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 Diabetes mellitus is a prevalent disease in society. This condition results from 

various causes, such as lifestyle choices or genetic predisposition. To prevent 

diabetes mellitus, blood glucose levels must be monitored periodically, and 
dietary consumption must be managed. Blood glucose monitoring still uses 

the incision or minimally invasive approach. This approach poses a risk of 

infection and damage. This study devised a method to optimize a light sensor 

to measure blood glucose levels. This approach uses sensor optimization and 
an integrated Internet of Things (IoT) technology. The research findings 

demonstrate that the use of the optimization strategy leads to increased 

consistency in sensor values, which may then be transmitted wirelessly 

through the IoT network. The research results demonstrate that using the 
optimization strategy leads to increased consistency in sensor values, which 

may then be wirelessly transmitted through the IoT network. 
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1. INTRODUCTION 

The prevalence of diabetes mellitus (DM) increases substantially annually [1]. By 2045, the 

population will reach 783.2 million people [2]. Indonesia is the fifth country in the world with the highest 

number of diabetes cases, following China, India, Pakistan, and the United States [3]. Diabetes has a significant 

risk of mortality [4], [5], amputation [6], and other complications that can disrupt normal bodily functions [7]. 

Current management of diabetes mellitus involves maintaining a healthy diet [8]–[10], early detection 

by medical consultation [11], and regular self-monitoring of blood glucose levels [12], [13]. Blood glucose 

levels can be measured using three methods: invasive [14]–[16], minimally invasive [17]–[19], and non-

invasive [20]–[22]. In hospitals or clinics, pricking the finger with a needle to draw blood for testing with a 

strip test is the most commonly used method to accurately measure blood glucose levels. 

Previous studies have utilized technology integration to measure blood glucose levels. Technology in 

blood glucose measurement using invasive methods has been widely used, such as in developing a glucose 

check device based on a microprocessor system [20], [23]. Additionally, minimally invasive approaches [19], 
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such as [24] research, have already entered the market. In addition, innovation in blood glucose level 

measurement can also be done noninvasively. Research on noninvasive measurements has increased in recent 

years. Each method of measuring blood glucose levels, whether incisional or minimally invasive [25], carries 

risks such as infection [26], incision [27], slow wound healing [28], and contamination [29]. The non-invasive 

method has advantages for infectious risk and spreading of other diseases. Provides an opportunity to research 

noninvasive methods as an alternative to examining DM.  

This research aims to develop a prototype blood glucose measuring device that uses a light sensor 

optimized by the Kalman method based on the equipment requirements and previous research. This study is 

limited to optimizing and developing IoT integration as a sensor data display. 

 

 

2. METHOD 

The research methodology used in this study utilizes the R&D approach [30], [31] and the Trial&Error 

method. The R&D approach involves analysis, design, development, implementation, and evaluation. This 

research process is generally depicted in Figure 1 below. 

 

 

 

 

 

 

 

 

Figure 1. ADDIE method 

 

Analyze 

The analysis was conducted by formulating literature and foundational research on light sensors and 

their measurements. During the analysis stage, a literature review was conducted on optimizing light sensor 

usage and its sensitivity. This research used a light sensor with a pulse width of 4096. 

Design 

The system design phase is carried out using a block diagram approach. Block diagrams facilitate the 

identification of a system into input, process, and output components. The research block diagram can be 

viewed in Figure 2 below. 

Development 

The application development stage involves the installation of electrical devices and the assembly of 

them into a unified programmed system. During the development stage, an IoT system integration was carried 

out with a local server that can monitor the values of light sensors. 

 
Figure 2. System design 

Implementation 

The implementation in this study involved the development of an IoT page integrated with a sensor 

system. The IoT page consists of a real-time monitoring page and a sensor data storage page. The IoT page can 

be viewed in Figure 3. Based on Figure 3, the localhost-based monitoring system will provide data in the form 

of a patient list along with the results of blood glucose checks. The main page of the system in Figure 4 provides 

monitoring of blood sugar values which can be saved on the data page. 
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(b) 

Figure 3. Database implementation 

 

Evaluation 

The evaluation process is conducted after the application execution phase. This stage assesses the 

results by optimizing the sensors to display the best results without significant noise. 

 

 
Figure 4. Realtime implementation page 
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3. RESULTS AND DISCUSSIONS 

The results of this research are summarized in several stages, including software results, hardware 

outcomes, and sensor value optimization. Software testing yielded varying sensor values depending on the 

measured object. The sensor values obtained by measuring the human subject's finger are shown in Table 1. 

Optimization is performed using the Kalman method based on Figure 5, which results in a graph shown in 

Figure 6. 

 
Figure 5 Kalman orientation 

 

As shown in Figure 5, the Kalman filter operation involves updating the original sensor values with 

the integrated Kalman values at specific time intervals. The Kalman filter is used to eliminate sensor noise, and 

the sampling time is set to 10 seconds. 

 

Table 1. The example of sensor output 
No Non-Kalman Using Kalman 

1 354,32 1382 

2 464,16 1509 

3 561,27 1485 

4 646,48 1457 

5 729,57 1520 

6 801,62 1487 

7 863,01 1447 

8 925,03 1515 

... ..... ..... 

57 1467,6 1488 

58 1468,12 1473 

59 1466,3 1449 

60 1469,88 1504 

 

The image in Figure 6 shows that the initial sensor value fluctuates at a different rate than the original 

value. Using the Kalman filter can enhance the value by smoothing the sensor data. Sensor values are precisely 

transformed and shown on the IoT website, as seen in Figure 7. 

 

 
Figure 6. Sensor optimizing 
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Figure 7. Real-time monitoring 

 

4. CONCLUSION 

On the basis of research experiments, light sensor optimization using the Kalman filter shows 

promising results. Based on the findings of this research, the sensor with a filter can provide better values than 

the sensor without a filter. Testing with human fingers yielded varying sensor values and results depending on 

the sensor's level of sensitivity. In future research, the optimized sensor results of this study might be further 

developed as a foundation for implementation in other topics such as artificial intelligence and intelligent 

systems. 
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