HASIL CEK_Pujiyanta_MPI jobs,
grid resources, data structures

by Ardi Pujiyanta Designing A Data Structure

Submission date: 26-Sep-2023 09:09AM (UTC+0700)

Submission ID: 2177046657

File name: Manuscript_Template_JurnalTeknologi-2023-English_Version_1.doc (1.37M)
Word count: 3288

Character count: 17936

ume 16 No.1

ﬂ January 2024

ISSN : 2085 - 1669

e-IS5N : 2460 - 0288

‘Website : jurnal.umj.ac.id/index.php/jurtek

Email : jurnalteknologi@umj.ac.id

Teknologi

UNIVERSITAS MUHAMMADIYAHJAKARTA

Manuscript Template Jurnal Teknologi

DESIGNING A DATA STRUCTURE FOR JOB SCHEDULING
ON GRID RESOURCES

Ardi Pujiyanta'”
Teknik Informatika, Fakultas Teknologi Industri, Universitas Ahmad Dahlan Yogyakarta, JI. Ahmad Yani
Tamanan Banguntapan Bantul Yogyakarta, 55166

*ardipujiyanta@tif.uad.ac.id

7
Jurnal Teknologi use only: Received date here; revised date here; accepted date here

ABSTRACT

Grid computing is an infrastructure that offers high-speed computing capacity on a distributed system by
utilizing geographically distributed resources. Grid resources owned by different organizations and have their
policies and access models. Scheduling future jobs in a grid system requires a data structure that can handle
parallel jobs which is called Message Passing Interface (MPI). A data structure model needs to be proposed to
minimize the search time and add and delete MPI jobs. Data structures that support future scheduling models
will improve resource use efficiency. This research pm()ses a data structure that can handle the MPI work
schedule in the future to increase B3source utilization. The experimental results on the data structure show that
the average memory consumption of the FC@RH data structure is smaller than that of FCFS and FCFS-EDS.
Searching for the &rage empty timeslots, FCFS-LRH is faster than FCFS-EDS and slower than FCFS. The
average data insert of FCFS-LRH is faster than FCFS-EDS.

Keywords: MPI jobs, grid resources, data structures.

Introduction
Basically the Grid is an infrastructure that

EEN7). Efficient scheduling algorithms can
EElke good use of the processing capacity of

offers high speed computing capacity on a
distributed system by utilizing geographically
distributed resources. Grid resources are
owned by different organizations and have
their own policies and access models(Singh
2019). Grid computing has many names such
as metacomputing, scalable computing, global
computing, internet computing and recently
referred to as utility computing(Nawaz et al.

DOI: https://dx.doi.org/10.24853/jurtek. 16.x.xxx-xxx

the grid system, thereby improving application
performance(Feng and Wei-Wei 2017).

First Come First Serve Ejecting Based
Dynamic Scheduling (FCFS-EDS) reservation
EBRtegy is used to improve resource utilization
in a grid system by wusing a local
scheduler(Umar, Agarwal, and Rao
2012)(Sulistio et al. 2015). The percentage of

2
Jurnal Teknologi Volume 16 No. 1 January 2024
Website : jurnal.umj.ac.id/index.php/jurtek

IS5N : 2085 - 1669
e-I55N : 2460 - 0288

utilization performance is calculated in a
sliding window with a size of 12 timeslots. The
experimental results compared with the
traditional ~ strategy (flexible advance
reservation strategy without planning) resulted
in better utilization performance. The FCFS-
LRH method utilizes user-submitted
parameters to improve resource utilization and
reduce job waiting times and can handle future
scheduling of MPI jobs, to maximize resource
utilization(Pujiyanta, Nugroho, and Widyawan
2020)(Shukla, Kumar, and Singh 2019).

User reservation requests in future schediffihg
need to be stored in the data structure. The data
structure is used to store summary reservation
request information and is the basis for direct
input controlfin the resource reservation
process. The data structure must be able to
(Bovide fast access and handle information
efficiently. About 60 percent of the total
processing time is needed for data structure
[flanagement, 8 percent is used for selecting
appropriate resources, and the remaining 32
percent is for resource management(L. O.
Burchard 2005). If application requests are
provided for all potential reservation services
in advance, then more time is required. For
example, during the scanning and resource
detection interval, the data structure processing
time reaches 90% of the total time(L.-O.
Burchard and Heiss 2002).

Scheduling future jobs in a grid system
requires a data structure that can handle
parallel jobs or is called a Message Passing
Interface (MPI). A data structure model needs
to be proposed to minimize search time, add
and delete MPI jobs. Data structures that
support future scheduling models willhcrease
the efficiency of resource use. Advance
Reservation (AR) in grid computing is an
important research area because it allows users
to gain concurrent access to resources and
allows applications to execute in parallel. It
also provides a guarantee [Ef resource
availability at a specified time in the future.
Efficient data structures are important in
minimizing the time complexity required to
perform AR operations(Li et al.
2014)(Pujiyanta, Nugroho, and Widyawan
2022).

In managing a@flance reservations (advance
receipt control) in a grid system, an efficient
data structure plays an important role in order
to minimize the time for searching for
availableff computing nodes, adding and
deleting reservations. A user who requests a
reservation in advance will get a fast response
time, in order to provide results whether the
reservation request is accepted or not.

Methods

There are several data structures for managing
reservations in advance which can generally be
categorized into two types, namely timeslot
data structures and continuous data structures.
Meanwhile, the timeslot data structure is
divided into two, namely static and dynamic.
Static timeslots are divided into a fi§}l time
period, while dynamic timeslots, the duration
and number of timeslots are allowed to vary
according to the number of reservation
requests. The majority of timeslot-based
reservation approaches proposed in the
literature follow static solutions(Charbonneau
and Vokkarane 2012). A data structure that
stores and places each request at affixed time
interval is called a timeslot. In a continuous
data structure each request is defined as its
own time scale i.e. each advance reservation
can start and finish at a flexible time.
Examples @) continuous data structures are
link lists and examples of timeslot data
structures are segmeffj trees and calendar
queues. The timeslot data structure approach
has the advantage of limiting the amount of
data stored so that memory consumption can
be limited, and is easy to implement(L. O.
Burchard 2005)(de Assuncao 2015).

Several studies whose approach is based on
static timeslots are used to find optimal
bandwidth solffbns in media
production(Gadkar et al. 201{f{Barshan et al.
2016)(Barshan et al. 2017). The majority of
current implementations in the field of advance
reservations are supported by the timeslot data
structure(Brown 1988)(Guerin and Orda
2000) Brodnik and Nilsson 2003)(Sulistio et
al. 2@09)(Wu et al. 2013)

The proposed data structure for MPI work can
be seen in Figure |, which is depicted as an
array-based data structure. The array name is
pSlot, the array index represents a specific

7
A. Firstauthor, B.C. Secondauthor, D. Thirdauthor: Type the Title of Your Paper, Capitalize Each Word

Jurnal Teknologi 16 (1) pp 1-5 © 2024

timeslot. Each timeslot contains a list of
reservations starting at that timeslot. The nodes
or elements of the pSlot array are records that
contain two fields (v§liables), namely the sv
field which stores the number of virtual
computing nodes available in the timeslot and
the pj field is a link list pointer to other
connected nodes. This node contains
information about a job:

Userld: UgBr identification

jobld : User can submit more than one
independent job, jobid is used to identify.

tesr : Earliest staffime to start work

tlsr : Latest start time to start the job

texe : Job execution time

jumCN : Number of resources required

node : Pointer to the reservation.

An example is given to make it @sier to
explain how the MPI data structure works, if
the grid system h@§ computing nodes in the
physical view of maxC=5 ((f3C4), then the
number of virtual nodes in the logical view is 5
(V0-V4) as well. Tle 1 shows the job arrival
order with jumC<maxC and jumlob is the
number of jobs sent by userld. Consider the
given parameters userld4 in Table 1. The
information given is as follows, user 4 has
reserved 4 timeslots in the pSlot array, with a
timeslot index between 6 to 9, and the given
job cannot be postponed or shifted because
texe =4 and tesr = tlsr =6.

Suppose userlD9 sendg)a job 3 timeslots from
8 to 13, requires 2 compute nodes for one
independent job and can be delayed until
timeslot 13 (tesr=8, tlsr=13, texe=3, jumJob=1,
jumCN=2), shown in Figure 2. Figure 3 shows
the mapping results on actual nodes for MPI
jobs.

The data structure resulting from storing all
reservation requests in Table 1 can be seen in
Figure 4. As shown in Figure 4 there is one job
that starts in timeslot 4 with the remaining
timeslot sv=4, two jobs that start in timeslot 5
with the remaining timeslot sv= 2, one job
starting in timeslot 6 with remaining timeslot
sv=0, one job starting in timeslot 7 with
remaining timeslot sv=0, one job starting in
timeslot 8 with remaining timeslot sv=0, no
jobs starting from timeslot 9 with remaining
timeslot sv=1, three jobs start in timeslot 10
with remaining timeslot sv=1. Reservation
node next=nil if it does not point to a
reservation node. In the pSlot array, the pointer

pj = nil if it does not point to a reservation
node.

[nil [sv=0],5 [sv=0 6 |sv=0 |, 7 | sv=0 | nil | sv=0]
ulD | tesr ulD | tesr ulD | tesr
D | dlsr JID | tlsr JID | tlsr
e nil e te
| jumCN JumCN . JumCN
uld | tesr ulD | tesr
jID tlsr jin] tlsr
nil ie te
jumCN | jumCN
ulD | tesr

JID tlsr

nil te
jumCN

Figure 1 Proposed MPI Job Data Structure.

Table 1 MPI Job Reservation Request

Paraeters
Userld tesr tie te JumCN Jumlob
1 4 4 2 1 1
2 5 5 2 1 1
3 5 5 3 1 1
4 6 6 4 3 1
5 7 7 1 1 1
6 8§ 8 2 2 1
7 8 10 4 1 1
8 9 10 3 2 1

[¢]s=4]5] sv=2 ;6 [sv=0[,7] sv=0 [8 [sv=0 9 [sv=1 [10| sv=0

1o |em | em
=

=

&

Figure 4 MPI Data Structure for Storing
Reservations from Table 1.

18] 2,67 1,6] 2,6] 1,5 1,9] 1,9

14| 2,4] 6] 2,6] 1,5 2,9] 1,9

1,3 14| 14] 14] 14] 1,8] 18] 18

| 1,4] 1,3] 1,4] 1.4] 2.4 18] 18] 1,9

1,1 1,2| 1,3 14| 14] 1,7(2,7 1,7 1,7

P01 3 4 5 & 7T @ % NN N NB
Timeslot

o

&

Sumber dava

3
=
=

Jurnal Teknologi Volume 16 No. 1 January 2024
Website : jurnal.umj.ac.id/index.php/jurtek

IS5N : 2085 - 1669
e-I55N : 2460 - 0288

Figure 2 Placement of userID9 in the logical
view using the FCFS-LRH method.
n

1

5 o 14 19
2 14 19
£ B [w [®
& i 2 |18] 15 [
) |] 14 i7 |
I 0 203 ¢ 3 6 7T & 9 10 1 122 13 W 82
Timeslot
Figure 3 Mapping results on actual nodes for
MPI jobs.

Data structure components in timeslots

SlotNo :0 [] Sv: 5

SlotNo :1 [] Sv: 5

SlotNo :2 [] Sv: 5

SlotNo :3 [] Sv: 5

SlotNo:4[1 1442 1]Sv: 4
SlotNo:5[125521,135531]8v:2
SlotNo:6 [1 4664 3]Sv:0

SlotNo :7[157711]S8v:0

SlotNo :8[1 6882 2]Sv: 0

SlotNo :9 [] Sv: 0

SlotNo:10[1 78104 1,1891032,198 13
32]8v:0
SlotNo :11 [] Sv:
SlotNo :12 [] Sv:
SlotNo :13 [] Sv:
SlotNo :14 [] Sv:
SlotNo :15 [] Sv:
SlotNo :16 [] Sv:
SlotNo :17 [] Sv:
SlotNo :18 [] Sv:
SlotNo :19 [] Sv: 5

EXdditions to MPI Jobs:

There are 4 possible cases for adding a new
reservation in a data structure:

1. The reservation list of tesr elements in the
pSlot array is empty, add a new reservation as
the first reservation node (insert it first). Lines
3 to 4 in Algorithm 1 are used to add
reservations.

2. The first node of the reservation list has a
userID that is @pater than the incoming
userID, so add a new reservation as the first
node of the reservation list. This addition is
{Bade in Algorithm 1, lines 7 to 10.

3. The first element of the reservation list has
the same userID as the incoming userlD and
the jobID of the first node of the reservation
list is greater than the incoming joblD. Add the
new reservation as the first component of the
reservation list. Algorithm 1 in lines 11 to 16 is
used for job addition. Fix the pSlot array

thtnth bh b O O

shown in lines 19 to 21. Lines 24 to 31 update
(e timeslots in the logical view.
4. In this case the new reservation will be
entered in the middle or last of the reservation
list, shown in Algorithm 2.
Step to shift work components starting at
timeslot.
1. If pSlot is empty, insert row 5.
2. Code lines 1 to 7 are used to check if
there is a job starting in the shiftable
timeslot.
3. If yes, check to see if any work can be
shifted
4. Shift the job, and update the free nodes
accordingly
5. Save the shift on stack line 32.
When inserting in the middle there are 3
possibilities:
* condition 1. still in the time range (line 10),
the time range for the incoming job is smaller
than the stored job tlsr, then shift the saved job
to make space for the incoming job to be
inserted.
* condition 2, the next slot is empty (line 18),
shift the job in, check whether it can be
inserted, if yes it can be inserted, add the job in
(line 29), update the pSlot on the right side
(line 30) and the left side (line 31).
* condition 3, do not shift jobs from the same
userld.
Algorithm 1

1 procedure append(timeSlot, Component
comp)

2 insert €< false;

3 If (pSlot[timeSlot].listComp.isEmpty()) then
4 pSlot[timeSlot] < listComp(comp);
5 elf)

6 for (int i=0) to (
i<pSlot[timeSlot] listComp.size()) do

7 If (comp.userID <
pSlot[timeSlot].listComp(i , userID)) then
8 pSlot[timeSlot]€listComp(i, comp);

9 insert € true;

10 break;

11 else if (comp.userID ==
pSlot[timeSlot].listComp(i , userlD)) then
12 if (comp.joblD <
pSlot[timeSlot].listComp(i , jobID)) then
13 pSlot[timeSlot] € listComp(i, cffilp);

14 insert € true;
15 break;

16 Endif

17 Endif

18 Endfor

7
A. Firstauthor, B.C. Secondauthor, D. Thirdauthor: Type the Title of Your Paper, Capitalize Each Word

Jurnal Teknologi 16 (1) pp 1-5 © 2024

19 If (insert == false) then
20 pSlot[timeSlot] € listComp(comp);
21 Endif

22 Endif

23 /I==Update cell

24 For (i=0) to (i<comp.execTime) do

25 For (j =0) to (j<cell[timeSlot].length) do
26 For (j =0) to (j<cell[timeSlot].length) do
27 If (cell[timeSlot+i][j].user]D = = 0) then
28cell[timeSlot+i][j] < Cell(comp.userID comp
JjobID.comp.StartTime, comp.1StartTime);

30 Append(time+1, comp);

34 Endfor

35 succ = true;

36 Endif

37 insertComp < new InsertComponent()
38 Endif

39 return succ;

40 Endfunc

29 break;

30 Endfor

31 Endfor

32 Endfor

Algorithm 2

1 Function boolean insRes(userlD,
jumCNneeded)

2 integeri, j

3 Component comp, S1
4 succ € false
5 If (pSlot[time].listComp.Empty) then
6 return succ
T els
8 For (i=0) to
(1<pSlot[t|me] listComp .size) do

comp € pSlot[time].listComp(i)
10 If (comp.tlsstart Time-time>0 AND
pSlot[comp.endTime+1].getFree>=comp.jumC
N) then
11 insertComp.getinsert& add(comp);
12 insertComp.jumCN < insertComp.jumCN+
comp.jumCN;
13 If (insertComp.getjumCN >=

jumCNneeded) then
14 break
15 Endif

16 Endif

17 Endfor

18 If (linsertComp.getinsert. Empty) then

19 For(i=0) to (i<insertComp.insert.size) do
20 comp = insertComp.insert.get(i);

21 For (j=0) to (j<pSlot[time].listComp.size)
do

22 S1 = pSlot[time].listComp.get(j);

23 If (comp.userlD == S1 userID AND
comp.jobID == S1.jobID) then

24 break;

25 Endif

26 Endfor

27 pSlot[time].listComp.remove(j)
28 removeCell(comp.userID, comp.jobID)
29 comp.setstart Time(time+1);

Results and Discussions

Experiments have been carried out to measure
the memory consumption used by the FCEFS-
LRH data structure compared to FCFS which
uses the LIST data structure and EDS which
uses the link list data structure, the number of
workloads used is between 400 to 800. The
results show that the LRH data structure is
smaller in memory consumption is shown in
Table 2 and Figure 5. The LRH data structure
does not perform well when searching for jobs
compared to rigid FCFS, because LRH has to
shift jobs so that incoming jobs can be
accepted, shown in Table 3 and Fmre 6.
Tables 4 and Figure 7 shows that the time
required to add work to the data structure using
the LRH method is faster than the EDS
method. Table 5 and Figure 8 show that the
time required for deleting work on data
structures using the LRH method is faster than
the EDS method.

Table 2 Memory Consumption Used by FCES,
EDS and LRH.

Number of jobs

Method Averag
402 605 787 c

FCFS 4347 9856 12700 89677

EDS 1690,34 17282 1997,6 18054

LRH 161377 16593 17348 1669.3

15000

10000
= FCFS
5000 " EDS
LRH

Jum]ah pehe1 jaan

KByte

Figure 5. Total Memory Consumption of
FCFS, EDS and LRH Data Structures.

Jurnal Teknologi Volume 16 No. 1 January 2024
Website : jurnal.umj.ac.id/index.php/jurtek

IS5N : 2085 - 1669
e-I55N : 2460 - 0288

Table 3. Searching Data Structure Using
FCFS, EDS and LRH Based on Number of
Jobs.

Number of Jobs
402 602 787 Average
FCFS 70,29 56.83 39,57 55,56
EDS 22476 176.5 192.5 197,92
LRH 218.22 181.62 162.84 187.56
300
ff o mFCFS
- 1o i I mEDS
0 [| [| -
402 602 787
Jumlah pekerjaan

Figure 6 Searching Data Structure Using
FCFS, EDS and LRH Based on Number of
Jobs

Table 4 Add to Data Structure Using EDS and
LRH Based on Number of Jobs.

402 602 787 Average
LRH 597 8,96 8,05 7,7
EDS 6,61 8,52 10,96 8,7
15
w10
-
w5 uLRH
o I ®EDS
402 602 787
Jumlah pekerjaan

Figure 7 Add to Data Structure Using EDS and
LRH Methods Based on Number of Jobs

Table 5. Delete Data Structure Using EDS and
LRH Methods Based on Number of Jobs.

402 602 787 Average
LRH 1648 3049 1927 22079
EDS 17,79 3946 1927 25507

60
o 40
o
= 20 II = LRH
II EDS
. i -
402 602 787

Jumlah pekerjaan

Figure 8 Delete Data Structure Using EDS and
LRH Based on Number of Jobs.

Conclusions

[fiperimental results on data structures show
that the average memory consumption of the
FCFS-LRH data structure is smaller than
FCFS and FCFSEI®S. The average search for
empty timeslots of FCFS-LRH is faster than
FCFS-EDS and slower than FCFS. FCFS-
LRH's average data insert is faster than FCFS-
EDS.

References

Assuncao, Marcos Dias de. 2015. “Enhanced
Red-Black-Tree Data Structure for
Facilitating the Scheduling of
Reservations.”
http://arxiv.org/abs/1504.00785.

Barshan, Maryam, Hendrik Moens, Jeroen
Famaey, and Filip De Turck. 2016.
“Deadline-Aware Advance Reservation

Scheduling Algorithms for Media
Production Networks.” Computer
Communications 77 (2015): 26-40.

https://doi.org/10.1016/j.comcom.2015.1
0.016.

Barshan, Maryam. Hendrik Moens, Bruno
Volckaert, and Filip De Turck. 2017. “A
Comparative Analysis of Flexible and

Fixed Size Timeslots for Advance
Bandwidth Reservations in Media
Production Networks.” 2016 7th

International Conference on the Network
of the Furure, NOF 2016.
https://doi.org/10.1109/NOF.2016.78101
18.

Brodnik, Andrej, and Andreas Nilsson. 2003.
“A Static Data Structure for Discrete
Advance Bandwidth Reservations on the
Internet.” Swedish National Computer
Networking Workshop (SNCNW) 41: 1-
15.

Brown, R. 1988. “Calendar Queues: A Fast
0(1) Priority Queue Implementation for

A. Firstauthor, B.C. Secondauthor, D. Thirdauthor: Type the Title of Your Paper, Capitalize Each Word

Jurnal Teknologi 16 (1) pp 1-5 © 2024

the Simulation Event Set Problem.”
Communications of the ACM 31 (10):
1220-27.
https://doi.org/10.1145/63039.63045.

Burchard, L.-O., and H.-U. Heiss. 2002.
“Performance Evaluation of Data
Structures for Admission Control in
Bandwidth Brokers.” International
Symposium of Performance Evaluation of
Computer and Telecommunication
Systems — (SPECTS '02), 652-59.
http://citeseerx.ist.psu.edu/viewdoc/down
load?doi=10.1.1.14.1535&rep=repl &typ
e=pdf.

Burchard, Lars Olof. 2005. “Analysis of Data
Structures for Admission Control of
Advance Reservation Requests.” [EEE
Transactions on Knowledge and Data
Engineering 17 (3): 413-24.
https://doi.org/10.1109/TKDE.2005 .40.

Charbonneau, Neal, and Vinod M. Vokkarane.
2012. “A Survey of Advance Reservation
Routing and Wavelength Assignment in
Wavelength-Routed WDM Networks.”
IEEE Communications Surveys and
Tutorials 14 (4): 1037-64.
https://doi.org/10.1109/SURV .2011.1114
11.00054.

Feng, Liu, and Guo Wei-Wei. 2017. “Research
and Design of Task Scheduling Method
Based on Grid Computing.” Proceedings
- 2nd International Conference on Smart
City and Systems Engineering, ICSCSE
2017, 188-92.
https://doi.org/10.1 109/ ICSCSE.2017.54.

Gadkar, Arush, Tim Entel, Jeremy M. Plante,
and Vinod M. Vokkarane. 2014. “Slotted
Advance Reservation for Multicast-
Incapable Optical Wavelength Division
Multiplexing Networks.” Journal of
Optical Communications and Networking
6 (3): 340-54.
https://doi.org/10.1364/JOCN.6.000340.

Guerin, Roch A., and Ariel Orda. 2000.
“Networks with Advance Reservations:
The Routing Perspective.” Proceedings -
IEEE INFOCOM 1: 118-27.
https://doi.org/10.1109/infcom.2000.8321
80.

Li, Bo, Yijian Pei, Hao Wu, and Bin Shen.
2014. “Resource Availability-Aware
Advance Reservation for Parallel Jobs
with Deadlines.” Journal of
Supercomputing 68 (2): 798-819.

https://doi.org/10.1007/s11227-013-
1067-8.

Nawaz, Rab, Wu Yang Zhou, Muhammad
Usman Shahid, and Osman Khalid. 2017.
“A Qualitative Comparison of Popular
Middleware Distributions Used in Grid
Computing Environment.” 2nd
International Conference on Computer
and Communication Systems, ICCCS

2017, 36-40.
https://doi.org/10.1109/CCOMS.2017.80
75262.

Pujiyanta, Ardi, Lukito Edi Nugroho, and
Widyawan. 2020. “Resource Allocation
Model for Grid Computing
Environment.” International Jouwrnal of
Advances in Intelligent Informatics 6 (2):
185-96.
https://doi.org/https://doi.org/10.26555/ij
ain.v6i2.496.

. 2022. “Job Scheduling Strategies in
Grid Computing.” International Journal
on Advanced Science, Engineering and
Information Technology 12 (3): 1293—
1300.
https://doi.org/10.18517/ijaseit.12.3.1014
7.

Shukla, Anju. Shishir Kumar, and Harikesh
Singh. 2019. *“An Improved Resource
Allocation Model for Grid Computing
Environment.” International Journal of
Intelligent Engineering and Systems 12
(1): 104-13.
https://doi.org/10.22266/1J1IES2019.0228.
11.

Singh, Manjeet. 2019. “An Overview of Grid
Computing.” Proceedings - 2019
International Conference on Computing,
Communication, and Intelligent Svystems,
cccis 2019 2019-Janua: 194-98.
https://doi.org/10.1109/ICCCIS48478.20
19.8974490.

Sulistio, Anthony, Uros Cibej, Sushil K.
Prasad, and Rajkumar Buyya. 2009.
“GarQ: An Efficient Scheduling Data
Structure for Advance Reservations of
Grid Resources.” International Journal
of Parallel, Emergent and Distributed

Systems 24 (1): 1-19.
https://doi.org/10.1080/17445760801988
979.

Sulistio, Anthony, Kyong Hoon Kim,
Rajkumar Buyya, Ahuva W. Mu’alem,
Dror G. Feitelson, Peng Xiao, Zhigang

7

Jurnal Teknologi Volume 16 No. 1 January 2024
Website : jurnal.umj.ac.id/index.php/jurtek

IS5N : 2085 - 1669
e-I55N : 2460 - 0288

Hu, et al. 2015. “An Adaptive Scoring
Job Scheduling Algorithm for Grid
Computing.” Lecture Notes in Computer
Science (Including Subseries Lecture
Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 5 (1):
68-72.
https://doi.org/10.1177/10943420060684
14.

Umar, Rusydi, Arun Agarwal, and C. R. Rao.
2012. “Advance Planning and
Reservation in a Grid System.”
Communications in Computer and
Information Science 293 PART 1: 161-
73. https://doi.org/10.1007/978-3-642-
30507-8_15.

Wu, Libing, Ping Dang, Tianshui Yu, and Lei
Nie. 2013. “Research on Efficient Non-
Slotted Tree Structures for Advance
Reservation.” Communications in
Computer and Information Science 401:
50-61. https://doi.org/10.1007/978-3-
642-53959-6_6.

HASIL CEK_Pujiyanta_MPI jobs, grid resources, data
structures

ORIGINALITY REPORT

24, 22, 10+ 3«

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

.

dspace.uohyd.ac.in

Internet Source

oL

=)

Submitted to Universitas Pancasila
Student Paper

2%

e

www.insightsociety.org

Internet Source

2%

-~

"Frontiers in Internet Technologies", Springer
Nature, 2013

Publication

(K

c

gridbus.csse.unimelb.edu.au

Internet Source

(K

Ardi Pujiyanta, Lukito Edi Nugroho,
Widyawan. "Advance Reservation for
Parametric Job on Grid Computing”, 2019
Fourth International Conference on
Informatics and Computing (ICIC), 2019

Publication

(K

doczz.net

Internet Source

(K

biblio.ugent.be

Internet Source

(K

www.ijain.org

Internet Source

(K

Ardi Pujiyanta, Fiftin Novianto. "Job

Scheduling on Grid Computing Using First Fit,
Best Fit, and Worst Fit", Khazanah Informatika
: Jurnal Ilmu Komputer dan Informatika, 2022

Publication

(K

—
—

media.neliti.com

Internet Source

(K

eprints.uad.ac.id
IntErnetSource <1 %
Liu Feng, Guo Wei-Wei. "Retracted: Research <1 o
and Design of Task Scheduling Method Based ’
on Grid Computing", 2017 International
Conference on Smart City and Systems
Engineering (ICSCSE), 2017
Publication
www.mdpi.com
Internet Sourcep <1 %
"Cognitive Internet of Medical Things for <1 o

Smart Healthcare", Springer Science and
Business Media LLC, 2021

Publication

Lars-Olof Burchard. "Networks with Advance <1 o
Reservations: Applications, Architecture, and °
Performance", Journal of Network and
Systems Management, 2005
Publication
docobook.com

Internet Source <1 %
epdf.pub

Intrzrnet SFZurce <1 %

aruda.kemdikbud.qgo.id

Ignternet Source g <1 %
WWW.uniassignment.com

Internet Source g <1 %

Communications in Computer and <1 %

Information Science, 2012.

Publication

Exclude quotes On Exclude matches Off

Exclude bibliography On

