
Optimizing SVM Hyperparameters using Predatory

Swarms Algorithms for Use Case Points Estimation

Ardiansyah

Department of Electrical Engineering

and Information Technology

Universitas Gadjah Mada

Yogyakarta, Indonesia

ardiansyah2018@mail.ugm.ac.id

Department of Informatics, Faculty of

Industrial Technology, Universitas

Ahmad Dahlan Yogyakarta, Indonesia

ardiansyah@tif.uad.ac.id

Ridi Ferdiana

Department of Electrical Engineering

and Information Technology

Universitas Gadjah Mada

Yogyakarta, Indonesia

ridi@ugm.ac.id

Adhistya Erna Permanasari

Department of Electrical Engineering

and Information Technology

Universitas Gadjah Mada

Yogyakarta, Indonesia

adhistya@ugm.ac.id

Abstract— The productivity factor is one of the key cost

drivers in use case points estimation. However, this factor is

uncertain because it is obtained from experts’ guesses and does

not depend on reliable historical data. This study aims to

optimize the hyperparameters of the support vector machine

technique through the use of three predatory-inspired

algorithms, namely, Komodo mlipir algorithm, Grey wolf

optimization, and Reptile search algorithm in predicting

productivity factor rate. The optimizers searched for the best

hyperparameter value to get an optimum hyperplane. In this

work, we developed a hybrid model that consists of three

primary stages: cluster generation using bisecting k-Medoids,

prediction using an optimized support vector machine, and

estimation using multiple linear regression. The hybrid model

was evaluated using industrial and student projects datasets.

Detailed investigations demonstrated that the komodo mlipir

algorithm yielded the best mean value of 365.3 and 739.88,

respectively, which has a significantly better hyperparameter of

support vector machine model in predicting productivity factors

among the reptile search algorithm for datasets 4 and 5 as of

0.03 (p < 0.05), but there is no significant difference among the

grey wolf optimizer (p > 0.05). Meanwhile, the grey wolf

optimizer obtained the best mean value of 366.47, with a

significantly better hyperparameter compared with the reptile

search algorithm for dataset four as of 0.047 (p < 0.05).

Keywords—effort estimation, productivity factor, support

vector machine, optimization, use case points

I. INTRODUCTION

Use Case Points (UCP) is a prominent algorithmic

software effort estimation framework supporting the

planning phase of the software development life cycle. UCP

estimates an effort by multiplying the software project size

with the productivity factor (PF). PF reflects the productivity

rate of the team to finish a project. There are several

approaches to determining PF value: using the fixed number,

which is equal to 20 person-hours (PH) per 1 UCP [1], three-

level PF [2], linear regression [3], [4], and machine learning

[5]. UCP uses 20 PH or three-level PF values when the

historical dataset is absent.

In contrast, regression and machine learning is used when

the historical dataset is available. Using a fixed number of PF

has uncertainty issues because it is obtained from expert

guessing and does not rely on the historical dataset. Several

studies [2], [6] have demonstrated that PF is highly

influenced by the environmental factor, which is part of the

complexity factor in UCP. Moreover, [5] successfully

predicts the PF value using class decomposition techniques

[7]. Hence, we can further use the prediction model of

machine learning and data mining to predict the productivity

factor.

A support vector machine (SVM) is a well-known
prediction or classifier algorithm. SVM is suitable for
generalization and has numerous implementations in different
fields, such as image processing, disease diagnosis,
hydrology, and signal classification. However, SVM heavily
relies on the quality of hyper-parameter value, which is the
penalty parameter (C), and the kernel function gamma (γ) [8],
[9]. The proper hyper-parameter values will increase
prediction and estimation performance because they lead to
the optimum hyperplane.

There are many examples of metaheuristic optimizers such
as particle swarm optimization (PSO), genetic algorithm
(GA), bat algorithm (BA), whale optimization algorithm
(WOA), moth optimization algorithm (MOA), komodo mlipir
algorithm (KMA), grey wolf optimizer (GWO), and reptile
search algorithms (RSA). Between them, KMA, GWO, and
RSA are grouped as predatory-based algorithms. This
algorithm has some benefits, such as small population size,
high scalability, effective exploration, and handling various
constraints problems.

Metaheuristic optimization algorithms are widely used to
tune the SVM hyperparameters. Several studies have
demonstrated the application of this hybridization, such as
particle swarm optimization (PSO) [10] and evolutionary
competitive swarm optimization (ECSO) [11] for medical
disease diagnosis, moth flame optimization (MFO) for
forecasting the tunnel boring machine (TBM) advance rate
(AR) [12], grey wolf optimizer (GWO) for phishing website
detection [13], Harris Hawks optimization (HHO) for
chemical descriptor selection [14], and social ski driver (SSD)
algorithm for the classification of imbalanced data [15]. These
hybrid methods show that optimizing the hyperparameter of
the SVM is yielded competitive results.

Despite the promising results, however, this kind of hybrid
approach in software effort estimation studies is still absent to
the best of our knowledge. Therefore, based on the argument
above, this study aims to optimize the hyperparameter of the
support vector machine to get optimum hyperplane and

2022 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI2022) - 6-7 October 2022

90

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on November 17,2022 at 01:32:13 UTC from IEEE Xplore. Restrictions apply.

improve the accuracy rate of the UCP effort estimation. The
contribution of this study is to be the first empirical study
using predatory-inspired algorithms for optimizing SVM
hyperparameters in the software effort estimation field.

The remainder of this paper is constructed as follows:

Section 2 describes the theoretical foundation of this

research; Section 3 specifies the material and proposed

methods; Section 4 presents and discusses the experimental

results, and Section 5 describes the conclusion and future

work recommendation of this study.

II. THEORETICAL BACKGROUND

There are three primary trends in the study of use case

points effort estimation: modification of the UCP sizing

technique, simplifying and examining the UCP, and

hybridizing the UCP with machine learning and data mining

techniques. Several studies proposed the reconstruction of the

UCP sizing technique. In [16] modified the use case

complexity weight using fuzzy theory, while [17]

successfully optimized this modified weight. In [18] added

two new variables, the size-transactions and entity objects

computed from the use case description. The study of [19]

has modified the complexity assessment of actors and

handled the non-functional requirements. This study made an

essential contribution to the adaptability of the UCP for

incremental development. Ref [20], [21] examined and

simplified the UCP to understand the impacts of technical and

environmental complexity factors. The authors suggested that

adjusting the environmental factors based on the type of

organization will improve the estimation precision. Whereas

[22], [23] excluded several parts of UCP to simplify the

calculation process of the UCP. The investigator claimed that

these parts are insignificant concerning the effort estimation.

Recently, [24] optimized the correction factors (ECF and

TCF) and multiple regression models to improve the

estimation accuracy of the modified UCP. The utilization of

machine learning and data mining techniques to improve

UCP performance has been studied in recent years. In [4]

built cooperation between effort, UCP, and productivity by

introducing a log-linear regression model. This study was

then followed by a hybrid model which predicts productivity

factor and effort estimation from historical data at the same

time [5].

Meanwhile, [25] estimated an effort based on UCP and

team productivity using the Treebost model. Indeed, we can

scrutinize that none of the above studies that simultaneously

predict PF and estimate an effort using a hybrid model has

tried to improve the quality of the SVM hyperparameter. This

study improved the work of [5] by introducing SVM

hyperparameter values using predatory swarm-inspired

optimization algorithms.

A. Use Case Points Estimation

 Gustav Karner introduced the UCP estimation model in
1993 to calculate the size of the object-oriented-based
software project [1]. The UCP converted use case
specification and diagram elements in the UML
documentation into a project size. A well-defined procedure
should be taken to achieve high-quality size metrics as

follows. First, weighting the actor elements in the use case
diagram by classifying them into three-level categories:
simple, average, and complex. Second, computes Unadjusted
Actor Weighting (UAW) using Eq. (1). ��� = ∑ ���	ℎ�
� ���
�� ∗ ���
������ (1)

where ���	ℎ�
� ���
�� is the weight factor classified as
simple = 1, average = 2, and complex = 3, while, ���
�� is the
number of actors classified based on their category from use
case diagrams. Third, based on the number of transactions in
use case specification, weight the use cases by classifying
them into one of three classes: simple, average, and complex.
The notion of the transaction is introduced by [26], [27],
which is defined as an interaction between the actor and the
system indicated by a stimulus and response. Fourth, calculate
Unadjusted Use Case Weighting (UUCW) using Eq. (2). ���� = ∑ ���	ℎ�
� ��� ����� ∗ ��� ��������� (2)

where ���	ℎ�
� ��� ����� is the weight factor classified as
simple = 5, average = 10, and complex = 15, and ��� ����� is
the number of use case that has been classified based on their
transactions from use case specifications. Fifth, compute
Unadjusted Use Case Points (UUCP) by summation of UAW
and UUCW (see Eq. (3)). ���� = ��� + ���� (3)

 Sixth, define Technical Complexity Factor (TCF) value
and Environmental Complexity Factor (ECF). TCF is the
factor that contributes a significant impact on project
performance. TCF is computed by summation of 13 technical
factors (F1, F2, …, F13) classified by the estimator using 5
Likert scales, as notated by Eq. (4). ��� = 0.6 + !0.01 ∗ ∑ �������� ∗ #��$��% (4)

where ��� is the technical factor weight, and #��$�� is the

score from 5 Likert scales. Meanwhile, ECF dramatically

impacts the productivity of the project. TCF is calculated by

summating 8 environmental factors (E1, E2, …, E8) classified

by the estimator using 5 Likert scales, as shown in Eq. (5). &�� = 1.4 + !−0.03 ∗ ∑ &�� ∗ #��$��*��� % (5)

where &�� is the environmental factor weight and #��$�� is the
score from 5 Likert scales. Finally, the software size is
computed by multiplying UUCP, TCF, and ECF formulated
in Eq. (6). ��+� = ���� ∗ ��� ∗ &�� (6)

Finally, the estimated effort is computed by multiplying the
size with the productivity factor (PF). The standard PF of the
Karner model is 20.

B. Support Vector Machine

SVM is one of the binary classifier algorithms that

separated hyperplane as its essential characteristics. The basic

notion of SVM is that given training data {!-�, /�%, … , !-1 , /1%}. The input space pattern is - ∈ ℜ5 ,

where 6 represents the number of input feature or

dimensional and the output variable is / 7 ℜ. The data points

are separated into two classes with a maximal margin by the

91

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on November 17,2022 at 01:32:13 UTC from IEEE Xplore. Restrictions apply.

SVM. Margin is the maximum width of the slab parallel to

the hyperplane with no interior data points. The hyperplane is

formulated as / = �89 + :, where X is the input vector, w is

a vector, and b is a scalar. SVM used hyper-parameter C and

gamma (γ). C is a parameter that defines to what extent each

misclassification is penalized. Hence, the SVM model as in

Eq. (7) solves the following problem:

min>,?,@
12 ‖C‖D + � E F�1

���

Subject to /�!�8-� + :% ≥ 1 − F� , � = 1, … , H (7) F� ≥ 0, � = 1, … , H

where F� is a slack variable for regularization to prevent the

hyperplane from overfitting the dataset. There are four kernel

function parameters: polynomial, radial basis, Gaussian, and

linear. Kernel functions transpose data to higher dimensions.

This study uses the radial basis kernel function due to its

accuracy and reliable performance as formulated in Eq. (8).

IJ-� , -KL = exp !−PQ-� − -KQD% (8)

III. METHODOLOGY AND EXPERIMENTAL SETUP

A. Dataset preparation

An appropriate number of projects is essential for
comparison with previous studies. Thus, we employed five
datasets that have been common for effort estimation studies,
especially for the UCP model. All datasets comprise ten
features: actual effort, size, E1, E2, E3, E4, E5, E6, E7, and
E8. Forty-five industrial and 65 educational projects are
assigned as the first (DS1) and the second (DS2) datasets,
respectively. The third dataset (DS3) is generated from the
merger of DS1 and DS2 plus ten additional data. As a result,
DS3 contains 120 data in total. In [28] argued that the structure
of DS1 and DS2 was the same and enabled us to scrutinize the
benefit of the proposed model over the heterogeneous dataset.
The fourth (DS4) and fifth dataset (DS5) are generated from
the selection of each data point based on their size as ruled by
Eq. (9). Hence, DS4 and DS5 contain 61 and 59 data points,
respectively.

R�
S��� ��+� = T �U�$$, �� 100 > ���U�W��U, �� 100 ≤ ��� < 300$��	�, �� 300 < ��� (9)

B. Cluster generation

Bisecting k-Medoids is a clustering method that applies a
basic k-medoids algorithm by splitting each cluster into two
sub-clusters to construct a binary tree of clusters [5].
Algorithm 1 defines the procedure of bisecting k-Medoids.
First, set a dataset as the initial cluster. Second, bisects each
cluster into two coherent clusters. Third, compute the variance
of clusters by Eq. (10).

Z����H�� = �[∑ Q-K − Z�QD[K��,\]∈^_ (10)

where N is the number of data points in the dataset, -K is the

jth data point, Z� is the center of the ith cluster (��), and ‖. ‖ is
the Euclidean distance norm.

A cluster that has a more minor variance shows a high
homogeneity. The k-Medoids procedure stops bisecting when
the variance of the parent cluster is smaller than the largest
variance of both child clusters. Contrary, the clustering
algorithm continues to bisect.

Algorithm 1. Bisecting k-Medoids

(1) Input: DS1, DS2, DS3, DS4, DS5
(2) Output: The set of N clusters S={C1,C2,C3,…,CN}
(3) Initialization: V=X, S={}, nextLevel={}

(4) while size(V)>0 do
(5) foreach cluster C in V
(6) comp := variance(C) by Eq. (8)
(7) [C1,C2] := k-Medoids(C,2)
(8) comp1 := variance(C1) by Eq. (8)
(9) comp2 := variance(C2) by Eq. (8)
(10) if(max(comp1,comp2)<comp)
(11) nextLevel := nextLevel Ս {C1,C2}
(12) else
(13) S := S Ս {C}
(14) end if
(15) end foreach
(16) V := nextLevel
(17) nextLevel := {}
(18)end while

C. Parameter settings

The kernel function is an essential hyperparameter in
SVM. It was able to solve the problems with too many
dimensions. There are four general kernel functions:
Gaussian, radial basis function (RBF), polynomial, and the
sigmoid. The Gaussian and RBF have good generalization
capability for numerous kinds of datasets and are popular for
practical use [29]. Thus, in this work, we utilize the RBF as
the kernel function. We follow the variable range of hyper-
parameter values [0.01, 100] for C, and [0.01, 50] for γ as
introduced in [30]. The complete parameter settings for all
optimizers are described in Table I.

TABLE I. PARAMETER SETTINGS

Algorithms Parameters Ref.

SVM+KMA n1: 5, n2: 200, n2Min: 20, n2Max: 200, p1:0.5, p2:

0.5, d1:
!`a�%` , d2: 0.5, iteration: 10, Kernel: RBF

[31]

SVM+GWO population: 10, iteration: 10, Kernel: RBF, a was

linearly decreased from 2 to 0

[32]

SVM+RSA Crocodiles: 10, α: 0.1, β: 0.1, iteration: 10,

Kernel: RBF

[33]

D. Evaluation criteria

The result of the estimation model must be evaluated by

a reliable evaluation measure. In this regard, we use Mean

Absolute Error (MAE), see Eq. (11).

6�& = �[∑ bcd� − c�b[��� (11)

where N is the number of data points, cd� is the estimated

effort, and c� is the actual effort. This accuracy measure is

also assigned as the objective function for the optimization

process to get the minimum MAE.

E. Proposed Method

The proposed method consists of three main stages:

cluster generation, optimization of productivity prediction,

and effort estimation. Algorithm 1 is employed to generate

clusters. For each run, the algorithm generates different

92

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on November 17,2022 at 01:32:13 UTC from IEEE Xplore. Restrictions apply.

clusters. To predict the productivity, SVM accepts the test set,

which consists of eight environmental complexity factors

(ECF) as input, and productivity factor value as the output or

predicted PF. It is important to note that the PF value is from

the medoid of a predicted cluster. PF value is a result of the

division of actual effort and size. The optimizer algorithms

search for the best hyperparameter value to minimize the

objective function formulated in Eq. (11). The combination

of SVM and predatory optimizers forms the hybrid method.

Details of each algorithm can be found at [32] for GWO, [31]

for KMA, and [33] for RSA.

Next, the estimated effort is calculated using multiple

linear regression based on the matrix approach as notated in

Eq. (12).

cd = ef + e�9� + eD9D + Z� (12)

where cd is estimated effort as a dependent variable, 9� and 9D is independent variable, size and predicted PF,

respectively. Meanwhile, ef is a constant, e� and eD is the

coefficient parameter of regression. The experiments are

equipped with a computer Core-i7-8550U, 1.80Ghz CPU, 16

GB RAM, and Microsoft Windows 10 64-bit. Python 9.3 with

Sklearn library is used to build a prediction model, and PHP

8.0.11 to develop the optimizer algorithms. The source code

of the experiment can be found at https://bit.ly/39V7UZu.

IV. RESULTS AND DISCUSSIONS

This study utilizes thirteen well-known mathematical

functions for optimization algorithms to evaluate the

proposed method [34], [35]. The first seven functions are

unimodal, and the rests are multimodal functions. Unimodal

functions are suitable to assess optimizers' exploitation

capability because their characteristics only have one peak or

global optimum. Meanwhile, multimodal functions are

qualified to evaluate optimizers’ exploration and local

optimum avoidance capability.

Table II shows the results of unimodal benchmark

functions. We can observe that GWO outperforms the KMA

and RSA algorithm in most cases. In other words, GWO

yields the best result in six test functions of F1, F3, F4, F5,

F6, and F7. At the same time, RSA gained the best result only

in the test function of F2. At the same time, Table III shows

the results of multimodal benchmark functions. We can

observe that GWO outperforms the KMA and RSA in four

test functions of F8, F9, F10, and F11. In contrast, KMA

outperforms the GWO and RSA in two test functions of F12

and F13.

The Wilcoxon rank-sum test (WSRT) is employed as the

statistical test to confirm the difference between the results

produced by different optimizers. From Table IV, we can

observe that GWO is significantly better than KMA and RSA

for ten benchmark functions (F1, F2-F11), where all the p-

value is less than 0.05. Meanwhile, KMA is considerably

better than GWO and RSA for F12 and F13 functions, where

both p-values are less than 0.05. Moreover, in the F10

function, GWO vs. RSA is not significantly better, with a p-

value greater than 0.05. Finally, RSA is substantially better

in the F2 function, where the p-value is less than 0.05.

Next, all optimization algorithms are compared to each

other. For fairness, we create an initial seed population to get

good comparison results. Hence, the optimizers used the

same γ and C values. The optimizer algorithms and the five

datasets were executed for 30 runs. Table V shows the results

of the runs. From the table, we can observe that KMA yielded

the best mean value for DS3, DS4, and DS5, while GWO

yielded the best mean value for DS1 and DS2. Nevertheless,

based on the statistical test (see Table VI), only KMA gained

significant differences from RSA and GWO for DS4 and

DS5. These results revealed that separating the dataset based

on their project size improved performance.

TABLE II. RESULTS OF UNIMODAL BENCHMARK FUNCTIONS

TABLE III. RESULTS OF MULTIMODAL BENCHMARK FUNCTIONS

Function KMA GWO RSA

F8
Avg -2286.4 -2686.65 -2270.11

Std 411.5 9.09E-13 427.75

F9
Avg 62734.4 0 440.17

Std 4512.9 0 32.25

F10
Avg 19.2 -1.26 3.01

Std 0.08 0.69 8.97

F11
Avg 9.54 -6.5E+07 628.16

Std 29.91 1.96E+08 59.76

F12
Avg -4.01E+10 -3.91E+10 -3.5E+10

Std 7.82E+09 0 8.5E+09

F13
Avg -7.5E+10 -6.99E+10 -6.1E+10

Std 1.6E+10 3.052E-05 1.6E+10

TABLE IV. THE P-VALUES OF WILCOXON RANK-SUM STATISTICAL

TEST FOR 13 MATHEMATICAL BENCHMARK FUNCTIONS

Function KMA vs GWO KMA vs RSA GWO vs

RSA

F1 2.0E-06 2.0E-06 2.0E-06

F2 3.7E-01 2.7E-05 1.2E-05

F3 2.0E-06 2.0E-06 2.0E-06

F4 2.0E-06 4.0E-06 2.0E-06

F5 2.0E-06 2.0E-06 2.0E-06

F6 2.0E-06 2.0E-06 2.0E-06

F7 2.0E-06 2.0E-06 2.0E-06

F8 3.0E-06 1.2E-05 1.1E-04

F9 2.0E-06 2.0E-06 2.0E-06

F10 2.0E-06 1.0E-05 8.8E-01

F11 1.0E-05 2.0E-06 2.0E-06

F12 3.7E-05 1.5E-04 2.0E-02

F13 3.1E-05 6.7E-05 6.7E-03

Function KMA GWO RSA

F1 Avg 13265.59 3.19E-48 67761

Std 12401.28 1.72E-47 6690.35

F2 Avg -5.42E+21 -8.89E+20 -7.20E+22

Std 1.76E+22 1.31E+05 1.92E+23

F3 Avg 200564 1.68E-53 994189.88

Std 203888 8.30E-53 118220.83

F4 Avg 37.28 3.95E-30 87.37

Std 29.45 2.05E-29 2.85

F5 Avg 2.5E+07 28.88 2.6E+08

Std 5E+07 0.077 4.7E+07

F6 Avg 12715 4.47 67809.64

Std 13678.36 1.87 6731.36

F7 Avg 27.19 8.71 137.75

Std 20.16 0.41 19.22

93

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on November 17,2022 at 01:32:13 UTC from IEEE Xplore. Restrictions apply.

TABLE V. BENCHMARK RESULTS OF OPTIMIZER ALGORITHMS FOR

ALL DATASETS

Dataset Metric KMA GWO RSA

DS1 Best 491.53 502.68 523.18

Worst 1031.75 956.10 1003.96

Mean 675.21 672.61 689.53

Stdev 108.62 114.64 139.95

DS2 Best 382.85 394.37 379.29

Worst 952.13 769.06 805.71

Mean 520.18 507.49 529.41

Stdev 128.74 82.31 105.02

DS3 Best 435.22 438.61 443.50

Worst 906.64 940.33 951.48

Mean 590.56 605.32 595.39

Stdev 144.94 117.27 118.50

DS4 Best 262.29 263.95 316.59

Worst 817.22 588.75 450.83

Mean 365.30 366.47 387.97

Stdev 121.11 79.04 33.85

DS5 Best 571.09 593.20 644.29

Worst 1528.85 1205.15 935.98

Mean 739.88 768.43 786.17

Stdev 188.50 159.17 77.312

 FMR 1.82 1.94 2.24

Rank 1 2 3

TABLE VI. THE P-VALUES OF WILCOXON RANK-SUM STATISTICAL

TEST OF KMA, GWO, AND RSA USING FIVE DATASETS

Dataset KMA vs. GWO KMA vs. RSA GWO vs. RSA

DS1 9.3E-01 6.9E-01 6.1E-01

DS2 6.3E-01 6.0E-01 1.6E-01

DS3 6.9E-01 8.3E-01 9.8E-01

DS4 3.8E-01 3.0E-02 4.7E-02

DS5 1.8E-01 1.1E-02 3.8E-01

Besides the performance results, we further explore the

diversity analysis of the best solution for the benchmark

algorithms for DS4 and DS5. Fig. 1 shows that the median of

KMA is smaller compared with GWO and RSA. Based on

the interquartile box, we can observe that KMA has a smaller

shape than GWO, indicating that KMA has a lower spread.

Fig. 1. Best solution diversity analysis for DS4

Finally, Fig. 2 describes the diversity analysis of DS5.

Based on the boxplot of the figure, we observed that KMA

has the lowest median compared with GWO and RSA. Based

on the interquartile box, we can find that KMA has a smaller

shape compared with GWO. This shape indicated that KMA

has a lower spread and reliable results.

Fig. 2. Best solution diversity analysis for DS5

V. CONCLUSION

This study shows that Komodo Mlipir Algorithm (KMA)

performed significantly better than Reptile Search Algorithm

(RSA) for DS4 and DS5 as of 0.03 (p < 0.05). Meanwhile,

there were no significant differences in accuracy performance

between all pairs of optimizer algorithms for DS1, DS2, and

DS3 with p-values of WSRT greater than 0.05. We can

observe that there was no significant difference between

KMA and Grey Wolf Optimizer (GWO) for all datasets.

Overall, KMA yielded Friedman mean rank of 1.82, with p-

values of the Wilcoxon rank-sum rank test of less than 0.05.

According to this result, our work highlights the critical

role of optimization algorithms in this field. The implication

of this study is that a software organization project manager

can utilize this hybrid approach to estimate the future project

using their historical dataset. Furthermore, classifying the

dataset based on the project size leads to better performance.

For future work, adding more heterogeneous datasets and

other recent optimizer algorithms would be better to achieve

the more robust and confident performance of this hybrid

approach.

REFERENCES

[1] G. Karner, “Resource Estimation for Objectory Projects.” 1993.

[2] G. Schneider and J. P. Winters, Applying Use Cases: A Practical
Guide, 2nd ed. Addison Wesley, 2001.

[3] Sholiq, T. Sutanto, A. P. Widodo, and W. Kurniawan, “Effort Rate on
Use Case Point Method for Effort Estimation of Website

Development,” J. Theor. Appl. Inf. Technol., vol. 63, no. 1, pp. 209–

218, 2014.

[4] A. B. Nassif, “Towards an Early Software Estimation Using Log-

Linear Regression and a Multilayer Perceptron Model,” J. Syst. Softw.,
vol. 86, no. 1, pp. 144–160, 2013.

[5] M. Azzeh and A. B. Nassif, “A hybrid model for estimating software
project effort from Use Case Points,” Appl. Soft Comput. J., vol. 49,

pp. 981–989, 2016, doi: 10.1016/j.asoc.2016.05.008.

[6] A. B. Nassif, D. Ho, and L. F. Capretz, “Towards an early software

Algorithms

RSAKMAGWO

1,500

1,250

1,000

750

500

9

27

15

20

27

4

94

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on November 17,2022 at 01:32:13 UTC from IEEE Xplore. Restrictions apply.

estimation using log-linear regression and a multilayer perceptron

model,” J. Syst. Softw., vol. 86, no. 1, pp. 144–160, Jan. 2013, doi:
10.1016/j.jss.2012.07.050.

[7] S. Banitaan, A. B. Nassif, and M. Azzeh, “Class Decomposition Using
K-Means and Hierarchical Clustering,” in 2015 IEEE 14th

International Conference on Machine Learning and Applications

(ICMLA), Dec. 2015, pp. 1263–1267, doi: 10.1109/ICMLA.2015.169.

[8] S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee, “Particle swarm

optimization for parameter determination and feature selection of
support vector machines,” Expert Syst. Appl., vol. 35, no. 4, pp. 1817–

1824, Nov. 2008, doi: 10.1016/j.eswa.2007.08.088.

[9] C.-L. Huang and J.-F. Dun, “A distributed PSO–SVM hybrid system

with feature selection and parameter optimization,” Appl. Soft Comput.,

vol. 8, no. 4, pp. 1381–1391, Sep. 2008, doi:
10.1016/j.asoc.2007.10.007.

[10] X. Liu and H. Fu, “PSO-based support vector machine with cuckoo
search technique for clinical disease diagnoses,” Sci. World J., vol.

2014, 2014, doi: 10.1155/2014/548483.

[11] A. M. Al-Zoubi, M. A. Hassonah, A. A. Heidari, H. Faris, M. Mafarja,

and I. Aljarah, “Evolutionary competitive swarm exploring optimal

support vector machines and feature weighting,” Soft Comput., vol. 25,
no. 4, pp. 3335–3352, Feb. 2021, doi: 10.1007/s00500-020-05439-w.

[12] J. Zhou et al., “Optimization of support vector machine through the use
of metaheuristic algorithms in forecasting TBM advance rate,” Eng.

Appl. Artif. Intell., vol. 97, no. September 2020, p. 104015, 2021, doi:

10.1016/j.engappai.2020.104015.

[13] S. Anupam and A. K. Kar, “Phishing website detection using support
vector machines and nature-inspired optimization algorithms,”

Telecommun. Syst., vol. 76, no. 1, pp. 17–32, Jan. 2021, doi:

10.1007/s11235-020-00739-w.

[14] E. H. Houssein, M. E. Hosney, D. Oliva, W. M. Mohamed, and M.

Hassaballah, “A novel hybrid Harris hawks optimization and support
vector machines for drug design and discovery,” Comput. Chem. Eng.,

vol. 133, p. 106656, Feb. 2020, doi:

10.1016/j.compchemeng.2019.106656.

[15] A. Tharwat and T. Gabel, “Parameters optimization of support vector

machines for imbalanced data using social ski driver algorithm,”
Neural Comput. Appl., vol. 32, no. 11, pp. 6925–6938, Jun. 2020, doi:

10.1007/s00521-019-04159-z.

[16] M. R. Braz and S. R. Vergilio, “Using fuzzy theory for effort estimation

of object-oriented software,” in 16th IEEE International Conference

on Tools with Artificial Intelligence, 2004, no. Ictai, pp. 196–201, doi:
10.1109/ICTAI.2004.119.

[17] A. Ardiansyah, R. Ferdiana, and A. E. Permanasari, “MUCPSO: A
Modified Chaotic Particle Swarm Optimization with Uniform

Initialization for Optimizing Software Effort Estimation,” Appl. Sci.,

vol. 12, no. 3, p. 1081, Jan. 2022, doi: 10.3390/app12031081.

[18] G. Robiolo and R. Orosco, “Employing use cases to early estimate

effort with simpler metrics,” Innov. Syst. Softw. Eng., vol. 4, no. 1, pp.
31–43, Apr. 2008, doi: 10.1007/s11334-007-0043-y.

[19] P. Mohagheghi, B. Anda, and R. Conradi, “Effort estimation of use
cases for incremental large-scale software development,” in

Proceedings. 27th International Conference on Software Engineering,

2005. ICSE 2005., 2005, pp. 303–311, doi:
10.1109/ICSE.2005.1553573.

[20] B. Anda, H. Dreiem, D. I. K. Sjoberg, and M. Jorgensen, “Estimating

Software Development Effort based on Use Cases – Experiences from

Industry,” in The Unified Modeling Language. Modeling Languages,
Concepts, and Tools, C. G. Kobryn, Ed. Springer Berlin Heidelberg,

2001.

[21] B. Anda, E. Angelvik, and K. Ribu, “Improving Estimation Practices

by Applying Use Case Models,” Prod. Focus. Softw. Process Improv.,

vol. 2559, no. 1325, pp. 383–397, 2002, doi: 10.1007/3-540-36209-
6_32.

[22] M. Ochodek, J. Nawrocki, and K. Kwarciak, “Simplifying effort
estimation based on Use Case Points,” Inf. Softw. Technol., vol. 53, no.

3, pp. 200–213, Mar. 2011, doi: 10.1016/j.infsof.2010.10.005.

[23] M. Ochodek, B. Alchimowicz, J. Jurkiewicz, and J. Nawrocki,

“Improving the reliability of transaction identification in use cases,”

Inf. Softw. Technol., vol. 53, no. 8, pp. 885–897, 2011, doi:
10.1016/j.infsof.2011.02.004.

[24] H. L. T. K. Nhung, V. Van Hai, R. Silhavy, Z. Prokopova, and P.
Silhavy, “Parametric Software Effort Estimation Based on Optimizing

Correction Factors and Multiple Linear Regression,” IEEE Access, vol.

10, pp. 2963–2986, 2022, doi: 10.1109/ACCESS.2021.3139183.

[25] A. B. Nassif, L. F. Capretz, D. Ho, and M. Azzeh, “A Treeboost Model

for Software Effort Estimation Based on Use Case Points,” in 2012
11th International Conference on Machine Learning and Applications,

Dec. 2012, no. December 2012, pp. 314–319, doi:

10.1109/ICMLA.2012.155.

[26] I. Jacobson, “Object Oriented Development in an Industrial,” 1987.

[27] I. Jacobson, Object-Oriented Software Engineering: A Use Case

Driven Approach. Addison Wesley, 1992.

[28] A. B. Nassif, “Software Size and Effort Estimation from Use Case

Diagrams Using Regression and Soft Computing Models,” The
University of Western Ontario, 2012.

[29] S. S. Keerthi and C. Lin, “Asymptotic Behaviors of Support Vector
Machines with Gaussian Kernel,” Neural Comput., vol. 15, no. 7, pp.

1667–1689, 2003, doi: 10.1162/089976603321891855.

[30] J. Zhou et al., “Optimization of support vector machine through the use

of metaheuristic algorithms in forecasting TBM advance rate,” Eng.

Appl. Artif. Intell., vol. 97, Jan. 2021, doi:
10.1016/j.engappai.2020.104015.

[31] S. Suyanto, A. A. Ariyanto, and A. F. Ariyanto, “Komodo Mlipir
Algorithm,” Appl. Soft Comput., vol. 114, no. xxxx, p. 108043, Jan.

2022, doi: 10.1016/j.asoc.2021.108043.

[32] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv.

Eng. Softw., vol. 69, pp. 46–61, Mar. 2014, doi:

10.1016/j.advengsoft.2013.12.007.

[33] L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, and A. H.

Gandomi, “Reptile Search Algorithm (RSA): A nature-inspired meta-
heuristic optimizer,” Expert Syst. Appl., vol. 191, no. November, p.

116158, Apr. 2022, doi: 10.1016/j.eswa.2021.116158.

[34] Xin Yao, Yong Liu, and Guangming Lin, “Evolutionary programming

made faster,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102,

Jul. 1999, doi: 10.1109/4235.771163.

[35] J. G. Digalakis and K. G. Margaritis, “On benchmarking functions for

genetic algorithms,” Int. J. Comput. Math., vol. 77, no. 4, pp. 481–506,
Jan. 2001, doi: 10.1080/00207160108805080.

95

Authorized licensed use limited to: UNIVERSITAS GADJAH MADA. Downloaded on November 17,2022 at 01:32:13 UTC from IEEE Xplore. Restrictions apply.

