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ABSTRACT 

 

Breast cancer has the highest prevalence of all cancers. Breast cancer has overtaken lung cancer as 

the leading cause of global cancer incidence in 2020, accounting for 2,261,419 new cases, or 11.7% of 

all new cancer cases worldwide. Among the efforts that can be done are efforts to find breast cancer 

medications that are safe and selective for the treatment and prevention of cancer, particularly those 

derived from medicinal plants. The Malay apple (Syzygium malaccense (L.) Merr. & L.M. Perry) is 

one plant that has been extensively examined and proved to have an antiproliferative effect. The 

pharmacophore modelling, molecular docking, and molecular dynamic approach was conducted on 

155 active compounds of Malay apple to alpha and beta estrogen receptors. According on the results 

of ER-α docking, numerous substances have binding free energy values less than 4-OHT yet are not 

bound to important amino acids, as the result, it is not continued to the next test. On other side, with a 

fit score of 45.81, rutin was potentially selective for ER-β receptors, molecular docking to ER-β 

obtained that rutin was predicted to have breast cancer activity with a free binding energy value of -

10.6 kcal /mol with better conformation and affinity compared to native ligand (genistein), and bound 

to essential amino acids as anticancer breast at ARG 346, GLU 305, and molecular dynamics 

simulations show that the compound has good stability when binding to the receptor. In silico toxicity 

prediction from rutin showed outcomes that match the requirements for the candidate drug. However, 

because it does not match the ADME prediction and Lipinsky's rule of five, rutin must be 

optimalization to improve its pharmacokinetic and pharmacological profile before it can be further 

explored as a therapeutic option for the treatment of breast cancer that targets the ER- receptor. 
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INTRODUCTION 

Cancer is a disease that develops as a result of abnormal cell proliferation in body tissues. Cancer 

is a disease that kills many people in Indonesia and around the world. Breast cancer has the highest 

prevalence of all cancers. According to the Global Burden Cancer (Globocan) report, there were 65,858 

new cases of breast cancer in 2020, representing 16.6% of the total 396,914 new cases of cancer in 

Indonesia (Globocan, 2020), whereas at the global level, breast cancer has become the leading cause 

of new cancer cases in 2020, accounting for 2.261,419 new cases, or 11.7% of the total number of new 

cancer cases worldwide (Sung et al., 2021). 

Breast cancer therapy is still being developed due to the numerous side effects it produces, such as 

chemotherapy, which frequently leads to failure due to the low selectivity of anticancer medications 

(Moo et al., 2018). As a result, the identification of novel anticancer potential is critical in order to 

overcome this adverse effect of existing cancer medications, one of which is natural medicine. 

Since ancient times, traditional herbal treatment has been regarded as an alternate strategy to 

treating and dealing with various disorders. Malay apple is one of the plants that has been actively 

researched in the search for new medication candidates. Malay apple (Syzygium malaccense (L.) Merr. 

& L.M. Perry) has high antioxidants activity, it has the potential to improve human health. Rabeta et 

al. (2013) discovered that Malay apple methanol extract had an antiproliferative impact on Michigan 

Cancer Foundation-7 (MCF-7) cells with 79% viability and IC50 = 632.3 g/mL (Rabeta et al., 2013). 

However, in vitro tests have not revealed an active anti-cancer compound in the breast, so further 

research is required. 

Various new drug developments, including the in silico method, are being used to accelerate the 

discovery of anti-breast cancer drugs. Because they are supported by good computational techniques 

and also shorten the time in the drug discovery process, in silico methods for developing new drugs 

are growing rapidly (Ekins et al., 2007). Based on earlier research, the experiment was developed to 

look for anti-breast cancer candidates by studying active compounds in Malay apple utilizing in silico 

methodologies. The estrogen hormone is a major contributor to the occurrence of breast cancer in 

women. As a result, their receptor is becoming a focus in endocrine therapy (Ervina et al., 2021). To 

obtain comprehensive data, this study focuses on predicting metabolite compounds from Malay apple 

that have potential anticancer by targeting the estrogen receptor (ER-α and ER-β) using the Ligand 

Based Drug Design (LBDD) approach with pharmacophore modeling And Structure Based Drug 

Design (SBDD) with molecular docking and molecular dynamics.As a result, it is envisaged that the 

findings of this study will lead to the development of a lead compound for breast cancer therapy. 

 

MATERIALS AND METHOD 

Materials 

Based on literature studies from LC-MS and GC MS data, 155 secondary metabolites from Malay 

apple were acquired, and the structures were retrieved from the website 

https://pubchem.ncbi.nlm.nih.gov. The breast cancer receptor (PDB ID 3ERT for ER-α and PDB ID 

1QKM for ER-β receptor-ligand complex) were downloaded from the https://rcsb.org site in PDB 

format. Hardware: ASUS A456U notebook (operating system: Microsoft Windows 10 Pro and 

Ubuntu 17.04), 64-bit; Memory: 4GB; Processor: Intel Core i5-7200U, Personal Computer (operating 

system: Ubuntu 16.04 LTS, Xeon Processor, 16 GB Memory). Software: Discovery Studio 

Visualizer® Version 2021 freeware, MarvinSketch Version 17.2.13® freeware, Autodock Tools 1.5.6® 

freeware, Autodock Vina 1.1.2® freeware, Liganscout 4.4.5 30 days free trial. Website: KNApSAck 

(http://www.knapsackfamily.com/KNApSAcK/), PASS (Prediction of Activity Spectra for 

Substances) Online (http://way2drug.com/passonline/predict.php), PreADMET 

(http://preadmet.bmdrc.org/), PubChem (http://pubchem.ncbi.nlm.nih.gov), Lipinski's Rule of Five 

(http://www .scfbio-iitd.res.in/software/drugdesign/lipinski.jsp ), and the Protein Data Bank (PDB) 

(https://www.rscb.org/), Google Colabolatory (https://colab.research.google.com/?utm_source=scs-

index), OpenMM (https://openmm.org/). 

http://www.knapsackfamily.com/KNApSAcK/
http://way2drug.com/passonline/predict.php
http://preadmet.bmdrc.org/
http://pubchem.ncbi.nlm.nih.gov/
https://www.rscb.org/
https://colab.research.google.com/?utm_source=scs-index
https://colab.research.google.com/?utm_source=scs-index
https://openmm.org/
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Method 

Compound library selection and ligand preparation 

The compound of Malay apple obtained through various library sources and based on search results 

using the KNApSAcK online database site (http://www.knapsackfamily.com/KNApSAcK/) 
 

Screening activity 

The Malay apple compound was examined for anti-breast cancer activity using the PASS Online 

prediction site. 

 

Geometry optimization 

The 3D molecular structure of secondary metabolites contained in Malay apple was carried out on 

geometric optimization using MarvinSketch with the semi-empirical AM1 method. 
 

Lipinski's rule of five testing 

The ligands or compounds tested in this investigation were Malay apple secondary metabolites 

obtained from pubbchem. Ligand preparation in Marvin Sketch by minimizing energy with MMFF94 

and saving as mol2, then opening the mol2 file in Marvin and performing protonation at pH 7.4 and 

saving as PDB format. Following preparation, the compound's physicochemical properties were 

assessed by uploading the prepared ligand to Lipinski's Rule of Five site (http://www.scfbio-

iitd.res.in/software/drugdesign/lipinski.jsp). 
 

Pre-ADMET testing 

The tests conducted seek to examine the first characteristics of pharmacokinetics, such as 

absorption, and distribution, as well as toxicity testing, such as mutagenic and carcinogenic qualities 

of substances. Testing is done out using a specific program that is carried out online on the http:// 

preadme.bmdrc.kr/site. After drawing the structure of the test substance, click submit for analysis. The 

collected results are data in.pdb format. 
 

Pharmacophore modeling 

Pharmacophore modeling was used to find and extract potential interactions between ligand-

receptor complexes. Liganscout software was used to conduct the tests. The first stage entails 

synthesizing target receptors from the PDB, standard compounds from the binding data base, active 

compounds from DUD-E (Database of Useful Decoys Enhanced), and decoy compounds from DUD-

E. The receptor's pharmacophore was then found, and the model of the pharmacophore was validated, 

providing the ROC (Receiver Operating Characteristic) curve, which revealed the hit molecule and the 

AUC (Area Under Curve) value. Another validation metric, the GH Score (Goodness of Hit Score), 

can also be used to identify a good hit score. After validation, the test ligands were screened to create 

a list of hit compounds and pharmacophore fit scores. The GH Score is calculated as follows: 

 
𝐺𝐻= [(𝐻𝑎4/𝐻𝑡𝐴) (3𝐴+𝐻𝑡) 𝑥 (1− (𝐻𝑡−𝐻𝑎)/𝐷−𝐴)]           (1)  

 

D = Total molecules in database  

A = Total number of actives in database  

Ht = Total Hits  

Ha = Active Hits 

 

Protein selection and preparation 

Receptors downloaded via PDB website (https://www.rscb.org/) with PDB ID 3ERT for ER-α and 

PDB ID 1QKM for ER-β receptor, receptor-ligand complex separated and prepared using Autodock 

http://www.knapsackfamily.com/KNApSAcK/
http://www.knapsackfamily.com/KNApSAcK/
http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp
http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp
https://www.rscb.org/
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Tools® software, then validated and a scoring function to calculate the binding affinity using Autodock 

Vina®. 

 

Molecular docking 

The docking method was validated by redocking native ligands on the ER-α and ER-β receptors. 

Molecular docking is performed with previously validated parameters. Canonical SMILES of the test 

compound were obtained from the Pubchem website (http://pubchem.ncbi.nlm.nih.gov) then the 

optimization process was carried out, then the docking process was carried out using Autodock Tools 

4.2.6® and visualization was carried out using the Discovery Studio Visualizer®. The 3D-ligand 

structures were then bound to the active sites of ER-α and ER-β. ΔG (change in Gibbs free energy) and 

interaction poses were calculated from the results.  

 

Molecular dynamics simulation  

Molecular dynamics simulations were performed using open MM software on the complex between 

ER-β receptor and the ligand with the lowest binding energy based on molecular docking experiments. 

Begin by creating a protein topology and a ligand topology. The ff19SB force field was used to add 

the ligand topology, and the GAFF2 force field with the TIP3P water model was used to add the 

receptor topology then equilibration and production are carried out for 15 ns. 

 

RESULT AND DISCUSSION 

Screening compound 

Based on literature investigations from related journals and screening for active compounds of 

Syzygium malaccense (L.) Merr. & L.M. Perry, 155 active compounds were discovered and employed 

in this study. 
 

Screening of anti-breast cancer activity 

The active compound of Malay apple was screened for anti-breast cancer activity, and 80 out of 

155 compounds were predicted to have anti-breast cancer activity. The goal of this screening is to make 

early predictions about the test substance as anti-breast cancer activity. The metrics employed in the 

PASS Online prediction findings include Activity, the value of Pa (Probability activity), and Pi 

(Probability inactivity), which indicate the test compound's likelihood or opportunity value in creating 

the expected biological activity. 
 

Pharmacophore validation  

Pharmacophore validation was performed using LigandScout 4.4.5 software to determine the 

suitability of the pharmacophore model for use in screening the test chemicals. A decent 

pharmacophore model can detect the majority of active drugs as well as a few decoy molecules. Ten 

pharmacophore models were created from a database of 200 chemicals and will be validated. 

Validation was performed using 100 active compound databases and 500 decoy compound databases 

obtained from the DUD-E site. The pharmacophore model is stated to be valid if the AUC-ROC value 

is greater than 0.7 or 70%; in other words, an AUC-ROC value near to one is considered good and is 

believed to be capable of distinguishing between active and decoy compounds. (Hamzah et al., 2014; 

Moussa et al., 2021; Suherman et al., 2020). The AUC-ROC results of active ligands in ER-α 

demonstrate that 124 hit compounds were acquired with an AUC value of 0.93 or 93% out of a total of 

600 active and decoy compounds, whereas in ER-β, 107 of the total active and decoy compounds were 

600 compounds. A good hit score can also be determined by the GH Score (Goodness of Hit Score), 

which is another validation metric. The GH Score  calculation yielded a score of 0.81 or 81% for the 

active ligand ER-α, while it was 0.94 or 94% for ER- β. So it is said that pharmacophore modeling 

based on active ligands on ER-α and ER-β is legitimate and can be utilized to screen pharmacophore 

on test ligands (Figure 1). 

http://pubchem.ncbi.nlm.nih.gov/
http://pubchem.ncbi.nlm.nih.gov/
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Figure 1. Pharmacophore Validation Results 

 

Pharmacophore modelling 

The pharmacophore research of the test compounds against ER-α and ER-β yielded 27 and 25 hit 

compounds, respectively, as well as their pharmacophore fit-scores (Tables 1 and 2). Pharmacopore 

tests revealed that it had similar pharmacological action to the native ligand, pharmacophore fitscore 

number shows that the hit chemical has similar pharmacophore characteristics to the model, and hence 

it is predicted to have the same activity as the model/ligand that has been shown to be active and that 

it can be further evaluated in molecular docking simulations. 

 

Table 1. Pharmacophore study results against ER-α 

Compound Pharmacophore-Fit Score 

Cyanidin-3,5-O-diglucosid 63.97 

Quercitrin 63.49 

Peonidin 3,5-diglucosside 60.95 

Pelargonidin-3-glucoside 60.74 

Procyanidin B2 60.64 

Peonidin-3-Glukosid 60.64 

Procyanidin B1 60.58 

Cyanidin-3-O-Glukosid 60.56 

Cyanidin 3-glucoside 60.54 

Procyanidin A2 60.37 

2',4'-Dihydroxy-6'-Methoxy-3-Methyldihidrochalcone 56.26 

Stercurensin 55.47 

Kaempferol-3-glucoside 53.19 

Isorhamnetin-3-glucoside 53.11 

Isoquercitrin 53.04 

(-)-Epicatechin 53.00 

Quercetin 52.93 

(+)-Catechin 52.88 

Morin 52.71 

Myricitrin 52.43 

Chlorogenic Acid 51.98 

Myricetin-3-(3''galloylrhamnoside) 51.95 

Mearnsitrin 50.96 

(-)-Epicatechin gallate 50.71 

Desmanthin1 50.53 

Rutin 50.24 

Ursolic Acid 44.60 
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Table 2. Pharmacophore study results against ER-β 

Compound Pharmacophore-Fit Score 

Chlorogenic Acid 57.94 

Morin 57.40 

(-)-Epicatechin gallate 57.08 

Kaempferol-3-glucoside 57.03 

Procyanidin B2 56.34 

Isoquercitrin 55.91 

Cyanidin-3,5-O-diglucosid 55.90 

Pelargonidin-3-glucoside 54.37 

Peonidin-3-Glukosid 54.18 

(+)-Catechin 54.04 

Cyanidin 3-glucoside 53.96 

Isorhamnetin-3-glucoside 46.72 

Quercetin 46.62 

(-)-Epicatechin 46.61 

Cyanidin-3-O-Glukosid 46.28 

Procyanidin A2 46.22 

Quercitrin 46.09 

Procyanidin B1 46.01 

Rutin 45.81 

Peonidin 3,5-diglucosside 45.46 

Myricitrin 44.54 

Mearnsitrin 44.37 

Ursolic Acid 44.15 

Desmanthin 1 43.97 

Myricetin-3-(3''galloylrhamnoside) 43.67 

 
Docking validation 

Docking parameter validation occurs prior to the docking process for the test ligands. The docking 

parameter is considered valid if it can re-docking the native ligand that has been withdrawn from the 

native ligand or the ligand complex to its original position with an RMSD value less than 2 Å (Astuty 

& Komari, 2022). The RMSD values obtained from re-docking native ligands are shown in Table 3. 

The RMSD values were declared valid and ready for use in molecular docking simulations of the test 

compounds. Figure 2 depicts the docking parameter validation findings. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Superimposition of the X-ray crystal structure (green) and docked conformation (pink) 

(a : 3ERT, b : 1QKM) 

 

a b 
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Table 3. Size of grid center, grid box and RMSD values from docking validation results 

PDB 

ID 

Grid Center Grid Box (Å) Exhaustiveness 
RMSD 

X Y Z X Y Z 

3ERT 30.282 -1.913 24.207 40 40 40 16 1.1162 Å 

1QKM 22.438 8.003 113.538 40 40 40 16 0,2799 Å 

 
 

Table 4. Results of  molecular docking of ER-α and analysis of linked amino acid residues 

Compound ΔG (kcal/mol) Conventional Hydrogen Interaction 

Procyanidin A2 -11.166 CYS 530 

Procyanidin B1 -10.393 LEU 525, CYS 530, ASP 351 

Procyanidin B2 -10.207 MET 343, THR 347, CYS 530 

Ursolic Acid -10.103 - 

Rutin -10.057 
VAL 534, LEU 536, THR 347, MET 522, CYS 

530 

Desmanthin1 -9.832 LEU 536, CYS 530, ASP 351, MET 522 

Native Ligan  (4OHT)  -9.684 ARG 394, GLU 353 

Cyanidin-3,5-O-diglucosid -9.579 LEU 536, MET 522, THR 347 

Quercitrin -9.510 THR 347 

Myricetin-3-

(3''galloylrhamnoside) 
-9.486 CYS 530, THR 347, TRP 383, LEU 536 

Mearnsitrin -9.280 - 

(-)-Epicatechin gallate -9.176 THR 347, CYS 530, LEU 536 

Peonidin 3,5-diglucosside -9.157 GLU 380, TYR 537, LEU 536, THR 347 

Kaempferol-3-glucoside -8.985 VAL 534, CYS 530 

Myricitrin -8.980 THR 347 

Quercetin -8.840 ARG 394, GLU 353, LEU 387 

Morin -8.799 ARG 394, GLU 353, MET 343 

Isoquercitrin -8.744 VAL 534, MET 522, THR 347 

(-)-Epicatechin -8.713 GLU 353, LYS 449, TRP 393 

Pelargonidin-3-glucoside -8.701 CYS 530, VAL 534 

Cyanidin-3-O-Glukosid -8.514 CYS 530, VAL 534, LEU 536, 

Peonidin-3-Glukosid -8.495 ASP 351 

Cyanidin 3-glucoside -8.460 CYS 530, MET 522 

Isorhamnetin-3-glucoside -8.272 VAL 534, MET 522, THR 347 

Chlorogenic Acid -8.229 GLU 353, ASP 351 

(+)-Catechin -7.969 ARG 394, GLU 353, LEU 387, HIS 524 

2',4'-Dihydroxy-6'-

Methoxy-3-

Methyldihidrochalcone 

-7.710 - 

Stercurensin -7.649 - 

 

Molecular docking simulation 

The docking of Malay apple compounds revealed that the 6 test compounds (Procyanidin A2, 

Procyanidin B1, Procyanidin B2, Ursolic Acid, Rutin, and Desmanthin1) had lower binding free energy 

than the native ligand (4OHT), although none of the complexes between Malay apple compounds and 

ER-α had interactions with essential amino acid residues. Quercetin is the  compound that has the same 

amino acid interaction as the native ligand but does not have a lower binding free energy value than 
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the native ligand (Table 4 and Figure 3). In ER-β, rutin has a lower binding free energy (G) than the 

native ligand (Genistein). The molecular docking results between rutin and ER-β reveal the presence 

of hydrogen interactions residues surrounding the cavity at the catalytic site (ARG 346 and GLU 305) 

(Table 5 and Figure 4). 

 

Table 5. Results of Molecular docking of ER-β and analysis of linked amino acid residues 

Compound 
ΔG 

(kcal/mol) 
Conventional Hydrogen Interaction 

Rutin -10,6 
ARG 346, GLU 305, LYS 401, GLU 276, TYR 397, 

HIS 279, TRP 345, HIS 394 

Native Ligand (Genistein) -10,5 ARG 346, GLU 305, LEU 339, HIS 475 

Procyanidin B1 -10,4 TRP 345, LYS 401, PRO 358 

Myricetin-3-

(3''galloylrhamnoside) 
-10,2 

ARG 346, TRP 345, ASP 249, HIS 279, PHE 356, VAL 

280, PRO 278 

Procyanidin B2 -10,0 ARG 346, PRO 358, ASP 349, TRP 345, GLU 276 

Procyanidin A2 -9,9 GLU 305, LYS 401 

Myricitrin -9,2 GLU 305, VAL 280, HIS 279, TRP 345 

Quercitrin -9,1 GLU 305, VAL 280, HIS 279, TRP 345 

Morin -9,0 ARG 346, GLU 305, VAL 280 

Quercetin -9,0 GLU 305, VAL 280, TRP 345 

Mearnsitrin -8,9 GLU 305, VAL 280, HIS 279, TRP 345 

Desmanthin1 -8,6 
ARG 346, TRP 345, HIS 394, ASP 349, ILE 348, HIS 

350, PRO 277 

(-)-Epicatechin -8,5 ARG, 346, GLU 305, HIS 279 

(-)-Epicatechin gallate -8,5 GLU 305, VAL 280, ARG 346, TRP 345, GLU 276 

Cyanidin-3,5-O-diglucosid -8,5 TRP 345, PRO 277, HIS 279, PRO 278, VAL 280, 

(+)-Catechin -8,3 ARG 346, GLU 305, VAL 280,TRP 345, GLY 342 

Isoquercitrin -8,1 GLU 305, VAL 280, HIS 279, TRP 345 

Cyanidin-3-O-Glukosid -8,0 GLU 305, TRP 345, HIS 279 

Isorhamnetin-3-glucoside -8,0 VAL 280, PRO 278, TRP 345 

Kaempferol-3-glucoside -8,0 GLU 305, VAL 280, HIS 279, TRP 345 

Peonidin 3,5-diglucosside -8,0 VAL 280, PRO 277, TRP 345 

Chlorogenic Acid -7,7 TRP 345, GLU 276, VAL 280, HIS 279 

Pelargonidin-3-glucoside -7,7 GLU 305, VAL 280, TRP 345, HIS 279 

Cyanidin 3-glucoside -7,6 GLU 276, HIS 279, TRP 345 

Peonidin-3-Glukosid -7,6 GLU 305, TRP 345, HIS 279 

Ursolic Acid -7,6 - 
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Figure 3. Result of ER-α docking with native ligans and Quercetin (a : complex Erα - 4OHT, b : 

complex Erα – Quercetin) 

 
 

 

Figure 4. Visualization result of ER-β docking with native ligans and rutin (a : complex Erβ - 

Genistein, b : complex erα – rutin) 

 

Lipinski's rule of five analysis, pharmacokinetics and toxicity 

The online portal http://scfbio-iitd.res.in  is used to forecast the potential of the tested molecule to 

be employed as a medication candidate in oral dosage forms (Lipinsi's Rule of Five). This prediction 

was produced using Lipinski's Rule of Five, which indicates that the molecular weight (BM) should 

not exceed 500 Daltons since a high molecular weight will alter the concentration of substances 

absorbed on the surface of the intestinal epithelium. The rule also states that the partition coefficient 

(Log P) should not be greater than 5, because a higher partition coefficient indicates that a compound 

a b 

a b 

http://scfbio-iitd.res.in/
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has hydrophobic properties, which causes it to stay longer in the lipid bilayer membrane and cause the 

compound to become toxic, whereas a lower partition coefficient indicates that the compound is 

hydrophilic, which makes it difficult for the compound to penetrate the lipid bilayer membrane. 

Furthermore, hydrogen donor bonds must be fewer than 5 and bond acceptors must be no more than 

10, because hydrogen donors and acceptors can absorb. The high number of hydrogen bonds influences 

the passive migration of molecules from the hydrophilic phase into the lipid bilayer membrane (Az-

Zahra et al., 2022). 

The HIA (Human Intestinal Absorption) and Caco2 value parameters are used to predict the 

pharmacokinetic absorption profile, while the distribution parameter is PPB (Plasma Protein Binding). 

HIA is a measure that describes absorption prediction in the human gut. If the HIA value is in the range 

0-20%, it indicates a low level of absorption or poorly absorbed, HIA 20-70% indicates a sufficient 

amount of absorption, and HIA 70-100% indicates a high level of absorption or well absorbed (Sagitasa 

et al., 2021). Caco2 is an in vitro cell model that is used to predict drug absorption through the intestinal 

epithelium as measured by the permeability level (nm/sec), where a permeability value of <4 nm/sec 

indicates the compound is hydrophilic, 4-70 nm/sec indicates the permeability level of the compound 

which is moderate, which means the compound is neither too hydrophilic nor lipophilic, permeability 

>70 nm/sec indicates the compound is lipophilic (Suherman et al., 2020). The PPB (Protein Plasma 

Binding) value, which is the distribution level of chemical binding to proteins in plasma, is used to 

predict the pharmacokinetic distribution profile. A PPB value of 90% indicates that the molecule is 

poorly linked to plasma proteins, whereas a PPB value more than 90% suggests that the drug is highly 

bound to plasma proteins. The higher the compound's affinity for plasma proteins, the better the 

compound's distribution (Nusantoro & Fadlan, 2020). The Ames and carcinogenicity test parameters 

are used to predict toxicity. The Ames test is a method for determining the qualities of a test compound 

based on its mutagenic and carcinogenic capabilities, which are known due to the test compound's 

chemical structure. A positive Ames test result suggests that the substance is mutagenic and may be 

carcinogenic; therefore, a carcinogenicity prediction is performed to confirm (Hartanti et al., 2022). 

Table 6, shows the results of Lipinski's Rule of Five Analysis, Pharmacokinetics and Toxicity Analysis. 

ADMET prediction revealed that selected compounds (rutin) had poor absorption ability, was medium 

permeability, and was poorly bound to Plasma Binding Protein (PPB), requiring alteration of the 

preparation or carrier to reach the receptor. Toxicity testing reveals that it is not a mutagen or a 

carcinogen. Aside from that, Lipinski rule of five testing reveals that it does not match the requirements, 

therefore it cannot be converted into an oral dosage form due to the Lipinski rule of five factors, but 

the dosage form can be adjusted to reach the receptor. 

 

Molecular dynamic simulation 

Molecular Dynamic (MD) simulations were performed on the best docking compounds to 

determine the stability of the binding relationship between the test ligand and receptor under 

physiological settings (Chairunisa et al., 2023). The simulation was ran for 15ns using Open MM 

software and Google colab, which was linked to Google Drive. 

The RMSD, RMSF, and RG values were produced and assessed based on the results of research 

conducted on the best compound obtained in the molecular docking simulation, namely the molecule 

Rutin on the ER- receptor. The Rutin test ligand complex against the ER- receptor had an average 

RMSD fluctuation value of 1.48 with the highest fluctuation of 1.89, while analysis of the RMSD value 

of the native ligand Genistein against the ER- receptor resulted in an average RMSD fluctuation value 

of 1.39 with the highest fluctuation of 1.89. According to the results of the RMSD study, the test ligand 

Rutin and the native ligand Genistein have a stable conformation since the average RMSD value is 5, 

although the test ligand Rutin has a 0.09 higher average value than the native ligand Genistein (Elfita 

et al., 2023).  According to the RMSF graph (shown in Figure 5), the results obtained for the Routine 

test ligand were amino acid residues that experienced high fluctuations, namely ASP 261, VAL 370, 

ALA 420, and MET 479, whereas high fluctuations occurred in the residues for the native ligand 



                ISSN: 2088 4559; e-ISSN: 2477 0256 

Pharmaciana Vol. 13, No. 3, Nov 2023, Page. 268 – 282 

 

 

 

 

278 

Genistein. ASP 261, GLN 450, and LYS 482 are amino acids. High fluctuations suggest that a 

conformational change has occurred, causing the bond in the binding site to become unstable and 

inactive. According to the low fluctuation of amino acid residues, the amino acid residues that 

experienced low fluctuations in the Routine test ligand were MET 295, LEU 298, GLU 305, MET 336, 

LEU 339, and ARG 346, while low fluctuations occurred in acid amino LEU 298, GLU 305, MET 

336, LEU 339, ARG 346, MET 295, and ILE 376 in the native ligand Genistein. Low fluctuations 

imply that the amino acid residues can bind stably and actively participate in the binding area. Both 

the test ligand complex and the native ligand can bind stably, although the native ligand Genistein is 

more stable than the conventional test ligand because low amino acid residues fluctuate more (Elfita et 

al., 2023). According to the RG value (shown in Figure 5), the test ligand Rutin and the native ligand 

Genistein had the same RG value at the start of the simulation. As the simulation progressed, there was 

an increase in fluctuation in the test ligand Routine, which indicated protein unfolding, but after that 

there was stability until the simulation ended, whereas there was a decrease in fluctuation in the native 

ligand Genistein, which indicated protein folding and lasted until the simulation ended. The RG 

analysis results demonstrate that both the Routin test ligand and the native ligand (Genistein) are stable 

during the simulation procedure, although the native ligand (Genistein) is more stable than the rutin. 

Figure 5 shows the RMSD, RMSF, and Radyus of Gyration Graph for 1QKM 15ns Ligand-Receptor 

Complex. 

 

 

 

 
 

 

Figure 5. RMSD, RMSF, and radyus of gyration graph for 1QKM 15ns ligand-receptor complex 

 

CONCLUSION 

The results of in silico testing through pharmacophore modeling, molecular docking, molecular 

dynamic and toxicity prediction showed that rutin has the potential to be a therapeutic candidate for 

the treatment of breast cancer that targets the ER- β receptor. The pharmacophore study results show 

that the Rutin compound has a fitscore value of 45.81%, molecular docking simulations show a Gibbs 
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free energy (G) value of Rutin of -10.6 kcal/mol, which is lower than the comparison ligand, and 

molecular dynamics simulations show that the compound has good stability when binding to the 

receptor. However, because it does not match the ADME prediction and Lipinsky's rule of five, rutin 

must be optimalization to improve its pharmacokinetic and pharmacological profile before it can be 

further explored as a therapeutic option for the treatment of breast cancer that targets the ER- receptor. 
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Table 6. Results of lipinski's rule of five analysis, pharmacokinetics and toxicity analysis 

Compound 

Lipinski's Rule of Five Analysis Pharmacokinetics and Toxicity Analysis 

MW 

(g/mol) 

H 

Donor 

H 

Acceptor 
Log P 

Absorption Distribution Toxicity 

HIA (%) 
CaCO-2 Cell 

(nm sec) 

Plasma Protein 

Binding (%) 
Ames Test Carsinogenity  

Cyanidin-3,5-O-diglucosid 580 0 16 -3,69 2,16*** 3,23*** 47,73** Non Mutagen Negative 

Quercitrin 428 0 11 0 24,94** 7,37** 64,95** Non Mutagen Negative 

Peonidin 3,5-diglucosside 592 0 16 -1,77 4,27*** 3,83*** 29,76** Non Mutagen Negative 

Pelargonidin-3-glucoside 412 0 10 -2,19 39,14** 6,59** 77,6** Non Mutagen Negative 

Procyanidin B2 552 0 12 -0,71 19,51*** 13,67** 100* Non Mutagen Negative 

Peonidin-3-Glukosid 475 0 11 0 35,22** 6,84** 65,4** Non Mutagen Negative 

Procyanidin B1 552 0 12 0 19,51*** 13,67** 100* Non Mutagen Negative 

Cyanidin-3-O-Glukosid 463 0 11 -1,28 19,72*** 5,92** 79,61** Non Mutagen Positive 

Cyanidin 3-glucoside 463 0 11 -1,28 19,72*** 5,92** 79,61** Non Mutagen Negative 

Procyanidin A2 552 0 12 -2,83 35,29** 9,23** 100* Non Mutagen Negative 

2',4'-Dihydroxy-6'-Methoxy-3-

Methyldihidrochalcone 
268 0 4 0,57 92,76* 18,49** 96,08* Mutagen 

Negative 

Stercurensin 268 0 4 0,57 93,03* 18,43** 92,06* Mutagen Negative 

Kaempferol-3-glucoside 428 0 11 0 25,17** 11,14** 57,57** Non Mutagen Negative 

Isorhamnetin-3-glucoside 456 0 12 0 21,6** 9,93** 47,83** Non Mutagen Negative 

Isoquercitrin 444 0 12 0 11,77*** 9,43** 59,15** Non Mutagen Negative 

(-)-Epicatechin 276 0 6 -1,56 66,7** 0,65*** 100* Mutagen Negative 

Quercetin 292 0 7 0 63,48** 3,41*** 93,23* Mutagen Negative 

(+)-Catechin 276 0 6 -1,56 66,7** 0,65*** 100* Mutagen Negative 

Morin 292 0 7 0 63,49** 17,1** 91,62* Mutagen Negative 

Myricitrin 444 0 12 0 11,64*** 6,14** 65,37** Non Mutagen Negative 

Chlorogenic Acid 336 0 9 0 20,42** 18,71** 41,96** Mutagen Positive 

Myricetin-3-

(3''galloylrhamnoside) 
592 0 16 0 4,07*** 7,47** 100* Non Mutagen 

Positive 

Mearnsitrin 456 0 12 0 21,45** 6,21** 55,6** Non Mutagen Negative 

(-)-Epicatechin gallate 424 0 10 -2,88 40,58** 13,21** 100* Non Mutagen Negative 

Desmanthin1 592 0 16 0 4,07*** 13,67** 100* Non Mutagen Positif 

Rutin 580 0 16 0 2,86*** 7,91** 43, 89** Non Mutagen Negative 
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Compound 

Lipinski's Rule of Five Analysis Pharmacokinetics and Toxicity Analysis 

MW 

(g/mol) 

H 

Donor 

H 

Acceptor 
Log P 

Absorption Distribution Toxicity 

HIA (%) 
CaCO-2 Cell 

(nm sec) 

Plasma Protein 

Binding (%) 
Ames Test Carsinogenity  

Ursolic Acid 408 0 3 0,42 95,99* 21,86** 100* Non Mutagen Positive 

 

Information
HIA(%):  
70-100 is well absorbed 

20-70 absorbed enough 

<20 poorly adsorbed 

 

CaCo-2(nm) sec): 
>70 high permeability 

4-70 medium permeability 

<4 low permeability 

PPB (%): 
>90 tightly bound 

<90 weakly bound 


