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 The prediction of aerodynamic coefficients on airfoils using machine learning 

is increasingly popular due to its efficiency in time and cost. Research 

typically focuses on a single image type without comparing various types and 

output quantities (single or multi-output). Although convolutional neural 

networks (CNN) are widely used, their final layer is often suboptimal as a 

linear operator, and feature extraction results contain many parameters that 

can still be trained. Support vector regression (SVR) with kernel functions 

effectively reduces common errors in feature vectors. We propose a hybrid 

method, AeroCNNSVR, combining CNN as a feature extractor and SVR as 

a regressor to predict aerodynamic coefficients on airfoils. This study focuses 

on the shape and position of airfoils according to the angle of attack (AoA) 

without considering flow conditions. Using 14533 aerodynamic coefficients 

from 563 airfoil types, we created a dataset of grayscale and RGB airfoil 

images. Results show the proposed method with grayscale images performs 

better because combining SVR strengthens the predictive model, while 

grayscale images accurately represent the airfoil's shape and position. 
AeroCNNSVR achieves lower RMSE values for Cl (0.101522), Cd 

(0.016450), and Cm (0.129661) compared to the CNN model’s Cl 

(0.112493), Cd (0.019060), and Cm (0.130041). Additionally, 

AeroCNNSVR's R² values for Cl (0.976071), Cd (0.928700), and Cm 

(0.860574) surpass those of the CNN model (Cl 0.970620, Cd 0.904282, Cm 

0.816355). This research contributes by 1) proposing an alternative besides 

CFD for predicting and identifying trends in aerodynamic coefficients of 

airfoils in a much shorter time during the design stage; 2) offering wind tunnel 

practitioners for early detection of configuration errors; 3) providing an 

overview of the aerodynamic characteristics of the airfoil under test, 

including the angle at which stall conditions occur. 
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1. INTRODUCTION  

The wing is a critical component of an aircraft [1], with the airfoil being its fundamental element [2], [3], 

[4]. The airfoil plays a pivotal role in determining both wing and overall aircraft performance [5], [6]. 

Achieving an optimal airfoil design involves aerodynamic studies using both experimental and numerical 

simulation approaches. Experimental methods entail testing airfoil models in wind tunnels to obtain and 

analyze aerodynamic characteristics. Wind tunnel testing involves all configurations; if results fail to meet 

expectations, iterative processes such as re-analysis, fabrication of new test models, and subsequent re-testing 

are initiated. Although the wind tunnel test results closely approximate real-world conditions, conducting these 

tests involved high costs, time, and resources [7], [8]. 
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To reduce wind tunnel testing costs, numerical simulations using CFD are typically conducted as a 

preliminary step. CFD is employed to simulate airflow around test objects and determine their aerodynamic 

characteristics. Through CFD, it is anticipated that the test model prepared for wind tunnel testing will be 

matured, thereby reducing the frequency of model remanufacturing. Despite its advantages, CFD still requires 

extensive computational time and high computing resources [9]-[13]. Each simulation requires iterations to 

complete and involves high computational complexity per iteration [7], [14]. During the design phase, the 

speed of simulations is crucial for swift design analysis and evaluation to achieve optimal designs. This 

condition restricts simulations across all configurations due to time constraints and the computational demands 

per iteration [13]. Another critical aspect of using CFD involves the requirement for deep understanding and 

experience in physics and fluid mechanics [15]. 

Based on these conditions, together with the growth in aerodynamic testing and simulation data for 

airfoils, and advancements in machine learning, there has been increasing adoption of machine learning 

approaches for predicting aerodynamic coefficients on airfoils. This trend stems from machine learning's ability 

to produce accurate predictions in significantly shorter timeframes compared to experimental approaches or 

CFD simulations. Generally, the use of machine learning in predicting aerodynamic coefficients of airfoil 

models is categorized into two main approaches: parametric prediction and graphical prediction [8]. 

Parametric prediction utilizes multiple airfoil parameters to construct predictive models [16]-[20]. The 

aerodynamic parameters of an airfoil typically consist of three components: point coordinates, airfoil 

parameters, and flight conditions [21]. Esther et al., 2020 [22] conducted research to predict the lift coefficient 

(Cl) and drag coefficient (Cd) using linear regression and support vector regression (SVR). This study 

employed three types of airfoils: NACA0012, RAE2822, and DPW Wing. The dataset encompassed variations 

in Mach number (0.1 - 0.9) and angle of attack (00 - 200). Actual values of Cl and Cd as supervised data were 

obtained by conducting CFD on the three types of airfoils. 

In 2021, Moin et al., [21] utilized artificial neural networks (ANN) to forecast Cl, Cd, and pitching 

moment coefficient (Cm) for NACA 4-digit and 5-digit airfoils. The dataset included airfoil geometry 

coordinates at 5, 10, and 15 points, alongside flight conditions involving AoA (-100 to +100, incremented by 

10), Reynolds number (ranging from 100000 to 500000 with increments of 100000), and Mach number (ranging 

from 0.1 to 0.3 with increments of 0.1). Bhutara et al., [23], also employed ANN in 2024 to predict Cl and Cd 

for NACA series 4 airfoils, using reference data for Cl and Cd obtained via the CFD solver XFLR5. The study 

involved 9 types of NACA4 airfoils, with variations in AoA (-50 to +200), chamber (0 to 2), chamber position 

(0 to 4), thickness (0.06 to 0.24), and Reynolds number (0.001e+06 to 50.0e+06). 

In the study, airfoil parameters and flight conditions are considered influential in predicting Cl, Cd, and 

Cm. Determining parameters for this parametric prediction is challenging due to the difficulty in selecting the 

most influential parameters [8]. Additionally, the airfoil shape is represented by limited coordinates (x, y), and 

other parameters such as thickness, camber, and their positions are constrained. These limitations may lead to 

less accurate representation of the airfoil shape and position at specific AoA. The use of relatively uniform and 

limited airfoil types accelerates model training; however, increasing the dataset size would exponentially 

extend training time [8]. 

This condition has led many researchers to employ deep learning CNN for feature extraction from images 

in efforts to perform prediction and classification effectively [24]. Referred to as graphical prediction, this 

approach offers a solution to the limitations posed by previous parametric methods. The main advantage of this 

approach lies in its accurate ability to represent the shape and position of airfoils at various AoA. Furthermore, 

increasing the dataset size impacts training time linearly, unlike exponential impacts seen in parametric 

predictions [8]. The utilization of CNN for predicting airfoil aerodynamic coefficients was previously explored 

by Zhang et al. (2017) [15]. They employed a modified CNN LeNet-5, originally designed for document 

classification [25], to perform regression on the lift coefficient (Cl) of the airfoil. Actual lift coefficient data 

was obtained through CFD using XFOIL, based on predefined geometry data. This geometry data was used to 

generate grayscale airfoil images sized 49x49 pixels, with black representing the inner side of the airfoil and 

white the outer side. Mach number values were used to gradate the grayscale image according to Mach number 

variations. Since then, modified LeNet-5 models have been widely adopted for aerodynamic coefficient 

prediction, with adaptations including input conditioning using grayscale or RGB images, increasing the 

number of outputs from single to multi-output, and modifying the number of convolutional layers utilized. 

Yuan et al. (2019) [26] employed the signed distance function (SDF) to generate RGB airfoil images 

sized at 32×32 pixels as input for a CNN model. The CNN architecture included 2 convolutional and pooling 

layers, followed by a fully connected layer prior to predicting the coefficients Cl, Cd, and Cm. Chen et al. 

(2020) [8] utilized a dataset comprising 300 airfoils to predict Cl, Cd, and Cm coefficients. Actual aerodynamic 

coefficient data were obtained through CFD simulations. Grayscale airfoil images sized at 85 x 85 pixels were 
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used, with the CNN architecture consisting of 2 convolutional and pooling layers using ReLU activation 

function, and a fully connected layer. The regression CNN employed MSE as its loss function, with RMSE 

utilized as the evaluation metric. 

All mentioned studies employed a modified CNN LeNet-5 architecture, adapted from its original 

classification task to regression, focusing on one type of images, either on grayscale or RGB images, with 

various construction techniques, also focus on prediction results (single or multi-output). However, 

investigations into using modified LeNet-5 architectures as predictive models or integrating them with other 

methods for predicting airfoil aerodynamic coefficients have not been explored. In general, CNN has proven 

to perform well in feature extraction. However, the final layer of a CNN is considered a linear classification 

operator and may not always be the optimal choice, as the subsequent multi-layer perceptron (MLP) contains 

many parameters that can still be trained. On the other hand, SVM with kernel functions remains highly 

effective in minimizing general errors when applied to feature vectors [27]. Furthermore, combining CNN with 

SVM or CNN with SVR has proven to improve performance significantly compared to using CNN alone. 

Zhang et al. (2020) [27] proposed a hybrid CNN-SVR method for predicting gRNA. Khairandish et al. (2020) 

[28] proposed a hybrid CNN-SVM approach for tumor detection and MRI brain image classification. Ghimire 

et al. (2022) [29] developed a hybrid CNN-SVR model for solar radiation prediction. Rastegar et al. (2023) 

[30] applied a hybrid CNN-SVR approach to estimate blood pressure using ECG and PPG signals. Biswas, et. 

al., (2021) proposed a hybrid CNN-SVM for the classification of brain tumours [31]. Zhu, et. al, using CNN-

SVM for improved vehicle recognition [32]. Wenbing, et. al, (2020) used hybrid CNN-SVR to predict the 

index measurement of wastewater [33]. 

Based on this issue, this research proposes a hybrid prediction model named AeroCNNSVR, which 

integrates CNN as feature extractors and Support Vector Regression (SVR) as regressors to predict the 

aerodynamic coefficients Cl, Cd, and Cm of an airfoil. The method utilizes alternating grayscale and RGB 

input images for model construction, with variations in convolutional layering and pooling aimed at optimizing 

model performance. 

The research contributions in this research are: 1) proposing an alternative besides CFD for predicting 

and identifying trends in aerodynamic coefficients of airfoils in a much shorter time during the design stage; 

2) offering wind tunnel practitioners for early detection of configuration errors; 3) providing an overview of 

the aerodynamic characteristics of the airfoil under test, including the angle at which stall conditions occur. 

 

2. MATERIAL AND METHODS  

The system proposed in this research is explained through the illustration in Fig. 1. In general, it consists 

of an input layer, a feature extraction layer, and a prediction layer. Model training employs the Mean Squared 

Error (MSE) loss function, while evaluation utilizes Root Mean Squared Error (RMSE) and 𝑅2.metrics. 

 

 
Fig. 1. System Architecture of Hybrid AeroCNNSVR 

 

2.1. Airfoil 

An airfoil is a fundamental component representing the cross-sectional shape of an aircraft wing, directly 

influencing wing and aircraft performance. It typically includes point coordinates, airfoil parameters, and flight 

conditions [21], [34], [35], as illustrated in Fig. 2. Airfoil nomenclature : 

• Point Coordinates: (x,y) coordinates on the upper and lower surfaces forming the airfoil. 

• Airfoil Parameters:  

▪ Leading Edge: The foremost point of the airfoil. 

▪ Trailing Edge: The rearmost point of the airfoil. 

▪ Mean Camber Line: The midpoint line between the upper and lower surfaces of the airfoil. 

▪ Cord Line (c): Straight line from the trailing edge to leading edge. 

▪ Camber: The maximum distance between mean camber line and chord line. 

▪ Camber Pos: The position of the chamber point is measured from the leading edge of the airfoil. 

▪ Thickness: Maximum distance between the upper and lower surfaces of an airfoil. 
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▪ Thickness Pos: The position of the thickness point is measured from the leading edge of the 

airfoil. 

• Flight Conditions: 

▪ Angle of Attack (AOA): An angle between the relative wind and the chord line. 

▪ Reynold Number (Re) 

▪ Mach Number (Ma) 

 

 
Fig. 2. Airfoil nomenclature 

 

The airfoil shape is designed to make the airflow on the upper surface faster than the lower surface, 

creating a lower pressure on the upper surface. This pressure difference generates lift force (L), drag force (D), 

and pitching moment (M). The lift force acts perpendicular to the direction of the relative wind, while the drag 

force acts parallel to it. The pitching moment is caused by the airfoil's center of mass not being parallel to the 

centre of pressure. The forces and moments on the airfoil are generally expressed using the non-dimensional 

coefficients Cl, Cd, and Cm, as follows 

 
𝐶𝑙 =

𝐿

1
2

𝜌𝑣2𝑆

 
(1) 

where Cl is the lift coefficient, L is the lift force, ρ is the air density, v is the wind speed, and S is the surface 

area. In the context of a 2D airfoil, S is typically represented as the chord length (c). Thus, the equation 

becomes: 

 𝐶𝑙 =
𝐿
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𝜌𝑣2𝑐2

 
(2) 

where c is the airfoil cord length, Cd is the drag coefficient, D is the drag force, Cm is the pitch moment 

coefficient, and M is the pitch moment 

The airfoil design is developed to ensure laminar flow remains attached to its surface, resulting in a higher 

lift-to-drag ratio. Airfoil performance is commonly assessed by the Cl and Cd ratio [1], [36] - [39], as well as 

Cm [40]-[42]. 

 

2.2. Input Layer 

Fig. 3. Preprocessing data on input layer, illustrates the data preprocessing procedure to obtain the dataset 

used as input for the prediction model. 

 
Aerodynamics 

Coefficients (CL, CD, 
CM, CDp, CP, CDp, 

Xc, Yc, AoA, Re)

CFD Solver 
(XFLR5)

Geometry 
Airfoil from 
UUIC (Xc,Yc)

Airfoil Images 
(Grayscale, rgb)

Formating and 
Cleaning Data (CL,CD, 

CM, Alfa, X,Y)

Aerodynamic 
Coefficients (CL, 

CD, CM, AOA)  
Fig. 3. Preprocessing data on input layer 
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2.2.1. Geometry Airfoil 

The airfoil geometries were obtained from the UIUC Data Site (https://m-

selig.ae.illinois.edu/ads/coord_database.html ), comprising 574 airfoils. This dataset will be partitioned into 

training, validation, and testing sets in a ratio of 70:20:10. Each airfoil geometry entry stores non-dimensional 

coordinates (Xc, Yc), which will serve as inputs for CFD simulations and airfoil image generation. 

 

2.2.2. CFD Solver 

CFD was conducted on various airfoil types with AoA variations from -100 to +200, incremented by 10. 

For flow conditions, Ma = 0 and Re = 500000 were utilized. The XFLR5 CFD solver was chosen due to its 

processing speed, comprehensive data output, and user-friendly interface [1], [43], [44]. Results obtained at 

this stage include Cl, Cd, Cm, CDp values, coordinates (Xc and Yc), Cp, and XCp. This research specifically 

focuses on Cl, Cd, and Cm values, as these coefficients directly represent airfoil performance, and by extension, 

aircraft performance. The CFD data serves as a reference (ground truth) for developing predictive models. 

 

2.2.3. Formatting and Cleaning Data 

The collected CFD data was reformatted to include only Cl, Cd, Cm, AOA, Xc, and Yc values. The data 

was structured in comma-separated values (CSV) files containing AOA, Cl, Cd, Cm, airfoil name, Re, Ma, and 

airfoil image name. At this stage, data points with fewer than 10 angles were removed to ensure dataset quality. 

 

2.2.4. Airfoil Images 

The airfoil images will be generated in grayscale and RGB formats based on the airfoil geometry (Xc, 

Yc). The chord length (c) is adjusted to fit the image size. In this study, the airfoil images are standardized to 

128x128 pixels. Thus, the coordinates X = Xc * c and Y = Yc * c are determined. Grayscale image creation 

follows the procedure outlined in Fig. 4 at a 0° angle. Geometry data is transformed into X and Y coordinates 

by scaling with the chord length (128). Subsequently, these data are plotted using the matplotlib library with a 

black background. The airfoil position is centered within the frame, with coordinate axes removed and the 

inner airfoil filled with white color. Airfoil images are generated at angles ranging from -10° to +20° for each 

of the 574 airfoil types. The number of grayscale images produced for training is 9747, for validation is 3050, 

and for testing is 1462. The same quantities are generated for RGB airfoil images as well.  

 

 
Fig. 4. Grayscale airfoil image conversion 

 

The generation of RGB airfoil images follows the same principles as grayscale images, as depicted in Fig. 

5. This process utilizes the OpenCV library for airfoil plotting, where the positive Y-axis points downward, 

necessitating inversion. And afterward, the airfoil's position is adjusted based on the G value to center it within 

the frame. The final step involves converting the image to RGB using the scikit-fmm (skfmm) library. This 

imaging enhances airfoil flexibility while maintaining consistent image shape across varying sizes. 

For the results of airfoil image generation, please refer to Fig. 6 for grayscale images of airfoils A18sm, 

E423, E471, and NACA0021 at 00 degrees. Additionally, Fig. 7. presents RGB images of airfoils A18sm at 00 

and +200, and NACA0021 at 00 and +200. 
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Fig. 5. Rgb airfoil image conversion 

 

    
Fig. 6. Grayscale airfoil images 

    

       
Fig. 7. Rgb airfoil images 

 

2.3. Features Extraction Layer 

At this stage, we constructed a CNN model based on a modified version of LeNet-5. The input airfoil 

images are of dimensions 128×128 pixels with 3 channels. The initial model employs 2 convolutional and 

pooling layers, as illustrated in Fig. 8. Each layer utilizes 16 filters/channels, using (3,3) kernels with a stride 

of 1 and a Rectified Linear Unit (ReLU) activation function, known for its effectiveness in producing better 

results [45]-[47]. The ReLU function will produce outputs zero if the input is less than zero and the input value 

itself if greater than or equal to zero [46], [48], [49]. Occurring after, variations of convolutional and pooling 

layers in the CNN models maintain a similar configuration, differing primarily in the number of filters/channels 

in each convolutional layer. As shown in Fig. 9 for the 3CL2FC model, Fig. 10 for the 4CL2FC model, and 

Fig. 11 for the 5CL2FC model, conv3 and conv4 use 64 filters, while conv5 in the 5CL2FC model uses 128 

filters. Dense layers 1 (FC1) and 2 (FC2) are uniformly implemented across all models, using ReLU activation 

with 128 outputs for FC1 and linear activation with 3 outputs for FC2, representing the three aerodynamic 

coefficients. 

The number of CNN models at this stage is 8 models consisting of 4 CNN models using grayscale airfoil 

image input data and 4 using RGB airfoil images. Each model will be trained and validated using a learning 

rate of 0.0001 with adaptive movement estimation (Adam) [50], [51] with an early stopping of 15 epochs to 

prevent overfitting. 
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Fig. 8. CNN architecture 2CL2FC 

 

 
Fig. 9. CNN architecture 3CL2FC 

 

 
Fig. 10. CNN architecture 4CL2FC 

 

 
Fig. 11. CNN architecture 5CL2FC 

 

2.4. Output / Prediction Layer 

The previously trained CNN model will be pruned at its final layer (Dense2) and replaced with Support 

Vector Regression (SVR) to predict airfoil aerodynamic coefficients. SVR represents an upgraded version of 

the Support Vector Machine (SVM) suitable for regression tasks. SVM is a machine learning method that aims 

to find the best hyperplane that separates two classes with a maximum distance between the optimum 

hyperplane and separated hyperplane for each class (support vectors) as seen in Fig. 12. Initially a linear 

classifier, SVM evolved to handle non-linear problems by employing the kernel trick, which transforms input 

data into a higher-dimensional space (future space) for separated linearly. 

SVR is also developed based on the SVM principle, which involves mapping original data points from 

the input space into a higher-dimensional or even infinite-dimensional feature space to address regression 

problems [27], [29]. As illustrated in Fig. 13. SVR , epsilon (ϵ) is the distance between the hyperplane and the 

boundary that passes through the data point which is called the support vector. The margin ϵ is minimized to 

ensure all data points fit within a single distribution. This data distribution is formed to satisfy the regression 

function f(x) of SVR, as follows: 

 𝑓(𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏 (3) 

where x is the input vector, w is the weight representing the hyperplane orientation, and b is the bias. Besides, 

the purpose of SVR is to minimize the following objective functions: 
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𝑚𝑖𝑛 (

1

2
|𝑤|2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

)
 (4) 

with limitations: 

 

{

yi − ⟨w, xi⟩ − b ≤ ϵ + ξi

⟨w, xi⟩ + b − yi ≤ ϵ + ξi
∗

ξi, ξi
∗ ≥ 0

 (5) 

where C is the regulatory parameter that regulates the trade-off between the complexity of the model and the 

penalty error, and 𝜉𝑖  and 𝜉𝑖
∗ are the slack variables representing errors beyond the epsilon margin. Parameter 

tuning will be focused on during the training and validation of SVR in constructing the AeroCNNSVR model. 

The related parameters to be tuned include: 

a. The epsilon parameter (ε) determines the margin width in Support Vector Regression (SVR). A 

smaller epsilon value increases model sensitivity and improves performance on training data, although 

excessively small values can lead to overfitting. Conversely, larger values of epsilon may result in 

underfitting. In this study, epsilon values tested include 0.01, 0.1, 0.5, and 1.0. 

b. The regularization parameter (C) regulates the trade-off between minimizing errors and preventing 

overfitting in the model. A high C value reduces error but may lead to overfitting. The study varies C 

values as follows: 0.01, 0.1, 1, 10, and 100. 

c. The kernel type used in SVR training is varied across linear, polynomial, radial basis function (rbf), 

and sigmoid kernels. 

 
 

Fig. 12. SVM illustration 

 

Fig. 13. SVR illustration 

 

The combination of existing parameter values will be performed at the same time as the training model, 

in other words, the model will look for the composition of which parameters can produce the smallest loss. The 

model that has already been formed is the model with the best parameters. This method is more practical, 

although it increases model training time. 

The loss function employed during model training and evaluation is Mean Square Error (MSE), consistent 

with previous research [8], [15], [26], indicating the model's performance quality. Evaluation metrics include 

Root Mean Square Error (RMSE) and Coefficient of Determination (R2). RMSE involves squaring the 

difference between predicted and actual values, summing these squares, dividing by the number of data points, 

and taking the square root of the result. These metrics facilitate interpretable results aligned with actual data 

[52], [53]. R2 explains the proportion of variance in the dependent variable explained by the independent 

variable. In this study, observed ground truth data (y_gt) serve as the independent variable, while predicted 

output (y_pred) acts as the dependent variable. R2 ranges from 0 to 1, where values closer to 1 indicate less 

variance between y_gt and y_pred, which means the better [54]. 

Generally, the process conducted in the training, validation, and testing phases of the proposed method is 

outlined as follows: 

1. Collection of airfoil geometry data. 

2. Computational Fluid Dynamics (CFD) simulation of airfoil geometries to derive aerodynamic 

coefficients across a range of angles of attack (-10 to +20 degrees). 

3. Conversion and organization of CFD results into .csv format, encompassing coordinate data (x, y) for 

image creation and (Cl, Cd, Cm, angle) for labeling. 

4. Training and validation using Convolutional Neural Networks (CNN). 

5. Testing the CNN model using dedicated testing data. 
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6. Removal of the final dense layer (Dense2) from the CNN model and collect the results of the extraction 

feature. 

7. Perform training and validation of SVR with input data from feature extraction before. 

8. Evaluation of the AeroCNNSVR model performance using the same testing dataset employed in step 

5. 

9. Repetition of steps 4-7 for all model variations employing both grayscale and RGB input images. 

 

3. RESULTS AND DISCUSSION  

The training and validation processes will be performed on a CNN model used as the baseline, which will 

then be compared with the proposed model. The proposed model employs the same feature extraction method 

as the CNN model across various numbers of convolutional layers. 

 

3.1. Training and Validation of CNN Model 

The training history of CNN models with grayscale and RGB images is documented in Fig. 14 and Fig. 

15. The training results indicate good performance (good fit) without overfitting. Initially, the MSE loss values 

on the training data are relatively higher compared to the validation data. By the 5th epoch, the MSE loss on 

the training data becomes lower than validation and remains stable for models 3CL2FC, 4CL2FC, and 

5CL2FC. However, for the 2CL2FC model, the training MSE falls below validation at the 16th epoch. 

Consistent good fit and absence of overfitting are also evident in the training history of CNN models with RGB 

airfoil image inputs. Based on the number of epochs in both training histories, CNN models with RGB inputs 

require longer training times compared to grayscale, possibly due to the additional color-related information in 

RGB images. However, this study focuses on the shape and position of the airfoil based on AoA angle. 

 

 
Fig. 14. Training history for CNN using grayscale airfoil images 

 
Fig. 15. Training history for CNN using rgb airfoil images 

 

3.2. Experimental Result of CNN Model 

The CNN model was tested using 1,462 airfoil images in the test dataset for each image type. Model 

performance was evaluated based on RMSE, R2, and graphical comparisons with actual data, detailed in Table 

1 and Table 2. The results indicate that increasing the number of convolutional layers does not consistently 

enhance prediction model performance. The optimal CNN model for grayscale images was identified as 
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4CL2FC, featuring 4 convolutional layers with pooling and 2 dense layers. In contrast, for RGB images, CNN 

5CL2FC demonstrated superior performance in RMSE and generally in R2, except for predicting Cm. When 

compared with both types of input images, grayscale images have better RMSE and R2 scores than rgb for all 

model variations. This is because grayscale airfoil images represent the shape and the position of airfoil more 

clearly and accurately. 

 

Table 1. Experimental Results of CNN Models using Grayscale Airfoil Images 

No. CNN Model 
RMSE R2 

Cl Cd Cm Cl Cd Cm 

1 2CL2FC 0.106522 0.022550 0.129322 0.973656 0.866019 0.799360 

2 3CL2FC 0.101362 0.019157 0.128330 0.976146 0.903281 0.836036 

3 4CL2FC 0.101148 0.016834 0.126865 0.976247 0.925333 0.805075 

4 5CL2FC 0.114527 0.018812 0.131046 0.969548 0.906756 0.818049 

 

Table 2. Experimental Results of CNN Models on RGB Airfoil Image 

No. CNN Model 
RMSE R2 

Cl Cd Cm Cl Cd Cm 

1 2CL2FC 0.118804 0.023139 0.131704 0.967231 0.858921 0.821047 

2 3CL2FC 0.116313 0.023408 0.129724 0.968591 0.855623 0.819486 

3 4CL2FC 0.119487 0.026536 0.140782 0.966853 0.814453 0.749404 

4 5CL2FC 0.106127 0.019733 0.129605 0.973851 0.897395 0.780708 

 

3.3. Experimental Result of AeroCNNSVR Model  

The same testing data were utilized for the proposed AeroCNNSVR model. Prediction results are 

presented in Table 3 and Table 4, where the model achieving the overall RMSE and R2 scores for predicting 

aerodynamic coefficients are 4CL2FC for grayscale data and 5CL2FC for RGB data. Metric evaluations 

consistently demonstrate that the grayscale data model outperforms across various configurations of 

convolutional and pooling layers. A comparison between CNN and AeroCNNSVR models reveals that the 

proposed model achieves superior RMSE and R2 scores for each type of input image and across different 

convolutional layer configurations. 

 

Table 3. Experimental Results of AeroCNNSVR Models on Grayscale Airfoil Images 

No. 
AeroCNNSVR  

Model 

RMSE R2 

Cl Cd Cm Cl Cd Cm 

1 2CL2FC 0.103302 0.018412 0.131251 0.975225 0.910677 0.842872 

2 3CL2FC 0.105873 0.017792 0.130302 0.973976 0.916592 0.865359 

3 4CL2FC 0.101522 0.016450 0.129661 0.976071 0.928700 0.860574 

4 5CL2FC 0.109848 0.016692 0.130293 0.971985 0.926589 0.837078 

 

Table 4. Experimental Results of AeroCNNSVR Models on RGB Airfoil Images 

No. 
AeroCNNSVR 

Model 

RMSE R2 

Cl Cd Cm Cl Cd Cm 

1 2CL2FC 0.120198 0.019793 0.129703 0.966458 0.896772 0.860302 

2 3CL2FC 0.120198 0.019793 0.129703 0.966458 0.896772 0.860302 

3 4CL2FC 0.112493 0.019060 0.130041 0.970620 0.904282 0.816355 

4 5CL2FC 0.104297 0.018901 0.130502 0.974745 0.905867 0.865867 

 

As seen in Fig. 16a, both the CNN and AeroCNNSVR models effectively predict Cl, following the actual 

data trend. However, at angles less than 50 degrees and post-stall, there are slight deviations between predicted 

and actual data. In Fig. 16b and Fig. 16c, for Cd and Cm predictions, AeroCNNSVR remains closer to the 

actual data trend compared to CNN, although not as effectively as in Cl predictions. Cd and Cm are relatively 

more challenging to predict due to their dependence on numerous and complex factors compared to Cl. Factors 

such as surface roughness, flow conditions around different airfoil shapes, changes in flow related to variations 

in angle of attack, and Reynold number will affect the pressure distribution in the airfoil surfaces which affects 

both Cd and Cm values. Small changes induced by these factors significantly impact variations in Cd and Cm. 

Meanwhile, Cl tends to correlate with total lift force, which is easier to predict, especially before a stall occurs. 
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a. Lift Coefficient 

 

b. Drag Coefficient 

 

c. Pitching Moment Coefficient 

Fig. 16. Aerodynamic coefficient prediction from CNN and AeroCNNSVR 

 

3.4. Discussion 

Based on the training results in Table 1-Table 4, the addition of convolutional layers does not consistently 

improve the prediction model performance. Both the CNN and AeroCNNSVR models proposed show optimal 

performance in the 4CL2FC configuration, utilizing 4 convolutional layers. This suggests that in this model 

configuration, CNN consistently excels in recognizing airfoil shape and position features, yielding the best 

RMSE and R2 values for predicting Cl, Cd, and Cm coefficients. 

Table 1 and Table 3 show the RMSE and R2 scores of the baseline CNN model compared to the 

AeroCNNSVR model using grayscale airfoil images. Across all model variations, the proposed model achieves 

superior evaluation scores compared to the CNN model. Similarly, in Table 2 and Table 4, the proposed RGB 

airfoil image model also outperforms the CNN model based on RMSE and R2 scores. This improvement is due 

to the integration of SVR in the proposed method, which strengthens predictive capabilities beyond those 

achievable by CNN alone. 

The type of airfoil image significantly influences the performance of prediction models. Grayscale images 

in all variations of CNN and the AeroCNNSVR model for predicting aerodynamic coefficients in this study 

yield superior RMSE and R2 scores compared to models utilizing RGB airfoil images. Grayscale images 

provide clearer and more accurate depictions of the airfoil's shape and orientation at each Angle of Attack 

(AoA). Among the CNN prediction models using grayscale images, the CNN 4CL2FC model achieves the best 

performance with RMSE scores of Cl (0.112493), Cd (0.019060), Cm (0.130041), and corresponding R2 scores 

of Cl (0.970620), Cd (0.904282), Cm (0.816355). Similarly, in the AeroCNNSVR model, the 4CL2FC model 

demonstrates RMSE scores for Cl (0.101522), Cd (0.016450), Cm (0.129661), and R2 scores for Cl (0.976071), 

Cd (0.928700), Cm (0.860574). 

Both CNN and AeroCNNSVR models can predict the Cl coefficient quite accurately. Especially at angles 

above -50 and up to the stall, as seen in Fig. 16a. The proposed method can produce prediction results that are 

closer to the actual data than the baseline CNN model. As seen in Fig. 16b. and Fig. 16c, where the predicted 

data trend of the proposed method is closer to the actual data trend for the predicted coefficients Cd and Cm. 

 

4. CONCLUSION 

The research focuses on the shape of the airfoil based on the geometry of the Airfoil and its position based 

on an AoA. The type of airfoil image significantly impacts the predictive model's performance and training 

speed. The grayscale airfoil image in this study was able to produce better performance than the rgb image 

because the grayscale airfoil images represent the shape and the position of airfoil more clearly and accurately. 

Grayscale airfoil images also make the model train faster because they are simpler than RGB images. The CNN 
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and AeroCNNSVR architectures explored in this study vary in layer depth, specifically 2CL2FC, 3CL2FC, 

4CL2FC, and 5CL2FC configurations. The proposed models consistently achieve better RMSE and R2 scores 

across all variations. The highest performance is observed with the AeroCNNSVR architecture using 4CL2FC 

on grayscale airfoil images, yielding RMSE scores of Cl (0.101522), Cd (0.016450), Cm (0.129661), and R2 

scores of Cl (0.976071), Cd (0.928700), Cm (0.860574). The CNN and AeroCNNSVR models consistently 

perform best with the 4CL2FC configuration, which shows the consistency of the feature extraction done by 

CNN. And by combining with SVR, the predictions obtained become stronger. Prediction graphs for the 

SA7035 airfoil demonstrate that predicted data trends closely follow actual data trends. This method offers an 

alternative perspective for predicting airfoil aerodynamic coefficients, providing rapid predictive capabilities 

useful for wind tunnel testing to assess aerodynamic characteristics. The models accommodate diverse airfoil 

shapes encountered in real-world designs, facilitating accurate predictions across varying airfoil types. 

In this study, CFD data that is empty or has fewer than 10 angles for an airfoil will not be used as part of 

the dataset. Future research can address this by increasing the number of data points during the CFD process, 

ensuring aerodynamic coefficients are obtained at all desired angles of attack. Additionally, other factors such 

as flow conditions can be examined further, as this study primarily focuses on the shape and position of the 

airfoil based on geometry and angle of attack to improve predictions, particularly for the drag coefficient (Cd) 

and pitching moment (Cm). There is also potential to investigate the impact of different input image sizes on 

the model. Smaller airfoil images tend to be blurry, while larger images can strain the model training process. 

For aircraft wing testing, the proposed hybrid AeroCNNSVR method can be used to predict the aerodynamic 

coefficients of aircraft wings. 
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