HASIL_60030476

by Tif 60030476

Submission date: 29-Jun-2022 08:35AM (UTC+0700)

Submission ID: 1864383059

File name: INFORMATIKA_60030476 - Ardiansyah MCs.docx (78.06K)
Word count: 3702

Character count: 19960

Optimizing SVM Hyperparameters using Predatory
Swarms Algorithms for Use Case Points Estimation

Abstract— The productivity factor is one of the key cost
drivers in use case points estimation. However, this factor is
uncertain because it is obtained from experts’ guesses and does
not depend on reliable historical data. This study aims to
optimize the hyperparameters of the support vector machine
technique through the use of three predatory-inspired
algorithms, namely, Komodo mlipir algorithm, Grey wolf
optimization, and Reptile search algorithm in predicting
productivity factor rate. The optimizers searched for t best
hyperparameter value to get an optimum hyperplane. In this
work, we developed a hybrid model that consists of three
primary stages: cluster generation using bisecting k-Medoids,
prediction using an optimized support vector machine, and
estimation using multiple linear regression. The hybrid model
was evaluated using industrial and student projects datasets.
Detailed investigations demonstrated that the komodo mlipir
algorithm yielded the best mean value of 3653 and 739.88,
respectively, which has a significantly better hyperparameter of
support vector machine modelin predicting productivity factors
among the reptile search algorithm for datasets 4 and 5 as of
0.03 (p < 0.05), but there is no significant difference among the
grey wolf optimizer (p > 0.05). Meanwhile, the grey wolf
optimizer obtained the best mean value of 366.47, with a
significantly better hyperparameter compared with the reptile
search algorithm for dataset four as of 0.047 (p < 0.05).

Keywords—effort es:frmm. productivity factor, support
vector machine, optimization, use case points

I. INTRODUCTION

Use Case Points (UCP) is a prominent algorithmic
software f’(n‘t estimation framework supporting the
planning phase of the software development life cycle. UCP
estimates an effort by multiplying the software project size
with the productivity factor (PF). PF reflects the productivity
rate of the team to finish a project. There are several
approaches to determining PF value: using the fixed number,
which is equal to 20 person-hours (PH) per 1 UCP [1], three-
level PF [2], linear regression [3], [4], and machine learning
[5]. UCP uses 20 PH or three-level PF values when the
historical dataset is absent.

In contrast, regression and machine learning is used when
the historical dataset is available. Using a fixed number of PF
has uncertainty issues because it is obtained from expert
guessing and does not rely on the historical dataset. Several
studies [2], [6] have demonstrated that PF is highly
influenced by the environmental factor, which is part of the
complexity factor in UCP. Moreover, [5] successfully
predicts the PF value using class decomposition techniques
[7]. Hence, we can further use the prediction model of
machine learning and data mining to predict the productivity
factor.

A support vector machine (SVM) is a well-known
prediction or classifier algorithm. SVM is suitable for
generalization and has numerous implementations in different
fields, such as image processing, disease diagnosis,
hydrology, and signal classification. However, SVM heavily

NOOC-N-XXNCXXXX-X/XXEXX.00 @20XX TEEE

relies on the quality of hyper-parameter value, which is the
penalty parameter (C), and the kernel function gamma (y) [8],
[9]. The proper hyper-parameter values will increase
prediction and estimation performance because they lead to
the optimum hyperplane.

There are many examples of metaheuristic optimizers such
as particle swarm optimization (PSO), genetic algorithm
(GA), bat algorithm (BA), whale optimization algorithm
(WOA), moth optimization algorithm (MOA), komodo mlipir
algorithm (KMA), grey wolf optimizer (GWOQ), and reptile
search algorithms (RSA). Between them, KMA, GWO, and
RSA are grouped as predatory-based algorithms. This
algorithm has some benefits, such as small population size,
high scalability, effective exploration, and handling various
constraints problems.

Metaheuristic optimization algorithms are widely used to
tune the SVM hyperparameters. Several studies have
demonstrated the application of this hybridization, such as
particle swarm optimization (PSO) [10] and evolutionary
competitive swarm optimization (ECSO) [11] for medical
disease diagnosis, moth flame optimization (MFO) for
forecasting the tunnel boring machine (TBM) advance rate
(AR) [12], grey wolf optimizer (GWO) for phishing website
detection [13], Harris Hawks optimization (HHO) for
Pieimical descriptor selection [14], and social ski driver (SSD)
algorithm for the classification of imbalanced data [15]. These
hybrid methods show that optimizing the hyperparameter of
the SVM is yielded competitive results.

Despite the promising results, however, this kind of hybijize]
approach in software effort estimation studies is still absent to
the best of our knowledge. Therefore, based on the argument
above, this study aims to optimize the hyperparameter of the
support vector machine to get optimum hyperplane and
improve the accuracy rate of the UCP effort estimation. The
contribution of this study is to be the first empirical study
using predatory-inspired algorithms for optimizing SVM
hyperparameters in theﬂf’lw;u‘e effort estimation field.

The remainder of this paper is constructed as follows:
Section 2 describes the theoretical foundation of this
nicam::h: Section 3 specifies the material and proposed
methods; Section 4 presents and discusses the experimental
results, and Section 5 describes the conclusion and future
work recommendation of this study.

II. THEORETICAL BACKGROUND

There are three primary trends in the study of use case
points effort estimation: modification of the UCP sizing
technique, simplifying B.I examining the UCP, and
hybridizing the UCP with machine learning and data naing
techniques. Several studies proposed the reconstruction of the
UCP sizing technique. In [16] modified the use case
complexity weight using fuzzy theory, while [17]
successfully optimized this modified weight. In [18] added
two new variables, the size-transactions and entity objects
computed from the use case description. The study of [19]

has modified the complexity assessment of actors and
handled the non-functional requirements. This study made an
essential contribution to the adaptability of the UCP for
incremental development. Ref [20], [21] czaniucd and
simplified the UCP to understand the impacts of technical and
cnvir()nmcntala)mplcxity factors. The authors sug gested that
adjusting the environmental factors based on the type of
organization will improve the estimation preai()n. ‘Whereas
[22], [23] excluded several parts of UCP to simplify the
calculation process of the UCP. The investigator claimed that
these parts are insignificant concerning the effort estimation.
Recently, [24] optimized the correction factors (ECF and
TCF) and multiple regression models to improve the
estimation accuracy of the modified UCP. The utilization of
machine learning and data mining techniques to improve
UCP performance has been studied in recent years. In [4]
built cooperation between effort, UCP, and productivity by
mtroducing a l()aneur regression model. This study was
then followed by a hybrid model which predicts productivity
factor and effort estimation from historical data at the same
time [5].

Meanwhile, [25] estimated an effort based on UCP and
team productivity using the Treebost model. Indeed, we can
scrutinize that none of the above studies that simultaneously
predict PF and estimate an effort using a hybrid model has
tried to improve the quality of the SVM hyperparameter. This
study improved the work of [5] by introducing SVM
hyperparameter values using predatory swarm-inspired
optimization algorithms.

A. Use Case Points Estimation

Gustav Karner introduced the UCP estimation model in
1993 to calculate the size of the object-oriented-based
software project [1]. The UCP converted use case
specification and diagram elements in the UML
documentation into a project size. A well-defined procedure
should be taken to achieve high-quality ae metrics as
follows. First, weighting the actor elements in the use case
diagram by classifying them into three-level categories:
simple, average, and complex. Second, computes Unadjusted
Actor Weighting (UAW) using Eq. (1).

UAW =Y3_, weight of actor; “ICEOI‘; ()

where weight of actor; is the weight factor classified as
simple = 1, average = 2, and complex = 3, while, actor; is the
number of actors clalsaed based on their category from use
case diagrams. Third, based on the number of transactions in
use specification, weight the use cases by classifying
them into one of three classes: simple, average, and complex.
The notion of the transaction is introduced by [26], [27],
which is defined as an interaction between the actor and the
system indicated by a stimulus and response. Fourth, calculate
Unadjusted Use Case Weighting (UUCW) using Eq. (2).

UUCW = ¥i_, weight of use caﬁ- *Uuse case; (2)

where weight of use case; is the weight factor classified as
simple =5, average = 10, and complex = 15, and use case; is
the number of use case that has been classified based on their
transactions from use case specifications. Fifth, compute

Unadjusted Use Case Points (UUCP) by summation of UAW
and UUCW (see Eq. (3)).

UuCP = UAW +&U’CW (3)
13

Sixth, define Technical Complexity Factor (TCF) value
and Environmental Complexity Factor (ECF). TCF is the
factor that contributes a significant impact on project
performance. TCF is computed by summation of 13 technical
factors (F;, Fo, ..., F;3) classified by the estimator using 5
Likert scales, as notated by Eq. (4).

TCF = 0.6+ (0.01 * Y12, Tf; * Scale;) 4)

where Tf; is the technical factor weight, and Scale; is the
score from 5 Likert scales. Meanwhile, ECF dramatically
impacts the productivity of the project. TCF is calculated by
summating 8 environmental factors (E;, E» ..., Eg) classified
by the estimator using 5 Likert scales, as shown in Eq. (5).

ECF =14+ (—0.03 + Y&, Ef; * Scale;) (5)

where Ef; is the environmental factor weight and Scale; is the
score from 5 Likert scales. Finally, the software size is
computed by multiplying UUCP, TCF, and ECF formulated
in Eq. (6).

size = UUCP *»TCF » ECF (6)

Finally, the estimated effort is computed by multiplying the
size with the productivity factor (PF). The standard PF of the
Karner model is 20.

B. Support Vector Machine

SVM is one of the binary classifier algorithms that
apumled hyperplane as its essential characteristics. The basic
notion of SVM is that given training data
{(x1,%1), .., (X0, ¥)}. The input space pattern is x € RM
where M represents the number of in feature or
dimensional and the output variable is y € R. The data points
are separated into two classes with a maximal margin by the
SVM. Margin is the maximum width of the slab parallel to
the hyperplane with no interior data points. The hyperplane is
formulated as y = wTX + b, where X is the input vector, w is
a vector, and b is a scalar. SVM used hyper-parameter C and
gamma (). C is a parameter that defines to what extent each
misclassification is penalized. Hence, the SVM model as in
Eq. (7) solves the following problem:

mi —||w||2 +cZ £

Subject to y;(wTx; + b) = 1 &i=1,. (7

=0 i=1,..,n

where &; is a slack variable for regularization to prevent the
hyperplane from overfitting the dataset. There are four kernel
function parameters: polynomial, radial basis, Gaussian, and
linear. Kernel functions transpose data to higher dimensions.
This study uses the radial basis kernel function due to its
accuracy and reliable performance as formulated in Eq. (8).

K (i, %) = exp(—]lx = x|[*) ®

III. METHODOLOGY AND EXPERIMENTAL SETUP

A. Dataset preparation

An appropriate number of projects is essential for
comparison with previous studies. Thus, we employed five
datasets that have been common for effort estimation studies,
especially for the Ucmn()del. All datasets comprise ten
features: actual effort, size, E1, E2, E3, E4, E5, E6, E7, and
ES8. Forty-five industrial and 65 educational projects are
assigned as the first (DS1) and the second (DS2) datasets,
respectively. The third dataset (DS3) is generated from the
merger of DS1 and DS2 plus ten additional data. As a result,
D53 contains 120 data in total. In [28] argu@zlt the structure
of DS1 and DS2 was the same and enabled us to scrutinize the
benefit of the proposed model over the heterogeneous dataset.
The fourth (DS4) and fifth dataset (DS5) are generated from
the selection of each data point based on their size as ruled by
Eq.(9). Hence, DS4 and DSS5 contain 61 and 59 data points,
respectively.

small,if 100 > UCP
medium, if 100 < UCP <300 (9)
large,if 300 < UCP

project size =

B. Cluster garariml

Bisecting k-Medoids is a clustering method that applies a
basic k-medoids algorithm by splitting each cluster into two
sub-clusters to construct a binary tree of clusters [5].
Algorithm adeﬂnes the procedure of bisecting k-Medoids.
First, set a dataset as the initial cluster. Second, bisects each
cluster into two coherent clusters. Third, compute the variance
of clusters by Eq. (10).

variance = %E?ﬂw;ﬂ'n"xf - v;"z (10)
o
where N is the number of data points Ele dataset, x; is the
jth data point, v; is the center of the ith cluster (C;), and ||. || is
the Euclidean distance norm.

A cluster that has a more minor variance shows a high
h()na;eneity. The k-Medoids procedure stops bisecting when
the variance of the parent cluster is smaller than the largest
variance of both child clusters. Contrary, the clustering
algorithm continues to bisect.

Algorithm 1. Bisecting k-Medoids

(1) Input: Ds1, D52, DS3, DS54, DS5

(2) Output: The set of N clusters 5={Ci,Cs,Ca,..,Cu}
(3) Initialization: V=X, 5={}, nextlevel={}

(4) while size(V)>@ do

(5) foreach cluster C in V

(6) comp := variance(C) by Eqg. (8)
(7) [€1,C2] := k-Medoids(C,2)

(8) compy; := variance(Ci) by Eq. (8)
(9) comp: := variance((C:) by Eg. (8)
(10) if(max(compi, comp:)<comp)

(11) nextLevel := nextlLevel U {Ci,Ci}
(12) else

(13) S =5 U {C}

(14) end if

(15) end foreach

(16) V := nextlLevel

(17) nextLevel := {}
(18)end while

C. Parameter settings

The kernel function is an essential hyperparameter in
SVYM. It was able to solve the problems with too many
mlensi(ms. There are four general kernel functions:
Gaussian, radial basis function (RBF), polynomial, and the
sigmoid. The Gaussian and RBF have good generalization
capability for numerous kinds of datasets and are popular for
practical use [29]. Thus, in this work, we utilize the RBF as
the kernel function. We follow the variable range of hyper-
parameter values [001, 100] for C, and [0.01, 50] for y as
introduced in [30]. The complete parameter settings for all
optimizers are described in Table 1.

TABLE L. PARAMETER SETTINGS
Algorithms Parameters Ref.
SVM+KMA niz 3, n2: 200, 02y 20, 0240, 200, pr0.5, pa2: [31]
05, d =2 dy1 0.5, iteration: 10, Kemel: RBF
SVM+GWO | population: 10, iteration: 10, Kernel: RBF, a was | [32]
linearly decreased from 2 to 0
SVM+RSA Crocodiles: 10, a: 0.1, g 0.1, iteration: 10, | [33]
Kernel: RBF

D. Evaluation criteria

The result of the estimation model must be evaluated by
a reliable evaluation measure. In this regard, we use Mean
Absolute Error (MAE), see Eq. (11).

aAb":%Eiidﬂ—m (11)

where N is the number of data points, }7; is the estimated
effort, and Y; is the actual effort. This accuracy measure is
also assigned as the objective function for the optimization
process to get the minimum MAE.

E. Proposed Method

The proposed method consists of three main stages:
cluster generation, optimization of productivity prediction,
and effort estimation. Algorithm 1 is employed to generate
clusters. For each run, the algorithm generates different
clusters. To predict E productivity, SVM accepts the test set,
which consists of eight environmental complexity factors
(ECF) as input, and productivity factor value as the output or
predicted PF. It is important to note that the PF value is from
the medoid of a predicted cluster. PF value is a result of the
division of actual effort and size. The optimizer algorithms
search for the best hyperparameter value to minimize the
objective function formulated in Eq. (11). The combination
of SVM and predatory optimizers forms the hybrid method.
Details of each algorithm can be found at [32] for GWO, [31]
for KMA , and [33] for RSA.

Next, the estimated effort is calculated using multiple
linear regression based on the matrix approach as notated in
Eq. (12).

V= ot BuXy+ BoXz + 1y (12)

where ¥ is estimated effort as a dependent variable, X; and
X, 1s independent variable, size and predicted PF,
respectively. Meanwhile, By is a constant, §; and 8, is the
coefficient parameter of regression. The experiments are
equipped with a computer Core-i7-8550U, 1.80Ghz CPU, 16

GB RAM, and Microsoft Windows 10 64-bit. Python 9.3 with
Sklearn library is used to build a prediction model, and PHP
8.0.11 to develop the optimizer algorithms. The source code
of the experiment can be found at https://bit.ly/39V7UZu.

IV. RESULTS AND DISCUSSIONS

This study utilizes thirteen well-known mathematical
functions for optimization algorithms to evaluate the
proposed method [34], [35]. The first seven functions are
unimodal, and the rests are multimodal functions. Unimodal
functions are suitable to assess optimizers' exploitation
capability because their characteristics only have one peak or
global optimum. Meanwhile, multimodal functions are
qualified to evaluate optimizers’ exploration and local
optimum avoidance capability.

Table II shows the results of unimodal benchmark
functions. We can observe that GWO outperforms the KMA
and RSA algorithm in mofJ:iases. In other words, GWO
yields the best result in six test functions of F1, F3, F4, F5,
F6,and F7. Atthe same time, RSA gained the best result only
in the test function of F2. At the same time, Table III shows
the results of multimodal benchmark functions. We can
observe that GWO outperforms the KMA and RSA in four
test functions of F8, F9, F10, and F11. In contrast, KMA
outperforms the GWO and RSA in two test functions of F12

and F13

The Wilcoxon rank-sum test (WSRT) is employed as the
statistical test to confirm the difference between the results
produced by different optimizers. From Table 1V, we can
observe that GWO is significantly better than KMA and RSA
for ten benchmark functions (F1, F2-F11), where all the p-
value is less than 0.05. Meanwhile, KMA is considerably
better than GWO and RSA for F12 and F13 functions, where
both p-values are less than 0.05. Moreover, in c F10
function, GWO vs. RSA is not significantly better, with a p-
value greater than 0.05. Finally, RSA is substantially better
in the F2 function, where the p-value is less than 0.05.

Next, all optimization algorithms are compared to each
other. For fairness, we create an initial seed population to get
good comparison results. Hence, the optimizers used the
same y and C values. The optimizer algorithms and the five
datasets were executed for 30 runs. Table V shows the results
of the runs. From the table, we can observe that KMA yielded
the best mean value for DS3, DS4, and DS5, while GWO
yielded the best mean value for DS1 and DS2. Nevertheless,
based on the statistical test (see Table VI),only KMA gained
significant differences from RSA and GWO for DS4 and
DS5. These results revealed that separating the dataset based
on their project size improved performance.

TABLE IL RESULTS OF UNIMODAL BENCHMARK FUNCTIONS

Function KMA GWO RSA
F1 Avg 13265.59 3.19E-48 67761
Std 12401.28 1.72E-47 669035
F2 Avg -542E+21 -8 8OE+20 -T.20E+22
Sud 1.76E+22 1.31E+05 1.02E+23
F3 Avg 200564 1.68E-53 094180 88
Std 203888 8.30E-53 11822083
F4 Avg 37.28 3.95E-30 87.37
Std 20.45 2.05E-29 2.85
F5 Avg 2.5E+07 28.88 2.6E+08
Std SE+07 0077 4.7E+07
Fe Avg 12715 4.47 67800 .64
Sud 13678.36 1.87 6731.36
F1 Avg 27.19 8.71 13795
Std 20.16 0.41 1922
TABLE IIL RESULTS OF MULTIMODAL BENCHMARK FUNCTIONS
Function KMA GWO RSA
F8 Avg -2286.4 -2686.65 -2270.11
Std 4115 9.09E-13 42775
Fo Avg 62734 4 [} 440.17
Std 45129 1] 3225
Fio Avg 192 -1.26 3.01
Std 0.08 .69 8.97
Fil Avg 9.54 -6.5E+07 628.16
Std 2991 1. 96E+08 59.76
Fl2 Avg -4.01E+10 -3.91E+10 -3.5E+10
B Std 7.82E+09 1] 8.5E+09
Fl3 Avg -7.5E+10 -6.99E+10 -0.1E+10
Std 1.6E+10 3.052E-05 1.6E+10
1
TABLEIV. '[‘.ms P-VALUES OF WILCOXON RANK-SUM STATISTICAL
TEST FOR 13 MATHEMATIC AL BENCHMARK FUNCTIONS
Funection KMA vs GWO KMA vs RSA GWO vs
RSA
F1 2.0E-D6 20E-06 2.0E-06
2 FiE-0 27E05 1.2E-05
F3 2.0E-06 20E-06 2.0E-06
F4 2.0E-06 4 0E-06 2 0E-06
F5 2.0E-D6 20E-06 2.0E-06
F6 2.0E-06 2 0E-06 2 0E-06
F7 2.0E-D6 20E-06 2.0E-06
s BE-06 1 2E-05 11E-04
F9 2.0E-06 20E-06 2.0E-06
F10 2 06 1 OE-05 8.8E01
F11 1.0E-05 20E-06 2.0E-06
F12 3.7E-05 1 5E-04 2 0E-02
F13 3.1E-05 6.7E-05 6.7E-03
TABLE V. BENCHMARK RESULTS OF OPTIMIZER ALGORITHMS FOR
ALL DATASETS
Dataset Metric KMA GWO RSA
DS1 Best 491 53 50268 52318
Worst 1031.75 956.10 1003.96
Mean 67521 67261 680,53
Stdev 108 .62 11464 139.95
DS2 Best 38285 30437 379.29
Worst 052.13 769.06 805.71
Mean 520.18 50749 529.41
Stdev 128 .74 8231 105.02
DS3 Best 43522 43861 443.50
Worst 006 .64 04033 051.48
Mean 590 56 60532 59530
Stdev 144 04 11727 118.50
DS4 Best 26229 26395 316.59
Worst 81722 58875 450.83
Mean 36530 36647 387.97
Stdev 121.11 7904 33.85

DS5 Best 57109 593.20 644.29
Worst 1528.85 1205.15 035.08
Mean 73988 768.43 786.17
Stdev 188.50 159.17 77.312
FMR 182 194 2.4
Rank 1 2 3
TABLE VL THE P-VALUES OF WILCOXON RANK-SUM STATISTICAL

TEST OF KMA, GWO, AND RSA USING FIVE DATASETS

Dataset | KMA vs. GWO | KMEEBs.RSA | GWOvs. RSA
DS1 93E-01 6.9E-01 61601
DS2 6% 6.0E-01 1.6E-01
DS3 6.9E. 8.3E-01 9.8E-01
DS4 3.8E-01 30E-02 4.7E-02
DSS 1L.8E-01 11E-0, 38E01

Besides the performance results, we further explore the
diversity analysis of the best solution 1 the benchmark
algorithms for DS4 and DS5. Fig. 1 shows that the n:dian of
KMA is smaller compared with GWO and RSA. Based on
the interquartile box, we can observe that KMA has a smaller
shape than GWO, indicating that KMA has a lower spread.

G
£
2
=
=
2 1
= *
1
s
S B0 1
8 20
5 u o
% 15
1] o
®
]
a
Y
£ s
T
w
<
=

200

T T T
cwo wa s
1 Algorithms.

Fig. 1. Best solution diversity analysis for DS4

Finally, Fig. 2 describes the diversity analysis of DS5.
Based on the boxplot of the figure, we observed lhaltnMA
has the lowest median compared with GWO and RSA. Based
on the interquartile box, we can find that KMA has a smaller
shape compared with GWO. This shape indicated that KMA
has a lower spread and reliable results.

L)
*
1.500-]
"
e
2
2
o 1 -
2 o
< o
5
=
2 Ed
S *
a o
pu &
& 1.000-]
& 2
bt o
]
a
3
Ed
- TEH
5
w
<
=
s
T T T
(=10 KA R35A
Algerithms

Fig. 2. Best solution diversity analysis for DS3

V. CONCLUSION

This study shows that Komodo Mlipir Algorithm (KMA)
performed significantly better than Reptile Search Algorithm
(RSA) for DS4 and DS5 as of 0.03 (p < 0.05). Meanwhile,
there were no significant differences in accuracy performance
between all pairs of optimizer algorithms for DS1, DS2, and
DS3 with p-values of WSRT greater than 0.05. We can
observe that there was no significant difference between
KMA and Grey W()linplimizcr (GWO) for all datasets.
Overall, KMA yielded Friedman mean rank of 1.82, with p-
values of the Wilcoxon rank-sum rank test of less than 0.05.

According to this result, our work highlights the critical
role of optimization algorithms in this field. The implication
of this study is that a software organization project manager
can utilize this hybrid approach to estimate the future project
using their historical dataset. Furthermore, classifying the
dataset based on the project size leads to better performance.
For future work, adding more heterogeneous datasets and
other recent optimizer algorithms would be better to achieve
the more robust and confident performance of this hybrid
approach.

HASIL_60030476

ORIGINALITY REPORT

15, 10, 14« 4

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Ardiansyah Ardiansyah, Ridi Ferdiana, 30/
Adhistya Erna Permanasari. "MUCPSO: A ’
Modified Chaotic Particle Swarm Optimization

with Uniform Initialization for Optimizing

Software Effort Estimation”, Applied Sciences,

2022
Publication
coek.info
Internet Source 3%
Mohammad Azzeh, Ali Bou Nassif. "A hybrid 2
%

model for estimating software project effort
from Use Case Points", Applied Soft
Computing, 2016

Publication

digital.library.unt.edu

Int§netSource y 1%
d-nb.info

Internet Source 1%
repository.uwl.ac.uk

H IrwteIr:21etSourcey <1 %

=

WWW.UV.EeS

Internet Source

<1%

bugs.ruby-lang.or

E Inter%et Sourcey g g <1 %
digitalcommons.murraystate.edu

n IntegrnetSource y <1 %
erepository.uonbi.ac.ke

InternFe)tSource y <1 %
repository.tudelft.nl

InteFr)netSourcey <1 %
Azzeh, Mohammad, and Ali Bou Nassif. "A

. — . gl 7
hybrid model for estimating software project
effort from Use Case Points", Applied Soft
Computing, 2016.
Publication

E Prayitno, J Siregar, Y N Dewi, C Bachri, L <1 y
Indriyani, S Ma'arif. "Use Case Points (UCP) °
with 3 Point in Program Evaluation and
Review Technique (PERT) to Estimate Effort
Software", Journal of Physics: Conference
Series, 2020
Publication
Submitted to King's College

Student Paper g g <1 %
Submitted to University of Florida

Student Paper y <1 %

Rath, Santanu Kumar, Barada Prasanna <1 o
Acharya, and Shashank Mouli Satapathy. ’
"Early stage software effort estimation using
random forest technique based on use case
points", IET Software, 2016.

Publication
en.wikipedia.or

InternetSouPce g <1 %
mc.minia.edu.e

Internet Source g <1 %
Submitted to Australian National Universit

Student Paper y <1 %

Mohammad Azzeh, Ali Bou Nassif. "Analyzing <1 o
the relationship between project productivity ’
and environment factors in the use case
points method", Journal of Software: Evolution
and Process, 2017
Publication
www. hindawi.com

Internet Source <1 %

Ali Bou Nassif, Luiz Fernando Capretz, Danny <1 o

Ho. "Estimating Software Effort Based on Use

Case Point Model Using Sugeno Fuzzy
Inference System", 2011 IEEE 23rd
International Conference on Tools with
Artificial Intelligence, 2011

Publication

www.ncbi.nlm.nih.gov
Internet Source g <1 %
www.steveborgatti.com
Internet Source 5 <1 %
"Radiation Dose to Patients from <1 o
Radiopharmaceuticals", Annals of the ICRP, °
1987
Publication
Jack H. C. Wu, Jacky W. Keung. "Utilizing <1 o
cluster quality in hierarchical clustering for ’
analogy-based software effort estimation"”,
2017 8th IEEE International Conference on
Software Engineering and Service Science
(ICSESS), 2017
Publication
Tri Fennia Lesmana, Sani Muhamad Isa, Nico <1 o
Surantha. "Sleep Stage Identification Using ’
the Combination of ELM and PSO Based on
ECG Signal and HRV", 2018 3rd International
Conference on Computer and Communication
Systems (ICCCS), 2018
Publication
link.springer.com
InternetSF:)urceg <1 %
Alaa Tharwat, Thomas Gabel. "Parameters <1 y
0

optimization of support vector machines for
imbalanced data using social ski driver

algorithm", Neural Computing and
Applications, 2019

Publication

Meenakshi Saroha, Shashank Sahu. "Tools &
methods for software effort estimation using
use case points model — A review",
International Conference on Computing,
Communication & Automation, 2015

Publication

<1%

Exclude quotes On Exclude matches Off

Exclude bibliography On

