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Abstract— The productivity factor is one of the key cost 

drivers in use case points estimation. However, this factor is 

uncertain because it is obtained from experts’ guesses and does 

not depend on reliable historical data. This study aims to 

optimize the hyperparameters of the support vector machine 

technique through the use of three predatory-inspired 

algorithms, namely, Komodo mlipir algorithm, Grey wolf 

optimization, and Reptile search algorithm in predicting 

productivity factor rate. The optimizers searched for the best 

hyperparameter value to get an optimum hyperplane. In this 

work, we developed a hybrid model that consists of three 

primary stages: cluster generation using bisecting k-Medoids, 

prediction using an optimized support vector machine, and 

estimation using multiple linear regression. The hybrid model 

was evaluated using industrial and student projects datasets. 

Detailed investigations demonstrated that the komodo mlipir 

algorithm yielded the best mean value of 365.3 and 739.88, 

respectively, which has a significantly better hyperparameter of 

support vector machine model in predicting productivity factors 

among the reptile search algorithm for datasets 4 and 5 as of 

0.03 (p < 0.05), but there is no significant difference among the 

grey wolf optimizer (p > 0.05). Meanwhile, the grey wolf 

optimizer obtained the best mean value of 366.47, with a 

significantly better hyperparameter compared with the reptile 

search algorithm for dataset four as of 0.047 (p < 0.05). 

Keywords—effort estimation, productivity factor, support 

vector machine, optimization, use case points 

I. INTRODUCTION 

Use Case Points (UCP) is a prominent algorithmic 

software effort estimation framework supporting the 

planning phase of the software development life cycle. UCP 

estimates an effort by multiplying the software project size 

with the productivity factor (PF). PF reflects the productivity 

rate of the team to finish a project. There are several 

approaches to determining PF value: using the fixed number, 

which is equal to 20 person-hours (PH) per 1 UCP [1], three-

level PF [2], linear regression [3], [4], and machine learning 

[5]. UCP uses 20 PH or three-level PF values when the 

historical dataset is absent.  

In contrast, regression and machine learning is used when 

the historical dataset is available. Using a fixed number of PF 

has uncertainty issues because it is obtained from expert 

guessing and does not rely on the historical dataset. Several 

studies [2], [6] have demonstrated that PF is highly 

influenced by the environmental factor, which is part of the 

complexity factor in UCP. Moreover, [5] successfully 

predicts the PF value using class decomposition techniques 

[7]. Hence, we can further use the prediction model of 

machine learning and data mining to predict the productivity 

factor.  

A support vector machine (SVM) is a well-known 
prediction or classifier algorithm. SVM is suitable for 
generalization and has numerous implementations in different 
fields, such as image processing, disease diagnosis, 
hydrology, and signal classification. However, SVM heavily 
relies on the quality of hyper-parameter value, which is the 
penalty parameter (C), and the kernel function gamma (γ) [8], 
[9]. The proper hyper-parameter values will increase 
prediction and estimation performance because they lead to 
the optimum hyperplane. 

There are many examples of metaheuristic optimizers such 
as particle swarm optimization (PSO), genetic algorithm 
(GA), bat algorithm (BA), whale optimization algorithm 
(WOA), moth optimization algorithm (MOA), komodo mlipir 
algorithm (KMA), grey wolf optimizer (GWO), and reptile 
search algorithms (RSA). Between them, KMA, GWO, and 
RSA are grouped as predatory-based algorithms. This 
algorithm has some benefits, such as small population size, 
high scalability, effective exploration, and handling various 
constraints problems. 

Metaheuristic optimization algorithms are widely used to 
tune the SVM hyperparameters. Several studies have 
demonstrated the application of this hybridization, such as 
particle swarm optimization (PSO) [10] and evolutionary 
competitive swarm optimization (ECSO) [11] for medical 
disease diagnosis, moth flame optimization (MFO) for 
forecasting the tunnel boring machine (TBM) advance rate 
(AR) [12], grey wolf optimizer (GWO) for phishing website 
detection [13], Harris Hawks optimization (HHO) for 
chemical descriptor selection [14], and social ski driver (SSD) 
algorithm for the classification of imbalanced data [15]. These 
hybrid methods show that optimizing the hyperparameter of 
the SVM is yielded competitive results. 

Despite the promising results, however, this kind of hybrid 
approach in software effort estimation studies is still absent to 
the best of our knowledge. Therefore, based on the argument 
above, this study aims to optimize the hyperparameter of the 
support vector machine to get optimum hyperplane and 
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improve the accuracy rate of the UCP effort estimation. The 
contribution of this study is to be the first empirical study 
using predatory-inspired algorithms for optimizing SVM 
hyperparameters in the software effort estimation field. 

The remainder of this paper is constructed as follows: 

Section 2 describes the theoretical foundation of this 

research; Section 3 specifies the material and proposed 

methods; Section 4 presents and discusses the experimental 

results, and Section 5 describes the conclusion and future 

work recommendation of this study. 

II. THEORETICAL BACKGROUND 

There are three primary trends in the study of use case 

points effort estimation: modification of the UCP sizing 

technique, simplifying and examining the UCP, and 

hybridizing the UCP with machine learning and data mining 

techniques. Several studies proposed the reconstruction of the 

UCP sizing technique. In [16] modified the use case 

complexity weight using fuzzy theory, while [17] 

successfully optimized this modified weight. In [18] added 

two new variables, the size-transactions and entity objects 

computed from the use case description. The study of [19] 

has modified the complexity assessment of actors and 

handled the non-functional requirements. This study made an 

essential contribution to the adaptability of the UCP for 

incremental development. Ref [20], [21] examined and 

simplified the UCP to understand the impacts of technical and 

environmental complexity factors. The authors suggested that 

adjusting the environmental factors based on the type of 

organization will improve the estimation precision. Whereas 

[22], [23] excluded several parts of UCP to simplify the 

calculation process of the UCP. The investigator claimed that 

these parts are insignificant concerning the effort estimation. 

Recently, [24] optimized the correction factors (ECF and 

TCF) and multiple regression models to improve the 

estimation accuracy of the modified UCP. The utilization of 

machine learning and data mining techniques to improve 

UCP performance has been studied in recent years. In [4] 

built cooperation between effort, UCP, and productivity by 

introducing a log-linear regression model. This study was 

then followed by a hybrid model which predicts productivity 

factor and effort estimation from historical data at the same 

time [5].  

Meanwhile, [25] estimated an effort based on UCP and 

team productivity using the Treebost model. Indeed, we can 

scrutinize that none of the above studies that simultaneously 

predict PF and estimate an effort using a hybrid model has 

tried to improve the quality of the SVM hyperparameter. This 

study improved the work of [5] by introducing SVM 

hyperparameter values using predatory swarm-inspired 

optimization algorithms. 

A. Use Case Points Estimation 

 Gustav Karner introduced the UCP estimation model in 
1993 to calculate the size of the object-oriented-based 
software project [1]. The UCP converted use case 
specification and diagram elements in the UML 
documentation into a project size. A well-defined procedure 
should be taken to achieve high-quality size metrics as 

follows. First, weighting the actor elements in the use case 
diagram by classifying them into three-level categories: 
simple, average, and complex. Second, computes Unadjusted 
Actor Weighting (UAW) using Eq. (1).  ��� = ∑ ���	ℎ� 
� ���
�� ∗ ���
������  (1) 

where ���	ℎ� 
� ���
��  is the weight factor classified as 
simple = 1, average = 2, and complex = 3, while, ���
��  is the 
number of actors classified based on their category from use 
case diagrams. Third, based on the number of transactions in 
use case specification, weight the use cases by classifying 
them into one of three classes: simple, average, and complex. 
The notion of the transaction is introduced by [26], [27], 
which is defined as an interaction between the actor and the 
system indicated by a stimulus and response. Fourth, calculate 
Unadjusted Use Case Weighting (UUCW) using Eq. (2). ���� = ∑ ���	ℎ� 
� ��� ����� ∗ ��� ���������  (2) 

where ���	ℎ� 
� ��� �����  is the weight factor classified as 
simple = 5, average = 10, and complex = 15, and ��� �����  is 
the number of use case that has been classified based on their 
transactions from use case specifications. Fifth, compute 
Unadjusted Use Case Points (UUCP) by summation of UAW 
and UUCW (see Eq. (3)).  ���� = ��� + ���� (3) 

 
 Sixth, define Technical Complexity Factor (TCF) value 
and Environmental Complexity Factor (ECF). TCF is the 
factor that contributes a significant impact on project 
performance. TCF is computed by summation of 13 technical 
factors (F1, F2, …, F13) classified by the estimator using 5 
Likert scales, as notated by Eq. (4).  ��� = 0.6 + !0.01 ∗ ∑ �������� ∗ #��$��%    (4) 

where ���  is the technical factor weight, and #��$��  is the 

score from 5 Likert scales. Meanwhile, ECF dramatically 

impacts the productivity of the project. TCF is calculated by 

summating 8 environmental factors (E1, E2, …, E8) classified 

by the estimator using 5 Likert scales, as shown in Eq. (5).  &�� = 1.4 + !−0.03 ∗ ∑ &�� ∗ #��$��*��� % (5) 

where &�� is the environmental factor weight and #��$��  is the 
score from 5 Likert scales. Finally, the software size is 
computed by multiplying UUCP, TCF, and ECF formulated 
in Eq. (6). ��+� = ���� ∗ ��� ∗ &�� (6) 

Finally, the estimated effort is computed by multiplying the 
size with the productivity factor (PF). The standard PF of the 
Karner model is 20. 

B. Support Vector Machine 

SVM is one of the binary classifier algorithms that 

separated hyperplane as its essential characteristics. The basic 

notion of SVM is that given training data {!-�, /�%, … , !-1 , /1%}. The input space pattern is - ∈ ℜ5 , 

where 6  represents the number of input feature or 

dimensional and the output variable is / 7 ℜ. The data points 

are separated into two classes with a maximal margin by the 
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SVM. Margin is the maximum width of the slab parallel to 

the hyperplane with no interior data points. The hyperplane is 

formulated as / = �89 + :, where X is the input vector, w is 

a vector, and b is a scalar. SVM used hyper-parameter C and 

gamma (γ). C is a parameter that defines to what extent each 

misclassification is penalized. Hence, the SVM model as in 

Eq. (7) solves the following problem: 

min>,?,@
12 ‖C‖D + � E F�1

���  

Subject to /�!�8-� + :% ≥ 1 − F� , � = 1, … , H  (7) F� ≥ 0, � = 1, … , H 

where F� is a slack variable for regularization to prevent the 

hyperplane from overfitting the dataset. There are four kernel 

function parameters: polynomial, radial basis, Gaussian, and 

linear. Kernel functions transpose data to higher dimensions. 

This study uses the radial basis kernel function due to its 

accuracy and reliable performance as formulated in Eq. (8). 

IJ-� , -KL = exp !−PQ-� − -KQD%  (8) 

III. METHODOLOGY AND EXPERIMENTAL SETUP 

A. Dataset preparation 

An appropriate number of projects is essential for 
comparison with previous studies. Thus, we employed five 
datasets that have been common for effort estimation studies, 
especially for the UCP model. All datasets comprise ten 
features: actual effort, size, E1, E2, E3, E4, E5, E6, E7, and 
E8. Forty-five industrial and 65 educational projects are 
assigned as the first (DS1) and the second (DS2) datasets, 
respectively. The third dataset (DS3) is generated from the 
merger of DS1 and DS2 plus ten additional data. As a result, 
DS3 contains 120 data in total. In [28] argued that the structure 
of DS1 and DS2 was the same and enabled us to scrutinize the 
benefit of the proposed model over the heterogeneous dataset. 
The fourth (DS4) and fifth dataset (DS5) are generated from 
the selection of each data point based on their size as ruled by 
Eq. (9).  Hence, DS4 and DS5 contain 61 and 59 data points, 
respectively. 

R�
S��� ��+� = T �U�$$, �� 100 > ���U�W��U, �� 100 ≤ ��� < 300$��	�, �� 300 < ���  (9) 

B. Cluster generation 

Bisecting k-Medoids is a clustering method that applies a 
basic k-medoids algorithm by splitting each cluster into two 
sub-clusters to construct a binary tree of clusters [5]. 
Algorithm 1 defines the procedure of bisecting k-Medoids. 
First, set a dataset as the initial cluster. Second, bisects each 
cluster into two coherent clusters. Third, compute the variance 
of clusters by Eq. (10).  

Z����H�� = �[ ∑ Q-K − Z�QD[K��,\]∈^_  (10) 

where N is the number of data points in the dataset, -K is the 

jth data point, Z� is the center of the ith cluster (��), and ‖. ‖ is 
the Euclidean distance norm. 

A cluster that has a more minor variance shows a high 
homogeneity. The k-Medoids procedure stops bisecting when 
the variance of the parent cluster is smaller than the largest 
variance of both child clusters. Contrary, the clustering 
algorithm continues to bisect.  

Algorithm 1. Bisecting k-Medoids 

(1) Input: DS1, DS2, DS3, DS4, DS5 
(2) Output: The set of N clusters S={C1,C2,C3,…,CN} 
(3) Initialization: V=X, S={}, nextLevel={} 

(4) while size(V)>0 do 
(5)  foreach cluster C in V 
(6)   comp := variance(C) by Eq. (8) 
(7)   [C1,C2] := k-Medoids(C,2) 
(8)   comp1 := variance(C1) by Eq. (8) 
(9)   comp2 := variance(C2) by Eq. (8) 
(10)   if(max(comp1,comp2)<comp) 
(11)    nextLevel := nextLevel Ս {C1,C2} 
(12)   else 
(13)    S := S Ս {C} 
(14)   end if 
(15)  end foreach 
(16)  V := nextLevel 
(17)  nextLevel := {} 
(18)end while 

C. Parameter settings 

The kernel function is an essential hyperparameter in 
SVM. It was able to solve the problems with too many 
dimensions. There are four general kernel functions: 
Gaussian, radial basis function (RBF), polynomial, and the 
sigmoid. The Gaussian and RBF have good generalization 
capability for numerous kinds of datasets and are popular for 
practical use [29]. Thus, in this work, we utilize the RBF as 
the kernel function. We follow the variable range of hyper-
parameter values [0.01, 100] for C, and [0.01, 50] for γ as 
introduced in [30]. The complete parameter settings for all 
optimizers are described in Table I.  

TABLE I.  PARAMETER SETTINGS 

Algorithms Parameters Ref. 

SVM+KMA n1: 5, n2: 200, n2Min: 20, n2Max: 200, p1:0.5, p2: 

0.5, d1: 
!`a�%` , d2: 0.5, iteration: 10, Kernel: RBF 

[31] 

SVM+GWO population: 10, iteration: 10, Kernel: RBF, a was 

linearly decreased from 2 to 0 

[32] 

SVM+RSA Crocodiles: 10, α: 0.1, β: 0.1, iteration: 10, 

Kernel: RBF 

[33] 

D. Evaluation criteria 

The result of the estimation model must be evaluated by 

a reliable evaluation measure. In this regard, we use Mean 

Absolute Error (MAE), see Eq. (11). 

6�& = �[ ∑ bcd� − c�b[���  (11) 

where N is the number of data points,  cd�  is the estimated 

effort, and c�  is the actual effort. This accuracy measure is 

also assigned as the objective function for the optimization 

process to get the minimum MAE.  

E. Proposed Method 

The proposed method consists of three main stages: 

cluster generation, optimization of productivity prediction, 

and effort estimation. Algorithm 1 is employed to generate 

clusters. For each run, the algorithm generates different 
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clusters. To predict the productivity, SVM accepts the test set, 

which consists of eight environmental complexity factors 

(ECF) as input, and productivity factor value as the output or 

predicted PF. It is important to note that the PF value is from 

the medoid of a predicted cluster. PF value is a result of the 

division of actual effort and size. The optimizer algorithms 

search for the best hyperparameter value to minimize the 

objective function formulated in Eq. (11). The combination 

of SVM and predatory optimizers forms the hybrid method. 

Details of each algorithm can be found at [32] for GWO, [31] 

for KMA, and [33] for RSA. 

Next, the estimated effort is calculated using multiple 

linear regression based on the matrix approach as notated in 

Eq. (12). 

cd = ef + e�9� + eD9D + Z�  (12) 

where cd  is estimated effort as a dependent variable, 9� and 9D  is independent variable, size and predicted PF, 

respectively. Meanwhile, ef  is a constant, e�  and eD  is the 

coefficient parameter of regression. The experiments are 

equipped with a computer Core-i7-8550U, 1.80Ghz CPU, 16 

GB RAM, and Microsoft Windows 10 64-bit. Python 9.3 with 

Sklearn library is used to build a prediction model, and PHP 

8.0.11 to develop the optimizer algorithms. The source code 

of the experiment can be found at https://bit.ly/39V7UZu. 

IV. RESULTS AND DISCUSSIONS 

This study utilizes thirteen well-known mathematical 

functions for optimization algorithms to evaluate the 

proposed method [34], [35]. The first seven functions are 

unimodal, and the rests are multimodal functions. Unimodal 

functions are suitable to assess optimizers' exploitation 

capability because their characteristics only have one peak or 

global optimum. Meanwhile, multimodal functions are 

qualified to evaluate optimizers’ exploration and local 

optimum avoidance capability. 

Table II shows the results of unimodal benchmark 

functions. We can observe that GWO outperforms the KMA 

and RSA algorithm in most cases. In other words, GWO 

yields the best result in six test functions of F1, F3, F4, F5, 

F6, and F7. At the same time, RSA gained the best result only 

in the test function of F2. At the same time, Table III shows 

the results of multimodal benchmark functions. We can 

observe that GWO outperforms the KMA and RSA in four 

test functions of F8, F9, F10, and F11. In contrast, KMA 

outperforms the GWO and RSA in two test functions of F12 

and F13. 

The Wilcoxon rank-sum test (WSRT) is employed as the 

statistical test to confirm the difference between the results 

produced by different optimizers. From Table IV, we can 

observe that GWO is significantly better than KMA and RSA 

for ten benchmark functions (F1, F2-F11), where all the p-

value is less than 0.05. Meanwhile, KMA is considerably 

better than GWO and RSA for F12 and F13 functions, where 

both p-values are less than 0.05. Moreover, in the F10 

function, GWO vs. RSA is not significantly better, with a p-

value greater than 0.05. Finally, RSA is substantially better 

in the F2 function, where the p-value is less than 0.05. 

Next, all optimization algorithms are compared to each 

other. For fairness, we create an initial seed population to get 

good comparison results. Hence, the optimizers used the 

same γ and C values. The optimizer algorithms and the five 

datasets were executed for 30 runs. Table V shows the results 

of the runs. From the table, we can observe that KMA yielded 

the best mean value for DS3, DS4, and DS5, while GWO 

yielded the best mean value for DS1 and DS2. Nevertheless, 

based on the statistical test (see Table VI), only KMA gained 

significant differences from RSA and GWO for DS4 and 

DS5. These results revealed that separating the dataset based 

on their project size improved performance. 

TABLE II.  RESULTS OF UNIMODAL BENCHMARK FUNCTIONS 

TABLE III.  RESULTS OF MULTIMODAL BENCHMARK FUNCTIONS 

Function  KMA GWO RSA 

F8 
Avg -2286.4 -2686.65 -2270.11 

Std 411.5 9.09E-13 427.75 

F9 
Avg 62734.4 0 440.17 

Std 4512.9 0 32.25 

F10 
Avg 19.2 -1.26 3.01 

Std 0.08 0.69 8.97 

F11 
Avg 9.54 -6.5E+07 628.16 

Std 29.91 1.96E+08 59.76 

F12 
Avg -4.01E+10 -3.91E+10 -3.5E+10 

Std 7.82E+09 0 8.5E+09 

F13 
Avg -7.5E+10 -6.99E+10 -6.1E+10 

Std 1.6E+10 3.052E-05 1.6E+10 

TABLE IV.  THE P-VALUES OF WILCOXON RANK-SUM STATISTICAL 

TEST FOR 13 MATHEMATICAL BENCHMARK FUNCTIONS 

Function KMA vs GWO KMA vs RSA GWO vs 

RSA 

F1 2.0E-06 2.0E-06 2.0E-06 

F2 3.7E-01 2.7E-05 1.2E-05 

F3 2.0E-06 2.0E-06 2.0E-06 

F4 2.0E-06 4.0E-06 2.0E-06 

F5 2.0E-06 2.0E-06 2.0E-06 

F6 2.0E-06 2.0E-06 2.0E-06 

F7 2.0E-06 2.0E-06 2.0E-06 

F8 3.0E-06 1.2E-05 1.1E-04 

F9 2.0E-06 2.0E-06 2.0E-06 

F10 2.0E-06 1.0E-05 8.8E-01 

F11 1.0E-05 2.0E-06 2.0E-06 

F12 3.7E-05 1.5E-04 2.0E-02 

F13 3.1E-05 6.7E-05 6.7E-03 

Function  KMA GWO RSA 

F1 Avg 13265.59 3.19E-48 67761 

Std 12401.28 1.72E-47 6690.35 

F2 Avg -5.42E+21 -8.89E+20 -7.20E+22 

Std 1.76E+22 1.31E+05 1.92E+23 

F3 Avg 200564 1.68E-53 994189.88 

Std 203888 8.30E-53 118220.83 

F4 Avg 37.28 3.95E-30 87.37 

Std 29.45 2.05E-29 2.85 

F5 Avg 2.5E+07 28.88 2.6E+08 

Std 5E+07 0.077 4.7E+07 

F6 Avg 12715 4.47 67809.64 

Std 13678.36 1.87 6731.36 

F7 Avg 27.19 8.71 137.75 

Std 20.16 0.41 19.22 
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TABLE V.  BENCHMARK RESULTS OF OPTIMIZER ALGORITHMS FOR 

ALL DATASETS 

Dataset Metric KMA GWO RSA 

DS1 Best 491.53 502.68 523.18 

Worst 1031.75 956.10 1003.96 

Mean 675.21 672.61 689.53 

Stdev 108.62 114.64 139.95 

DS2 Best 382.85 394.37 379.29 

Worst 952.13 769.06 805.71 

Mean 520.18 507.49 529.41 

Stdev 128.74 82.31 105.02 

DS3 Best 435.22 438.61 443.50 

Worst 906.64 940.33 951.48 

Mean 590.56 605.32 595.39 

Stdev 144.94 117.27 118.50 

DS4 Best 262.29 263.95 316.59 

Worst 817.22 588.75 450.83 

Mean 365.30 366.47 387.97 

Stdev 121.11 79.04 33.85 

DS5 Best 571.09 593.20 644.29 

Worst 1528.85 1205.15 935.98 

Mean 739.88 768.43 786.17 

Stdev 188.50 159.17 77.312 

 FMR 1.82 1.94 2.24 

Rank 1 2 3 

TABLE VI.  THE P-VALUES OF WILCOXON RANK-SUM STATISTICAL 

TEST OF KMA, GWO, AND RSA USING FIVE DATASETS  

Dataset KMA vs. GWO KMA vs. RSA GWO vs. RSA 

DS1 9.3E-01 6.9E-01 6.1E-01 

DS2 6.3E-01 6.0E-01 1.6E-01 

DS3 6.9E-01 8.3E-01 9.8E-01 

DS4 3.8E-01 3.0E-02 4.7E-02 

DS5 1.8E-01 1.1E-02 3.8E-01 

Besides the performance results, we further explore the 

diversity analysis of the best solution for the benchmark 

algorithms for DS4 and DS5. Fig. 1 shows that the median of 

KMA is smaller compared with GWO and RSA. Based on 

the interquartile box, we can observe that KMA has a smaller 

shape than GWO, indicating that KMA has a lower spread. 

 
Fig. 1. Best solution diversity analysis for DS4 

Finally, Fig. 2 describes the diversity analysis of DS5. 

Based on the boxplot of the figure, we observed that KMA 

has the lowest median compared with GWO and RSA. Based 

on the interquartile box, we can find that KMA has a smaller 

shape compared with GWO. This shape indicated that KMA 

has a lower spread and reliable results. 

 
Fig. 2. Best solution diversity analysis for DS5 

V. CONCLUSION 

This study shows that Komodo Mlipir Algorithm (KMA) 

performed significantly better than Reptile Search Algorithm 

(RSA) for DS4 and DS5 as of 0.03 (p < 0.05). Meanwhile, 

there were no significant differences in accuracy performance 

between all pairs of optimizer algorithms for DS1, DS2, and 

DS3 with p-values of WSRT greater than 0.05. We can 

observe that there was no significant difference between 

KMA and Grey Wolf Optimizer (GWO) for all datasets. 

Overall, KMA yielded Friedman mean rank of 1.82, with p-

values of the Wilcoxon rank-sum rank test of less than 0.05.  

According to this result, our work highlights the critical 

role of optimization algorithms in this field. The implication 

of this study is that a software organization project manager 

can utilize this hybrid approach to estimate the future project 

using their historical dataset. Furthermore, classifying the 

dataset based on the project size leads to better performance. 

For future work, adding more heterogeneous datasets and 

other recent optimizer algorithms would be better to achieve 

the more robust and confident performance of this hybrid 

approach. 
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