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Abstract

Background: Bioinformatics data analysis often deals with additive mixtures of signals for which only class labels
are known. Then, the overall goal is to estimate class related signals for data mining purposes. A convenient
application is metabolic monitoring of patients using infrared spectroscopy. Within an infrared spectrum each
single compound contributes quantitatively to the measurement.

Results: In this work, we propose a novel factorization technique for additive signal factorization that allows
learning from classified samples. We define a composed loss function for this task and analytically derive a closed
form equation such that training a model reduces to searching for an optimal threshold vector. Our experiments,
carried out on synthetic and clinical data, show a sensitivity of up to 0.958 and specificity of up to 0.841 for a 15-
class problem of disease classification. Using class and regression information in parallel, our algorithm outperforms
linear SVM for training cases having many classes and few data.

Conclusions: The presented factorization method provides a simple and generative model and, therefore,
represents a first step towards predictive factorization methods.

Background
Bioinformatics data analysis often deals with additive
mixtures of signals from unknown interfering sources.
In the majority of cases, only class labels are known for
each sample, which hampers the estimation of the origi-
nal source signals. An example of such a situation is the
search for metabolic features in blood within different
patient groups. In blood, several signal sources add up
as each single organ may submit hormones contributing
its state into this complex mixture. For instance, adipo-
cytes secrete the hormone leptin to indicate their state.
This signal is then recognized in the hypothalamus to
regulate the appetite. At the same time, insulin is
secreted by pancreatic beta cells for the regulation of
the blood sugar. Both peptide hormones are present
within the blood while their regulation results in differ-
ent outcomes. However, both signals are also hidden
within a huge and noisy background of further signals
also present in the blood stream. Consequently, a large
number of samples must be taken to clearly identify an

unknown signal. Infrared (IR) spectroscopy is a rapid
method for detecting signals in biological samples. It
relies on quantities of 1 μl size that can be easily
obtained and it is fast: measuring a complete sample
where each single molecule is detected requires a total
time of 30 s on a Bruker Tensor 37.
The principles of IR spectroscopy, see for instance [1],

are illustrated in Figure 1. IR spectroscopy can be used
for the quantification of known compounds or for struc-
tural elucidation of unknown molecules. An IR source
emits light towards a sample solution of chemical com-
pounds. IR radiation is absorbed by chemical com-
pounds as motion energy when the absorbed energy
fulfills the resonance condition of a tone or related over-
tones. In this way, IR spectroscopy detects oscillations of
bonds. As an additional condition, IR spectroscopy
requires that oscillations lead to a periodical change of
the molecular dipole moment. Consequently, com-
pounds having no dipole are IR inactive. However, in
the case of an IR active compound functional groups
can be identified by their characteristic absorption
bands, and thus give hints for structural elucidation.
Alternatively, compounds can be identified through
their characteristic fingerprint region within their IR
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spectra. This unique characteristic absorption fingerprint
completely depends on the molecular constitution,
because each path through a compound that is asso-
ciated with a change in dipole moment absorbs at a
characteristic wave length. All such paths of various
lengths yield the characteristic absorption spectrum and
uniquely identify the compound. Thus, the prediction of
the IR spectrum of a compound is a hard task. Finally,
we want to note that the IR detector records a mixture
signal of all compounds present in the sample. Conse-
quently, each single molecule present in the 1 μl sample
contributes to the signal, whether it is known or not.
Then, the vibration spectrum represents a complex “
fingerprint” of the biochemical condition of the sample
wherein single compounds are not recognized any more.
However, all diseased changes are included in detail
integrately such that the sample can be analyzed objec-
tively and without knowing disease markers with the IR-
spectroscopy. In this way, IR spectroscopy has a great
potential as a method for early diagnosis and therapy

control [2-4]. Analyzing IR spectra is however a com-
plex signal processing problem.
Nonetheless, there exist algorithms that are able to

separate additive signals into estimated subcomponents.
Examples for these methods are Non-negative Matrix
Factorization (NMF) [5] or Independent Component
Analysis (ICA) [6,7]. Both compute a generative additive
signal model that is fitted to data samples to estimate
the basic subsignals each data sample is composed of.
However, IR spectra do not completely fulfill sparseness
or smoothness constraints used by ICA or NMF com-
pletely, see [8]. Moreover, these methods are not
designed for training on data with classification labels
nor do they yield predictive models. In this work, we
solve the class assignment problem and design a factori-
zation method using a generative additive model that
can be trained on data samples having class labels. For
each class label, a factor signal is computed that, when
exceeding a learned threshold, predicts the specific label.
Therefore, our method can be trained on cheap IR

Figure 1 The principle of IR spectroscopy. For IR spectroscopy light is cast on a sample of compounds. Depending on its constitution, each
compound has a characteristic absorption pattern for the received light. This results in an additive superposition of absorption, which is
subsequently recorded as a mixture spectrum. Here, each compound contributes its absorption fingerprint quantitatively to the mixture. The
fingerprint can be used for compound identification, because the absorption depends on all paths through the compound that oscillate such
that the permanent dipole changes.
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spectra using class information and extract meaningful
components from these signals, which leads to further
insight into data and a predictive model.

Methods
This section develops the new predictive matrix factori-
zation algorithm named BrierScoreMF for IR spectra.
First, we motivate and define the problem. Then, we
introduce factorization and classification loss functions
and their matrix formulations. Finally, we derive the
BrierScoreMF algorithm.

1.1 Problem formulation
In daily practice, bioinformatics often deals with signals
from interfering sources. Each source could have consid-
erable impact on the final interpretation of the signal.
For instance, consider endocrine signaling. The endo-
crine system is composed of glands secreting a hormone
into the blood stream. Within certain ranges, these sig-
nals represent the normal body state. However,
increased signals may indicate a disease state, e.g. onco-
genesis [9]. Thus, measuring all endocrine signals yields
a superposition of healthy and disease signal combina-
tions that have to be separated to diagnose the physical
state. Moreover, disease signals may be combinations of
coregulated signals not originating from a single signal
source. In practice, measured signals are only grouped
by disease classes raising the question for the character-
istic shape of the disease signals.
Thus, we are dealing with two simultaneous problems:

A signal decomposition problem and a classification
problem that is based on the signal decomposition. A
practical approach would try to learn the signals from
given data samples.
Matrix factorization methods are convenient algo-

rithms for the signal decomposition task [5]. These
methods solve the problem of finding the decomposition
X = AS for any matrix X. In general, this problem is ill-
posed. However, using constraints restricts the number
of feasible solutions, which can be found by local opti-
mization algorithms. Commonly used restrictions com-
prise constraints for the statistical independence of
signals [6] as well as non-negativity or sparsity of coeffi-
cients in A [5]. Up to now no factorization method is
known using class labels, therefore our approach
includes constraints for classification that are needed to
learn from IR spectra obtained in clinical studies.
We begin with developing our predictive factorization

algorithm. Given n pairs ( , )

x yi i of data samples com-

prising signals
 xi

d∈ and k classes yi Î C = {c i, . . .,c

k}, we define the following matrices

Design matrix X x ii
T= ( ) ∀

 (1)

Class matrix where 
if  has class ,

,
Y y i y

x c

el
ij ij

i j= ( ) ∀ =
+

−

1

1 sse

⎧
⎨
⎪

⎩⎪
. (2)

The dimensions are X Î ℝn × d and Y Î ℝn × k. Thus,
each row in X defines a measured signal and relates to a
row in Y containing binary class information.

Searching for a factorization into signals
 s j

d∈ and

coefficients aij Î ℝ, we want that

 
x a s i X ASi ij

j

k

j= ∀ ⇔ =
=
∑

0

(3)

.
where A Î ℝn × k and S Î ℝk × d. Equation (3) means

that each signal is a linear combination of k different
source signals and defines the general factorization pro-
blem in matrix formulation with respect to A and S. In

practice, noise hampers the inference of the

s j and,

consequently, this condition is not fulfilled exactly by
any solution. However, we will see that in our special
case the problem only reduces to finding a suitable S.
For classification, we propose a linear approach using a
threshold. Therefore, we want that

y a b i jij ij j= −( ) ∀signum , (4)

where

b k∈ is a column threshold vector of the fac-

torization. If the signal fraction exceeds a certain thresh-
old, this will indicate the class membership within our
prediction model.

1.2 Factorization loss functions
In general, factorization algorithms focus on the signal
side of the problem. These methods optimize special
distance functions between probability distributions,
referred to as divergences, to estimate A and S. It can
be shown that optimizing A and S in parallel is a non-
convex optimization problem. Commonly used diver-
gences include the Frobenius norm as well as the Kull-
back-Leibler divergence. Other exemplary divergences
are the Itakura-Saito divergence and the families of a-
and b-divergences [5].
However, in this work we will rely on the Frobenius

norm between X and AS for divergence. Thus, we define
the reconstruction error part of our loss function as

 X AS X AS
F

,( ) = − (5)
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where

Z z Z Z Z
F i j

i j
F

T≡ ⇔ =∑ ,

,

2 2
tr

for some matrix Z. Here, tr denotes the trace of a
matrix.
We have chosen the Frobenius norm as divergence for

the reconstruction error, because it easily allows to com-
pute the matrix differentials of an expression. This will
simplify the search for possible solutions in section 1.4.

1.3 Classification loss functions
Classification algorithms focus on the inference of a pre-
dictive model for a target variable from training data.
Therefore, they optimize classification loss functions that
penalize false predictions to find the most probable para-
metrization of a model. Convenient loss functions com-
prise the Brier Score [10], the SVM loss [11], the logistic
loss [12], as well as the Misclassification loss function.
We chose the Brier-Score [10] as it also can be

expressed in terms of matrix computations. Let y Î {-1,
+1} be the class label and let E[.] denote the expectation
operator. Then the Brier-Score is defined as

E yf x( ) −( )⎡
⎣⎢

⎤
⎦⎥

1
2

(6)

where f(x) is a parametrized model function.
Now, consider equation (4) and define the matrix V to

contain the signum arguments

V a b A bij j n k n
T≡ − = −× ×( ) 1 1



where

b k∈ ×1 is the vector of column thresholds.

Then, the Brier-Score can be written as a matrix func-

tion from   n k× as

 Y V Y V Y Vn k
T

n k, ( )( ) = − −× × tr( ) 1 1

where  = 1
nk

,Y is the class matrix, 1n×k an n×k

matrix of ones, and ◦ denotes the Hadamard product.

1.4 The predictive factorization algorithm
Current factorization methods are not predictive and can
only be used for signal inference. In the case of NMF
methods [5], this arises from the gradient descent meth-
ods used for optimization. Often, an alternating gradient
descent is performed, where one matrix is kept fixed
while the other is optimized. The drawback for a predic-
tive approach based on A is that for a given NMF signal
matrix S the corresponding A is not uniquely defined.

For any predictive approach, training a model requires
that A is treated as a function of S and X. This, to our
best knowledge, is not the case in current factorization
approaches.
Here, we solve this problem by using the Moore-Pen-

rose Pseudoinverse (MP) of S during training to com-
pute A. The MP is uniquely defined for any matrix S.
Let S+ denote the MP of S being defined by the follow-
ing properties

SS S S S SS S SS SS S S S ST T+ + + + + + + += = = =, ,( ) ,( ) (7)

Using these rules, it is easy to show that

X AS XS A= ⇔ =+ (8)

using (7) and assuming the existence of the quadratic
matrix (SS+)-1. Now, A is clearly defined as a function of
X and S and we have solved the problem of the
uniqueness.
Used in the following sections, we derive the differen-

tial for S+. Therefore, we adopt the notation from [13]
to compute dS+ as

dS d SS S dS S S S dS S SS dS

S dS S dS dS S S

=

=

( ) = ( ) ( ) + ( ) + ( ) ( )
⇔ ( ) − ( ) (

+ + + +

+ + )) − ( ) ( )

⇔ ( )
− ( ) ( )

= ( ) ( )
( )

+

+ + − + + + −

+ − + +

SS dS

dS S S S dS S SS

S S S dS S S

1 1

1
SS SS

S S S S S dS S SS

dS S dS S

+ + −

+ − + + + + −

+ + +

( )
( ) ( ) ( )

= ( )
− ( )

⇔ −

1

1 1

.

Together with the two loss functions and the MP dif-
ferential, all ingredients are available for the BrierScor-
eMF algorithm. First, we join both loss functions into a
combined minimization problem

min ( , ) , ,
,S b

T

T

S b X XS S Y XS b

X XS S X XS S

  
 

= ( ) + −( )
= −( ) −( )

+ +

+ +

2
1

tr

++ −( ) −( ) −( ) −( )+ + tr Y XS b Y XS bT
T

T





1 1 1 1

and substitute A = XS+. Thus, the complete loss func-
tion is easily expressed using matrix terms, where we
have omitted the sizes of the 1-matrices for simplicity.
Furthermore, we have used that is suffices to optimize a
monotonic transformation of F [[13], p. 129 Theorem 9].
To find a minimizer of the L, we compute the differ-

ential

d S b d X XS S X XS S

d Y XS b Y XS

T

T T

( , ) ( )

( ) ((

= − −

+ − − −

+ +

+ +

tr( )

tr( ) 


1 1 11 1

b T ) )−
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For the first summand, we compute

d X XS S X XS S

X XS S d X XS S

X XS S Xd

T

T

T

tr

tr

tr

−( ) −

= −( ) −( )
= − −( )

( )+ +

+ +

+

2

2 SS S

X XS S X dS S S dS

X XS S X S dS

T

T

+

+ + +

+ +

( )
= − −( ) ( ) +( )
= − −( ) −

( )

( )

2

2

tr

tr SS S S dS

X XS S XS dS S S X XS S XS dS
T T

+ +

+ + + + +

+( )
= −( ) − −( )

( )

( ) ( )2 2tr tr

Using trAT (B ◦ C) = tr(AT ◦ BT) C [[13]13, p. 45, The-
orem 7 (a)], the second summand derives to

d Y XS b Y XS b

Y XS b d

T
T

T

T
T

tr

tr










+ +

+

−( ) −( ) −( ) −

= −( ) −( )
( )1 1 1 1

1 12 YY XS b

Y XS b Y dXS

Y XS

T

T T











+

+ +

+

−( ) −( )
= − −( ) ( )

− −

( )
1 1

1 12

2

tr

tr

( )

11 1 1

1 1











b Y db

Y XS b Y XS dS

T
T T

T
T

( ) −( ) ( )
= − −( ) −( )( )

⎛
⎝⎜

⎞
⎠⎟

+ +2tr (( )

− −( ) −( ) ( )

+

+

S

Y XS b Y dbT T T
2tr ( )





1 1 1

Now, consider the term

Y XS b Y

Y XS b Y Y

XS b Y

T
T

T
T

T T








 



+

+

+

−( ) −( )( )
= −( ) −( )
= − −( )

1 1

1 1

1 ,

because Y ◦ Y = 1 and 1 ◦ Y = Y. Setting the differen-
tial to zero and using the computation rules for the
trace, especially trABC = trCAB, we derive

d S b X XS S XS dS S S

X XS S XS dS

XS

T

T

( , ) ( )

( )

= −( )
− −( )
−

+ + +

+ +

+

2

2

2

tr

tr

tr −− −( )
− − −( )

−=

+ +

+

+

1

1 1



 
b Y XS dS S

XS b Y db

S S X XS

T T

T T T

( )

( )

[(

2

2

 tr

tr ++ +

+ + +

+

( ) − −( )
− − −

− −

( ) ⎞
⎠⎟

S X XS S

S XS b Y XS dS

XS b

T T

T T

2

2

2





1

1





( )]

tr TT T T
Y db−( ) ( )

=

1

0



.

As both tr terms relate to distinct differentials, we first
obtain that

0 1 1= − − ⇔ = + ≡+ +XS b Y XS Y b WT T
 

for the coefficients of db

.

Assuming XS+ ≠ 0 and substitution of W back into

0 = d S b( , )


yields

0 1

0

= ( )
=

−( ) − −( ) − − −

−( ) −( ) −

⇒

+ +

+

2 2 2

2 2

S S X WS X WS S W b Y

S S E X WS

X

T T T T




==

=⇔ = +( )+ +

WS

S W X Y b XT1


(9)

To this end, we have found a solution for the predic-
tive matrix factorization problem using the Brier Score
as classification loss and the Frobenius norm as factori-
zation loss. Moreover, the solution is fully determined

by a single k × 1 vector

b that allows the computation

of the factorized signal matrix S as well as the computa-
tion of the predictive coefficient matrix

A X S X Y b XT= = ++ + +* *(( ) )1


for unknown data X*.

Now, the final problem of finding the vector

b

remains. In the present approach, we found that opti-
mizing the following target function yields best perfor-
mance

( ) ( )

b

r
s ti i

i
≡ ∏1

where si and ti denote the cross-validated sensitivities
and specificities, and r denotes the cross-validated
reconstruction error. Using numerically computed gradi-

ents for

b in combination with a BFGS local search

method [14] to optimize  completes the BrierScoreMF.
We conclude this section with an interpretation of

equation (9). First, we note that the BrierScoreMF has

very few parameters, namely

b k∈ , which minimizes

the probability of over-fitting (Occam’s Razor), but also
hampers the algorithm in obtaining high prediction per-
formance. Next, the computation of S involves both, the
design matrix X used for training and the class matrix Y

. Thus, using the known classes and a linear offset

b

the training data is projected by the MP of ( )Y b T+ +1


to a transformed matrix S.
Consequently, the training information Y and X are

compressed together with the learned variables

b in S.
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In this way, our new factorization method is similar to
nearest neighbor classifiers, which also store the training
data itself while learning a threshold value for
classification.
All software used in this article is freely available from

the author.

Results and Discussion
This section empirically compares the performance of
the BrierScoreMF with linear Support Vector Machines
(SVM) [15]. Therefore, we sample synthetic signal func-
tions together with class and coefficient matrices for
training both machine learning models. This setting was
specifically designed with regard to the application case
of IR spectroscopy. Finally, we train both algorithms on
a real world IR data set comprising various diseases for
classification.
We would like to note in advance that this compari-

son is not totally fair. SVM are pure classification algo-
rithms that are statistically highly robust and achieve
very high performance. In contrast, the BrierScoreMF is
a factorization method designed for both, signal decom-
position and prediction. Therefore, the problem solved
by our algorithm is more constrained than the SVM.
In addition, our method has less degrees of freedom.

To infer a BrierScoreMF model only k, being the number

of classes, variables are optimized. Contrarily, even a lin-
ear SVM has m, being the number of input dimensions,
variables to specify a predictive model. In our case, m =
3200 and k = 16, thus rendering BrierScoreMF the less
flexible model. In addition, our method is a native multi-
class algorithm where one model suffices to explain all
classes. In contrast, the employed multi-class linear SVM
are trained in one-versus-one mode resulting in 16 · 15 =
240 models used for prediction. In terms of Occam’s
razor, our model is the more simple method with an gen-
erative model suitable for prediction.
Thus, we compare both algorithms for baseline rea-

sons and not to demonstrate the superiority of the
BrierScoreMF. A comparison to actual factorization
methods is planned as future work, because the question
for fair performance measures for this task turns out to
be far more delicate.

1.5 Experiments on synthetic data sets
IR spectra of chemical compounds and mixtures are
smooth functions of the wavelength. In general, the
measurement ranges from 400cm -1 to 4000cm -1 for
Fourier-Transform Infrared Spectroscopy. However, we
have chosen to sample base signals from Sobolev Spaces
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Figure 2 Sensitivity performance on synthetic data. This figure
shows the achieved sensitivities of BrierScoreMF (gray) vs linear SVM
(white) on the synthetic data sets for m = 50 and n Î {50,100} and
a varying number of classes k Î {2, 3, 4, 5, 10, 15, 20, 25}. For low k
values, the SVM is better than the BrierScoreMF algorithm. However,
for more than 10 classes, BrierScoreMF clearly outperforms multi-
class linear SVM. These results were obtained by averaging 100
seeded comparisons.

n=
50

,k
=2

n=
15

0,
k=

2

n=
50

,k
=3

n=
15

0,
k=

3

n=
50

,k
=4

n=
15

0,
k=

4

n=
50

,k
=5

n=
15

0,
k=

5

n=
50

,k
=1

0

n=
15

0,
k=

10

n=
50

,k
=1

5

n=
15

0,
k=

15

n=
50

,k
=2

0

n=
15

0,
k=

20

n=
50

,k
=2

5

n=
15

0,
k=

25

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3 Specificity performance on synthetic data. This figure
shows the achieved specificities of BrierScoreMF (gray) vs linear SVM
(white) on the synthetic data sets for m = 50, n Î {50, 150} and a
varying number of classes k Î {2, 3, 4, 5, 10, 15, 20, 25}. For low k
values, the SVM outperforms the BrierScoreMF algorithm. However,
for more than 10 classes, the specificity of the linear SVM
deteriorates, while BrierScoreMF achieves approximate constant
prediction performance. These results were obtained by averaging
100 seeded comparisons.
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[16] defined on the range 0[1] as smoothness is more
important than the signal domain.
Sobolev spaces are function spaces defining smooth

functions. In a Sobolev space, smoothing a function
means shrinking higher order coefficients towards zero.
Therefore, sampling signals from this family of functions
yields appropriate spectra that are smooth. We chose
the Fourier basis ji(x)

    1 2 2 11 1
2

2 1
2

2 1 2( ) , ( ) cos( ), ( ) sin( ), , ,x x j x x j x jj j= = = = …+

from which signals

f x xj

j

j( ) ( ).=
=

∞

∑ 
1

where sampled by their coefficients θj.
In this experiment, each synthetic data set is defined

by four parameters: a seed for the random number gen-
erator to make the experiment reproducible, the number
n of samples generated for the data set, the number k of
classes contained in the data set, and the number m of
feature dimensions. We used 5-fold cross-validation
(CV) to estimate the prediction performance in terms of
sensitivity si and specificity ti as well as the reconstruc-
tion error r

s
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TP FN
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TN

TN FP
r X XS Si

i

i i
i
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i i
F≡

+
≡

+
≡ − +, ,  

where TPi denotes the true positives, TNi the true
negatives, FPi the false positives, and FNi the false
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Figure 4 Predictive signals for the clinical data set. This figure shows the 16 predictive signals inferred for the clinical data set. Four
examples for interesting peaks are marked by (a) to (d) and are discussed in the text.
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negatives of class ci. Note that the BrierScoreMF
employs an inner cross-validation loop for performance
estimation, therefore the outer cross-validation measures
the true generalization error of our model.
The generation of a data set was performed as follows:

First, the seed of the random number generator was set.

Then, the

b vector was sampled from a uniform distri-

bution. After that an n-array y of classes was obtained
by sampling classes with replacement from c1, . . ., ck.
This was followed by sampling the order o of the Sobo-
lev space by drawing an integer out of the range [1,
100]. Based on this, a matrix T containing o signal coef-
ficients for each of the k signals was drawn from a uni-
form distribution. Finishing the sampling round, we
finally drew the coefficient matrix A from a uniform
distribution.
First, the matrix S containing the m measurements at

equally spaced coordinates between 0[1] was computed
from the coefficient matrix T (d = 3200). Then, the
class matrix Y was constructed from the class array y by
setting appropriate entries on +1 and every other entry
to -1. Finally, we processed the coefficient matrix to
relate to Y as follows: Each entry of A was scaled to the
range [0, bi) for negative corresponding entries in Y and
transformed into the range [bi, 1] for positive ones.
After that all entries relating to negative Y -entries were

scaled such that a iij
j∑ = ∀1 . Given A and S we finally

computed X = AS, completing the synthetic data set.
In this way, we obtained 4800 synthetic data sets using

100 seeds for each combination of n Î {50, 100, 150}, k
Î {2, 3, 4, 5, 10, 15, 20, 25} and m Î {50,100}. On each
data set, first the BrierScoreMF and subsequently the
linear multi-class SVM from the R package e1071 was
trained [17]. Thus, a direct performance comparison
based on 5-fold CV was obtained. The prediction results
are shown in Figures 2 and 3.
First, we found that there exist no significant differ-

ences in the performance behavior with respect to the
input dimensions m for both algorithms. Inspection of
the class parameter reveals that the linear SVM is super-
ior to the BrierScoreMF for problems with less than five
classes. Nonetheless, in these categories the BrierScor-
eMF achieves sensitivities and specificities around 0.8
with a standard deviation of less than 0.1. For problems
with the number of classes between 10 and 25 the
BrierScoreMF achieves superior sensitivities and specifi-
cities to the linear SVM. However, if the number of
training samples is large (n = 150), the linear SVM
obtains competitive specificities again. In summary, we
find that the prediction performance of the BrierScor-
eMF decreases slower than the performance of the SVM
with increasing class size. Finally, we note that in
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Figure 5 Sensitivity performance on clinical data. This figure
shows the result of the sensitivity evaluated by 5-fold CV of
BrierScoreMF vs linear SVM on the clinical data set. Here, we have
abbreviated “Cancer” by “car.” and “Mild Cognitive Impairment” by
“MCI”. The dark bars denote the BrierScoreMF, while white bars refer
to the linear SVM.
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white bars refer to the linear SVM.
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contrast to the SVM the standard deviations of the
BrierScoreMF for sensitivity do not exceed 0.15 and for
specificity 0.08. In conclusion, we have characterized
and compared the prediction performance of the BrierS-
coreMF on synthetic data with a state of the art machine
learning method. As explained, the BrierScoreMF solves
a more complex system by generating an interpretable
signal factorization, which balances the performance
loss.
In the next section, we present results of the BrierS-

coreMF obtained by training on real IR spectra.

1.6 Experiments on a clinical data set
Next, we applied the BrierScoreMF to real world data.
Therefore, we have reused the IR spectra of blood
serum measured for the study in [18]. Therein, serum
samples were collected at the University Hospital Hei-
delberg, the University Hospital Mannheim, and the St.
Vencentius Krankenhaus in Karlsruhe, while the healthy
control was obtained from the blood donating center in
Mannheim. In total, 15 different diseases were collected
and analyzed. However, reference [18] combines the
classes MCI and Alzheimer, Colitis Ulcerosa and
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Figure 7 Marked predictive signals. This figure shows the marked signals. Black denotes the signal for colorectal carcinoma. Red denotes the
signals for bronchial carcinoma, pancreas carcinoma, prostate cancer, and pancreatitis. Greens denotes the signals for heart attack and heart
insufficiency. The heart signals (green) are correlated with a Pearson correlation of r = 0.9981. Here, the heart attack signal shows a higher
amplitude than the heart insufficiency signal, which may be a result of the increased troponin T or troponin I levels during heart attack
compared to the slightly increased levels within heart insufficiency.
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Morbus Crohn, heart insufficiency and heart infarction,
as well as colorectal carcinoma and rectal carcinoma
and, therefore, reports 12 diseases. In this work, we pre-
dict the more detailed classifications. For each IR spec-
trum, 1 μl of serum was diluted to 3 μl of distilled
water, placed and dried on a 384 well Si-sample carrier
plate. Then, the plate was measured on a Bruker Tensor
37 Fourier Transform IR spectrometer (Bruker Optics
GmbH Ettlingen, Germany). In total, each sample was
measured at least at three different days having rando-
mized positions on the 384 well plate to avoid environ-
mental effects. In this work, subsequent data processing
consisted of the removal of all triplicates having a pair-
wise Pearson correlation of less than 0.95. All remaining

triplicates were averaged before Savitzky-Golay smooth-
ing (filter length was set to 15). Finally, we employed 5-
fold CV to estimate the prediction performance of both
SVM and BrierScoreMF. The results of this evaluation
are shown in Figures 4, 5, and 6.
We found that the linear SVM was often superior to

the BrierScoreMF. It was highly specific (Figure 6) while
being less sensitive (Figure 5) than our method in some
cases. As explained above, this outcome was expected as
the linear SVM has more degrees of freedom (m =
3200) compared to BrierScoreMF (k = 16). In addition,
training one-versus-one classifiers provides additional
robustness with respect to noise as the classification
problem is separated into smaller pieces. Whereas
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Figure 8 Heart disease signals and their difference. This figure plots the heart disease signals for heart attack (black) and heart insufficiency
(gray) and their absolute signal difference (red). The black signal is a scaled version of the gray signals, which can be explained by the increased
of troponin I and troponin I levels of heart attack patients compared to heart insufficiency patients. Both signals reveal a Pearson correlation of r
= 0.9981, which was the highest correlation among the inferred signals.
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our algorithm is a native multi-class algorithm that is
additionally constrained to yield an interpretable
factorization.
However, our method achieved an estimated recon-

struction error of 1.5325 × 10-04 per matrix entry for
this data set. The sensitivity ranges from 0.2809 to
0.9586, while specificity ranges from 0.5324 to 0.8417.
In addition, it infers interpretable and predictive signals
that may lead to further insight into characteristic dis-
ease signals, Figure 4.
To demonstrate the ability of the BrierScoreMF to dis-

cover interesting signal features in IR spectra, we now
focus on four exemplary signal peaks in Figure 4, named
(a), (b), (c) and (d). Figure 7 shows only the discussed
signals. The peak at (a) belongs to the colorectal carci-
noma signal. It is within 1100-1150cm-1 and, therefore,
may belong to the region were normally the DNA/RNA
ribose CO stretching vibrations appear [1]. In colorectal
carcinoma, this potentially indicates an increase of
DNA/RNA damage by post-transcriptionally modified
nucleic acids induced by cancer progression [19]. The
peak at (b) is at 2700-2950cm-1 and, thus, is in the
region of the CH-group of phospholipids. Signals com-
prising peaks at (b) include bronchial carcinoma, color-
ectal carcinoma, pancreas carcinoma, pancreatitis, as
well as the prostate carcinoma. Here, the phospholipid
groups may relate to inflammatory signals in the blood
responding to cancer [20]. The signal peaks marked
with (c) relate to amid groups, while (d) indicates an
ester of phospholipids. The disease specific signal show-
ing these peaks (c) and (d) belong to heart attack
(Figure 8). It is known that lipids form plugs that are a
major cause for heart attacks, which could correlate the
signals at (d) [21]. Additionally, we measured the Pear-
son correlation between the heart attack and the heart
insufficiency signal resulting in r = 0.9981, which equals
the maximum positive correlation within the inferred
signals. Consequently, our algorithm was able to detect
several interesting disease specific signals for further
research.
The additional files provide supplementary results for

training without the water peaks (Additional file 1)) as
well as the detailed prediction performance of the
BrierScoreMF method on the clinical dataset (Additional
file 2).

Conclusions
In this work, we have presented the BrierScoreMF algo-
rithm for factorization of additive signals. The ultimate
goal was to employ IR spectra obtained from blood sam-
ples to classify patients based on disease specific signals.
We have established a performance baseline for our
method on both, synthetic and real world data. Yielding
interpretable base signals, our factorization obtains

comparable prediction performance on synthetic data
sets comprising more than 10 classes. On real world data,
we measure sensitivities as well as specificities of up to
0.8.
Our factorization method combines both tasks of pre-

diction and signal inference. Therefore, we are confident
that our work constitutes the basis for further develop-
ment of similar factorization algorithms. Future research
should focus on improving the prediction performance
of BrierScoreMF, as well as on a correct comparison
with actual factorization methods. Also, the integration
of non-negativity constraints into our algorithm is of
practical interest.

Additional material

Additional file 1: Comparison of the BrierScoreMF performance
excluding Water Absorbtion Peaks. Here, we compare the
BrierScoreMF performance on the clinical dataset when training with and
without the water absorption peaks located at [2200-2270 1/cm] and
[3200-3700 1/cm]. We find that omitting these regions does not
significantly alter the prediction performance. This file can be opened
with Microsoft Word 2002, Open Office Writer 3.1.1, or similar word
processor programs.

Additional file 2: Detailed BierScoreMF performance. Here, we
provide the BierScoreMF performance on the clinical dataset in terms of
True Positives, True Negatives, False Positives, False Negatives, as well as
Sensitivity, Specificity, and Matthews Correlation Coefficient. This file can
be opened with Microsoft Excel 2002, Open Office Calc 3.1.1, or similar
spreadsheet applications.
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