is approved for rheumatoid 

arthritis, targeting CD80 and CD86 gene pathways. This drug is currently under clinical 

investigation for MS in a phase II trial (NCT01116427) and has a considerable potential 

to be used for MS [27]. Thus, we would like to emphasize that integrating genomic variants 

and gene networking can potentially guide the drug repurposing for MS disease.   

  

4. Discussion  

The focus of our present work is to narrow down candidate drugs of a debilitating disease, 

multiple sclerosis, through leveraging large bioinformatics datasets together with human 

genetics data. More specifically, we use personalized genomic data and genetic mapping 

to guide drug repurposing for MS. In particular, this study focused on using new candidate 

drugs for MS by prioritizing candidate genes derived and identified from the GWAS 

databases. Six categories of functional annotations were used to build an assessment 
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system, in order to prioritize the MS risk genes as leads for new candidate drugs. We 

hypothesized that the broad strategy of genetic variant prioritization, using the functional 

annotations described in this study, would enable us to translate the risk genes to 

meaningful, actionable insights on MS. According to our analyses, we ensure the 

sensitivity of our study results by setting the threshold of a biological score ≥ 2 to find a 

much higher number of genes as biological MS risk genes, and thereby candidates for MS 

drug targets.    

In this research, 27 drug-target genes were found to be bound to 68 drugs. In addition, 8 

drug-target genes were found to be bound to 8 drugs, of which some were still under 

clinical testing for MS, namely human immunoglobulin G (NCT00220779), anti-

thymocyte immunoglobulin (rabbit) (NCT03342638), liothyronine (NCT02760056), 

abatacept (NCT01116427), topiramate (NCT00217295), and phenytoin (NCT01451593). 

From the data collected, one available drug approved for MS is dimethyl fumarate (Figure 

5). Dimethyl fumarate, also known as BG-12, was licensed as first-line therapy and oral 

therapy for MS in 2013. It is also known as neuroprotective and immunomodulatory 

[28][29]. The mechanism of action of dimethyl fumarate is to react with cysteine residues 

from KEAP1 (Kelch-like ECHassociated protein 1), which causes KEAP1 to be 

dissociated from the nuclear factor (erythroidderived 2)-like 2 (Nrf2) pathway toward Nrf2 

nuclear translocation. Nrf2 then binds antioxidant response element (ARE) and drives 

antioxidant target gene expression toward neuronal protection, reduces astrocyte 

activation, and prolongs cell life [30].  

We identified eight promising targets that overlapped with drugs that could potentially be 

repurposed to treat MS. These include C3, CD4, CD86, THRA, CSF2RB, CD80, IFNGR2, 

and CACNA1S. Among them, we highly proposed CD80 and CD86 as potential targets 

for MS, since these targets are closely related to IL7R as biological MS risk genes with 

high functional annotation scores (Figure 6). The CD80/CD86 pathway is essential for 

controlling T cell activation and preserving immunological tolerance to self-antigens. The 

findings of functional and genome-wide investigations demonstrate that genes encode 

molecules that fit in. This pathway may increase the likelihood of developing autoimmune 

illnesses and may be viewed as a potential MS candidate gene [31][32][33]. In addition, 

we identified CD80- and CD86- targeting drugs, including anti-thymocyte 

immunoglobulin (rabbit), abatacept, and belatacept. Among these drugs, in fact, anti-

thymocyte immunoglobulin (rabbit) (NCT03342638) and abatacept (NCT01116427) are 
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currently under clinical investigation for MS. Therefore, from this perspective, targeting 

CD80 and CD86 might become novel therapeutic options for MS therapy. Further clinical 

evidence generation would be needed to validate these targets.  

 Combining results from genome-wide association studies and bioinformatic, gene-level 

annotation of human genetic variants is a powerful approach to identify candidate new 

drugs for MS. However, it is important to consider that this approach is not without 

limitations, such as not all the identified target genes can either be targeted and/or 

demonstrate pharmacological activity with the desired profile for use in clinic. The genes 

identified in this manner would therefore miss the drug targeting window for the particular 

disease. Further investigation is thus required to determine the effect of the candidate drugs 

towards the clinic. Hence, we suggest that the use of current finding with subsequent 

investigation in functional studies to ascertain the role of drug target genes discovered in 

this study. The validation from existing results is necessary and important to ensure 

whether our drug candidates produced the desired interaction (intended from the study), 

any undesired side effects, or ineffective effects.   

  

  

5. Conclusions  

Our study utilizes MS functional genomic variants to open up additional avenues for the 

repurposing of existing drugs. Herein, we identify CD80 and CD86 as potential targets for 

MS treatment. The involvement of these genes with MS might be highly significant, 

thereby requiring further examination. By targeting CD80 and CD86, belatacept could be 

a promising therapy option for MS therapy. However, more studies from animal models 

and clinical trials are needed to confirm the biological mechanisms of the drug for new 

diseases. In this research, we combined the drug repurposing approach with integrated 

bioinformatics methodology to identify drugs with new indications for MS. Finally, this 

study emphasizes the vast potential of utilizing functional genomic variants as a basis to 

drive repurposing for MS disease.  
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Figure 1. Scheme of drug repurposing using genomic database for multiple sclerosis (MS)  
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Figure 2. Biological annotations prioritized for multiple sclerosis (MS) genes with score 

≥ 2.  

  

  

Figure 3. Histogram of the number of genes (y-axis) meeting each of the six biological 

criteria (x-axis) for drug prioritization..  
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Figure 4. Histogram of the number of genes (y-axis) meeting each of the six biological 

criteria (x-axis) for drug prioritization. It is shown that there were 173 genes with score 0, 

110 genes with score 1, and 144 (67+47+21+7+2) genes with total score ≥ 2, denoted as 

“biological MS risk genes”.  

  

  

Figure 5. Relationship between biological MS risk genes and available drugs for MS.  
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Figure 6. Relationship between biological MS genes, and drugs approved for other 

indications and under clinical investigation for MS.  
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