

 The Report is Generated by DrillBit Plagiarism Detection Software

 Submission Information

 Result Information

 Exclude Information Database Selection

 Author Name Ardi Pujiyanta, Fiftin Noviyanto

 Title Design Of A Job Scheduling Data Structure For Grid Resources

 Paper/Submission ID 2323206

 Submitted by perpustakaan.similarity@uad.ac.id

 Submission Date 2024-09-18 13:27:39

 Total Pages, Total Words 8, 3753

 Document type Article

 Similarity 17 %
1 10 20 30 40 50 60 70 80 90

Sources Type

Journal/
Publicatio
n 14.71%

Internet
2.29%

Report Content
Words <

14,
0.32%

Ref/Bib
15.4%

Quotes
5.52%

 Quotes Excluded Language English

 References/Bibliography Excluded Student Papers Yes

Source: Excluded < 14 Words Not Excluded Journals & publishers Yes

 Excluded Source 74 % Internet or Web Yes

 Excluded Phrases Not Excluded Institution Repository Yes

 A Unique QR Code use to View/Download/Share Pdf File

DrillBit Similarity Report

 SIMILARITY % MATCHED SOURCES GRADE

LOCATION MATCHED DOMAIN % SOURCE TYPE

 EXCLUDED SOURCES

17 8 B

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)
D-Unacceptable (61-100%)

2 Deadline-aware advance reservation scheduling algorithms for media pro

by Barshan-215
 1 Publication

5 cloudbus.org <1 Publication

6 Improving naive Bayes classifier by dividing its decision regions by Zhi-

yon-2011
 1 Publication

8 jurnal.ugm.ac.id <1 Internet Data

11 Thesis submitted to shodhganga - shodhganga.inflibnet.ac.in 10 Publication

12 cloudbus.org 3 Publication

22 moam.info 2 Internet Data

27 sportpedagogy.org.ua <1 Publication

1 jurnal.umj.ac.id 74 Publication

https://dx.doi.org/10.1016/j.comcom.2015.10.016
https://dx.doi.org/10.1016/j.comcom.2015.10.016
http://cloudbus.org/students/anthony_sulistio_PhD_thesis2008.pdf
https://dx.doi.org/10.1631/jzus.c1000437
https://dx.doi.org/10.1631/jzus.c1000437
https://jurnal.ugm.ac.id/jrekpros/article/view/60477
http://shodhganga.inflibnet.ac.in/bitstream/10603/219267/10/10_chapter%203.pdf
http://cloudbus.org/papers/GarQ-IJPEDS2009.pdf
https://moam.info/digitalstrom-system-interfaces-digitalstromorg_5a26c1b81723ddbf3112af0a.html
https://www.sportpedagogy.org.ua/index.php/ppcs/article/download/1846/877/3393
jurnal.umj.ac.id

Volume 16 No. 2
July 2024

ISSN : 2085 – 1669
e-ISSN : 2460 – 0288

Website : jurnal.umj.ac.id/index.php/jurtek
Email : jurnalteknologi@umj.ac.id

U N I V E R S I T A S M U H A M M A D I Y A H J A K A R T A

Design Of A Job Scheduling Data Structure For Grid Resources 222222222222222222

Ardi Pujiyanta , Fiftin Noviyanto1,* 2

Informatics Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan Yogyakarta, Jl. Ahmad 1,2 8

Yani Tamanan Banguntapan Bantul Yogyakarta, 55166, Indonesia

*Corresponding author email: ardipujiyanta@tif.uad.ac.id

Jurnal Teknologi use only:
Received 19 May 2022; Revised 9 September 2023; Accepted 30 July 2024

ABSTRACT

Essentially, Grid computing is an infrastructure that offers high-speed computing capacity in a distributed
system by utilizing geographically distributed resources. Grid resources are owned by different organizations
and have their own policies and access models. Scheduling future jobs in a grid system requires a data structure

1212121212121212

capable of handling parallel jobs, known as the Message Passing Interface (MPI). A data structure model needs
to be proposed to minimize search time, and efficiently add and remove MPI jobs. Data structures that support
future scheduling models will improve resource utilization efficiency. This research proposes a data structure
capable of handling future MPI job scheduling to increase resource utilization. Experimental results on the data
structure show that the average memory consumption of the FCFS-LRH data structure is lower than that of
FCFS and FCFS-EDS. For average empty timeslot searches, FCFS-LRH is faster than FCFS-EDS but slower
than FCFS. The average data insertion speed of FCFS-LRH is faster than that of FCFS-EDS.

Keywords: MPI jobs, grid resources, data structures.

First Come First Serve Ejecting Based 111111111111111111

Dynamic Scheduling (FCFS-EDS) reservation
strategy is used to improve resource utilization
in a grid system by using a local scheduler [4],
[5]. The percentage of utilization performance
is calculated in a sliding window with a size of
12 timeslots. The experimental results
compared with the traditional strategy (flexible
advance reservation strategy without planning)
resulted in better utilization performance. The
FCFS-LRH method utilizes user-submitted
parameters to improve resource utilization and
reduce job waiting times and can handle future
scheduling of MPI jobs, to maximize resource
utilization [6], [7].

Introduction
Basically the Grid is an infrastructure that
offers high speed computing capacity on a
distributed system by utilizing geographically
distributed resources. Grid resources are
owned by different organizations and have
their own policies and access models [1]. Grid
computing has many names such as meta
computing, scalable computing, global
computing, internet computing and recently
referred to as utility computing [2]. Efficient
scheduling algorithms can make good use of 222222222222222222

the processing capacity of the grid system,
thereby improving application performance
[3].

DOI: https://dx.doi.org/10.24853/jurtek.16.2.283-290

Jurnal Teknologi Volume 16 No. 2 July 2024
Website : jurnal.umj.ac.id/index.php/jurtek

ISSN : 2085 – 1669
e-ISSN : 2460 – 0288

User reservation requests in future scheduling
need to be stored in the data structure. The data 222222222222222222

structure is used to store summary reservation
request information and is the basis for direct
input control in the resource reservation
process. The data structure must be able to
provide fast access and handle information
efficiently. About 60 percent of the total
processing time is needed for data structure
management, 8 percent is used for selecting
appropriate resources, and the remaining 32
percent is for resource management [8]. If
application requests are provided for all
potential reservation services in advance, then
more time is required. For example, during the
scanning and resource detection interval, the
data structure processing time reaches 90% of
the total time [9].

Methods

There are several data structures for managing 1212121212121212

reservations in advance which can generally be
categorized into two types, namely timeslot
data structures and continuous data structures.
Meanwhile, the timeslot data structure is 27

divided into two, namely static and dynamic.
Static timeslots are divided into a fixed time
period, while dynamic timeslots, the duration
and number of timeslots are allowed to vary
according to the number of reservation
requests. The majority of timeslot-based 111111111111111111

reservation approaches proposed in the
literature follow static solutions [12]. A data
structure that stores and places each request at
a fixed time interval is called a timeslot. In a
continuous data structure each request is
defined as its own time scale i.e. each advance
reservation can start and finish at a flexible
time. Examples of continuous data structures
are link lists and examples of timeslot data
structures are segment trees and calendar
queues. The timeslot data structure approach
has the advantage of limiting the amount of
data stored so that memory consumption can
be limited, and is easy to implement [8], [13].

Scheduling future jobs in a grid system
requires a data structure that can handle
parallel jobs or is called a Message Passing
Interface (MPI). A data structure model needs
to be proposed to minimize search time, add
and delete MPI jobs. Data structures that
support future scheduling models will increase
the efficiency of resource use. Advance 1212121212121212

Reservation (AR) in grid computing is an
important research area because it allows users
to gain concurrent access to resources and
allows applications to execute in parallel. It

Several studies whose approach is based on
static timeslots are used to find optimal
bandwidth solutions in media production [14]–
[16] The majority of current implementations 111111111111111111

in the field of advance reservations are
supported by the timeslot data structure [17]–
[21].

also provides a guarantee of resource
availability at a specified time in the future.
Efficient data structures are important in 1212121212121212

minimizing the time complexity required to
perform AR operations [10], [11].

Proposed FCFS-LRH Data Structure
The data structures reported in the literature 111111111111111111

cannot be used for FCFS-LRH scheduling
strategies, to manage advance planning. The
proposed data structure for managing advance
reservations using the FCFS-LRH scheduling
strategy is influenced by the GarQ data
structure because it has better performance
among the data structures reported in the
literature. GarQ [20] is modified so that it can
handle flexible left-shift and right-shift
planning, whereas GarQ can only handle rigid
reservations. The properties added are t , tesr lsr
and removing t in the data structure. c

In managing advance reservations (advance
receipt control) in a grid system, an efficient
data structure plays an important role in order 1212121212121212

to minimize the time for searching for
available computing nodes, adding and
deleting reservations. A user who requests a
reservation in advance will get a fast response
time, in order to provide results whether the
reservation request is accepted or not.
The aim of this research is to test the memory
consumption of the proposed FCFS-LRH data
structure compared to the memory
consumption of the FCFS and FCFS-EDS
methods.

Proposed MPI Job Data Structure
The proposed data structure for MPI work can 111111111111111111

be seen in Figure 1, which is depicted as an

284

Ardi Pujiyanta, Fiftin Noviyanto: Design Of A Job Scheduling Data Structure For Grid Resources
222222222222222222

Jurnal Teknologi 16 (2) pp 283-290 © 2024

array-based data structure. The array name is 111111111111111111

pSlot, the array index represents a specific
timeslot. Each timeslot contains a list of
reservations starting at that timeslot. The nodes
or elements of the pSlot array are records that
contain two fields (variables), namely the sv
field which stores the number of virtual
computing nodes available in the timeslot and
the pj field is a link list pointer to other
connected nodes. This node contains 222222222222222222

information about a job:

jobs starting from timeslot 9 with remaining
timeslot sv=1, three jobs start in timeslot 10
with remaining timeslot sv=1. Reservation
node next=nil if it does not point to a 111111111111111111

reservation node. In the pSlot array, the pointer
pj = nil if it does not point to a reservation
node.

UserId: User identification
jobId : User can submit more than one
independent job, 푗obid is used to identify.
tesr : Earliest start time to start work
tlsr : Latest start time to start the job
texe : Job execution time
jumCN : Number of resources required
node : Pointer to the reservation.

Figure 1. Proposed MPI Job Data Structure.
An example is given to make it easier to
explain how the MPI data structure works, if
the grid system has computing nodes in the
physical view of maxC=5 (C0-C4), then the
number of virtual nodes in the logical view is 5
(V0-V4) as well. Table 1 shows the job arrival
order with jumC≤maxC and jumJob is the
number of jobs sent by userId. Consider the
given parameters userId4 in Table 1. The
information given is as follows, user 4 has
reserved 4 timeslots in the pSlot array, with a
timeslot index between 6 to 9, and the given
job cannot be postponed or shifted because
texe =4 and tesr = tlsr =6.

Table 1. MPI Job Reservation Request
Parameters

UserId t t te JumCN JumJob esr lsr
1222222222222222222

222

3
4
5
6
7
8

4
5
5
6
7
8
8
9

4
5
5
6
7
8

10
10

2
2
3
4
1
2
4
3

16

1
1
3
1
2
1
2

1
1
1
1
1
1
1
1

Suppose userID9 sends a job 3 timeslots from
8 to 13, requires 2 compute nodes for one 111111111111111111

independent job and can be delayed until
timeslot 13 (tesr=8, tlsr=13, texe=3, jumJob=1,
jumCN=2), shown in Figure 2. Figure 3
shows the mapping results on actual nodes for
MPI jobs.

The data structure resulting from storing all
reservation requests in Table 1 can be seen in
Figure 4. As shown in Figure 4 there is one 1212121212121212

job that starts in timeslot 4 with the remaining
timeslot sv=4, two jobs that start in timeslot 5
with the remaining timeslot sv= 2, one job
starting in timeslot 6 with remaining timeslot
sv=0, one job starting in timeslot 7 with
remaining timeslot sv=0, one job starting in
timeslot 8 with remaining timeslot sv=0, no

Figure 2. MPI Data Structure for Storing
Reservations from Table 1.

285

Jurnal Teknologi Volume 16 No. 2 July 2024
Website : jurnal.umj.ac.id/index.php/jurtek

ISSN : 2085 – 1669
e-ISSN : 2460 – 0288

node of the reservation list. This addition is 111111111111111111

made in Algorithm 1, lines 7 to 10.
3. The first element of the reservation list has
the same userID as the incoming userID and
the jobID of the first node of the reservation
list is greater than the incoming jobID. Add the
new reservation as the first component of the
reservation list. Algorithm 1 in lines 11 to 16 is
used for job addition. Fix the pSlot array
shown in lines 19 to 21. Lines 24 to 31 update
the timeslots in the logical view.

Figure 3. Placement of userID9 in the logical
view using the FCFS-LRH method.

4. In this case the new reservation will be
entered in the middle or last of the reservation
list, shown in Algorithm 2.
Step to shift work components starting at
timeslot.

1. If pSlot is empty, insert row 5.
2. Code lines 1 to 7 are used to check if
there is a job starting in the shiftable
timeslot.

Figure 4. Mapping results on actual nodes for
MPI jobs.

3. If yes, check to see if any work can be
shifted
4. Shift the job, and update the free nodes
accordingly

Data structure components in timeslots
SlotNo :0 [] Sv: 5
SlotNo :1 [] Sv: 5
SlotNo :2 [] Sv: 5
SlotNo :3 [] Sv: 5
SlotNo :4 [1 1 4 4 2 1] Sv: 4
SlotNo :5 [1 2 5 5 2 1, 1 3 5 5 3 1] Sv: 2
SlotNo :6 [1 4 6 6 4 3] Sv: 0
SlotNo :7 [1 5 7 7 1 1] Sv: 0
SlotNo :8 [1 6 8 8 2 2] Sv: 0
SlotNo :9 [] Sv: 0
SlotNo :10 [1 7 8 10 4 1, 1 8 9 10 3 2, 1 9 8 13
3 2] Sv: 0
SlotNo :11 [] Sv: 0
SlotNo :12 [] Sv: 0
SlotNo :13 [] Sv: 4
SlotNo :14 [] Sv: 5
SlotNo :15 [] Sv: 5
SlotNo :16 [] Sv: 5
SlotNo :17 [] Sv: 5
SlotNo :18 [] Sv: 5
SlotNo :19 [] Sv: 5

5. Save the shift on stack line 32.
When inserting in the middle there are 3
possibilities:
• condition 1. still in the time range (line 10),
the time range for the incoming job is smaller
than the stored job tlsr, then shift the saved job
to make space for the incoming job to be
inserted.
• condition 2, the next slot is empty (line 18),
shift the job in, check whether it can be
inserted, if yes it can be inserted, add the job in
(line 29), update the pSlot on the right side
(line 30) and the left side (line 31).
• condition 3, do not shift jobs from the same
userId.
Algorithm 1
1 procedure append(timeSlot, Component
comp)
2 insert false;
3 If (pSlot[timeSlot].listComp.isEmpty()) then

pSlot[timeSlot]listComp(comp);
else

6 for (int i=0) to (
i<pSlot[timeSlot].listComp.size()) do
7 If (comp.userID <
pSlot[timeSlot].listComp(i , userID)) then
8 pSlot[timeSlot]listComp(i, comp);

insert true;
break;

11 else if (comp.userID ==

Additions to MPI Jobs:
There are 4 possible cases for adding a new
reservation in a data structure:
1. The reservation list of tesr elements in the
pSlot array is empty, add a new reservation as
the first reservation node (insert it first). Lines
3 to 4 in Algorithm 1 are used to add
reservations.
2. The first node of the reservation list has a
userID that is greater than the incoming
userID, so add a new reservation as the first

4
5

9
10

286

Ardi Pujiyanta, Fiftin Noviyanto: Design Of A Job Scheduling Data Structure For Grid Resources
222222222222222222

Jurnal Teknologi 16 (2) pp 283-290 © 2024

pSlot[timeSlot].listComp(i , userID)) then
12 if (comp.jobID <
pSlot[timeSlot].listComp(i , jobID)) then
13 pSlot[timeSlot]listComp(i, comp);

22 S1 = pSlot[time].listComp.get(j);
23 If (comp.userID == S1.userID AND
comp.jobID == S1.jobID) then
24
25
26
27

break;
Endif

Endfor
pSlot[time].listComp.remove(j)

14 22

15
16
17
18
19

insert true;
break;

Endif
Endif

Endfor
If (insert == false) then

28 removeCell(comp.userID, comp.jobID)
29
30
34
35
36
37
38
39

comp.setstartTime(time+1);
Append(time+1, comp);

20 pSlot[timeSlot]listComp(comp); Endfor
21 Endif succ = true;
22 Endif
23 //==Update cell

Endif
insertComp new InsertComponent()
Endif 24 For (i=0) to (i<comp.execTime) do

25 For (j = 0) to (j<cell[timeSlot].length) do
26 For (j = 0) to (j<cell[timeSlot].length) do
27 If (cell[timeSlot+i][j].userID = = 0) then
28cell[timeSlot+i][j]Cell(comp.userID,comp
.jobID,comp.StartTime, comp.lStartTime);

return succ;
40 Endfunc

Results and Discussions
29
30
31
32

break;
Endfor

Endfor
Endfor

Experiments have been carried out to measure
the memory consumption used by the FCFS-
LRH data structure compared to FCFS which
uses the LIST data structure and EDS which
uses the link list data structure. Testing is
carried out by:

Algorithm 2
1 Function boolean insRes(userID,
jumCNneeded)

1. Generate workload data with a total of 400
to 800 data, which refers to research [6].
2. The results of generating workload data
will be used by the FCFS-LRH, FCFS and
FCFS-EDS data structures, then the results
will be compared.

2 integer i, j
3 Component comp, S1
4 succ false
5
6
7
8

If (pSlot[time].listComp.Empty) then
return succ

else
For (i=0) to

The results show that the LRH data structure is 5

smaller in memory consumption is shown in 222222222222222222

Table 2 and Figure 5. The LRH data structure
does not perform well when searching for jobs
compared to rigid FCFS, because LRH has to
shift jobs so that incoming jobs can be
accepted, shown in Table 3 and Figure 6.
Table 4 and Figure 7 shows that the time
required to add work to the data structure using
the LRH method is faster than the EDS
method. Table 5 and Figure 8 show that the
time required for deleting work on data
structures using the LRH method is faster than
the EDS method.

(i<pSlot[time].listComp.size) do
9
10

comp pSlot[time].listComp(i)
If (comp.tlsstartTime-time>0 AND

pSlot[comp.endTime+1].getFree>=comp.jumC
N) then
11 insertComp.getinsert add(comp);
12 insertComp.jumCNinsertComp.jumCN+
comp.jumCN;
13 If (insertComp.getjumCN >=
jumCNneeded) then
14
15
16
17

break
Endif

Endif
Endfor

18 If (!insertComp.getinsert.Empty) then
Overall the FCFS-LRH data structure is better
than FCFS and FCFS-EDS, because the LRH
data structure can shift left and right in 1212121212121212

scheduling. While EDS can only slide right,

19
20

For(i=0) to (i<insertComp.insert.size) do
comp = insertComp.insert.get(i);

21 For (j=0) to (j<pSlot[time].listComp.size)
do

287

Jurnal Teknologi Volume 16 No. 2 July 2024
Website : jurnal.umj.ac.id/index.php/jurtek

ISSN : 2085 – 1669
e-ISSN : 2460 – 0288

FCFS cannot slide left and right because it is
rigid.

EDS 6.5 8.4 9.505 8.14

Table 2. Memory Consumption Used by
FCFS, EDS and LRH.

Number of jobs
Method
FCFS
EDS

400
4340

600
9800

750 Average
12600 8913.3

1690.1 1727.8 1996.6 1804.8
1613.2 1658.1 1733.8 1668.4 LRH

Figure 7. Add to Data Structure Using EDS
and LRH Methods Based on Number of Jobs

Table 5. Delete Data Structure Using EDS and
LRH Methods Based on Number of Jobs.

400 600 750 Average
21.36
24.82

LRH 15.38 29.59 19.12
EDS 16.65 38.56 19.24

Figure 5. Total Memory Consumption of
FCFS, EDS and LRH Data Structures.

Table 3. Searching Data Structure Using
FCFS, EDS and LRH Based on Number of
Jobs.

Number of Jobs
400
70

222
215

600
56.3
175

750
37

190

Average
54.4
195.7
185.2

FCFS
EDS
LRH Figure 8. Delete Data Structure Using EDS

and LRH Based on Number of Jobs.
180.2 160.4

Conclusions
Experimental results on data structures show
that the average memory consumption of the
FCFS-LRH data structure is smaller than
FCFS and FCFS-EDS. The average search for
empty timeslots of FCFS-LRH is faster than
FCFS-EDS and slower than FCFS. FCFS-
LRH's average data insert is faster than FCFS-
EDS.

Figure 6. Searching Data Structure Using
FCFS, EDS and LRH Based on Number of
Jobs

Acknowledgment
The researcher would like to express his
gratitude to the Informatics Study Program at
Ahmad Dahlan University, which has provided
the freedom to use the laboratory for research. Table 4. Add to Data Structure Using EDS and

LRH Based on Number of Jobs.
400 600 750

7.5
Average

7.37 LRH 5.85 8.75

288

Ardi Pujiyanta, Fiftin Noviyanto: Design Of A Job Scheduling Data Structure For Grid Resources
222222222222222222

Jurnal Teknologi 16 (2) pp 283-290 © 2024

https://doi.org/10.26555/ijain.v6i2.496. Funding
This research was carried out independently,
without financial assistance from external
parties.

[7]

[8]

[9]

A. Shukla, S. Kumar, and H. Singh,
“An improved resource allocation
model for grid computing
environment,” Int. J. Intell. Eng. Syst.,
vol. 12, no. 1, pp. 104–113, 2019, doi:
10.22266/IJIES2019.0228.11.
L. O. Burchard, “Analysis of data
structures for admission control of
advance reservation requests,” IEEE
Trans. Knowl. Data Eng., vol. 17, no.

Author Contributions
The first researcher has a role in designing the
proposed method, coding. The second author
had the role of results analysis.

Conflict of interest
The authors declare no conflict of interest.
There were no outside funders for this
research.

3, pp. 413–424, 2005, doi:
10.1109/TKDE.2005.40.
L.-O. Burchard and H.-U. Heiss,
“Performance Evaluation of Data
Structures for Admission Control in
Bandwidth Brokers,” Int. Symp.
Perform. Eval. Comput. Telecommun.
Syst. (SPECTS ’02), pp. 652–659, 2002,

References
[1] M. Singh, “An Overview of Grid

Computing,” Proc. - 2019 Int. Conf.
Comput. Commun. Intell. Syst. ICCCIS
2019, vol. 2019-Janua, pp. 194–198, [Online]. Available:
2019, doi: http://citeseerx.ist.psu.edu/viewdoc/do

wnload?doi=10.1.1.14.1535&rep=rep1
&type=pdf.

10.1109/ICCCIS48478.2019.8974490.
R. Nawaz, W. Y. Zhou, M. U. Shahid,
and O. Khalid, “A qualitative
comparison of popular middleware
distributions used in grid computing
environment,” 2nd Int. Conf. Comput.
Commun. Syst. ICCCS 2017, pp. 36–40,

[2]
[10] B. Li, Y. Pei, H. Wu, and B. Shen,

“Resource availability-aware advance
reservation for parallel jobs with
deadlines,” J. Supercomput., vol. 68,
no. 2, pp. 798–819, 2014, doi:
10.1007/s11227-013-1067-8. 2017, doi:

10.1109/CCOMS.2017.8075262. [11] A. Pujiyanta, L. E. Nugroho, and
Widyawan, “Job Scheduling Strategies
in Grid Computing,” Int. J. Adv. Sci.
Eng. Inf. Technol., vol. 12, no. 3, pp.

[3]

[4]

[5]

L. Feng and G. Wei-Wei, “Research
and Design of Task Scheduling Method
Based on Grid Computing,” Proc. - 2nd
Int. Conf. Smart City Syst. Eng.
ICSCSE 2017, pp. 188–192, 2017, doi:
10.1109/ICSCSE.2017.54.
R. Umar, A. Agarwal, and C. R. Rao,
“Advance Planning and Reservation in
a Grid System,” Commun. Comput. Inf.
Sci., vol. 293 PART 1, pp. 161–173,
2012, doi: 10.1007/978-3-642-30507-
8_15.

1293–1300, 2022, doi:
10.18517/ijaseit.12.3.10147.

[12] N. Charbonneau and V. M. Vokkarane,
“A survey of advance reservation
routing and wavelength assignment in
wavelength-routed WDM networks,”
IEEE Commun. Surv. Tutorials, vol. 14,
no. 4, pp. 1037–1064, 2012, doi:
10.1109/SURV.2011.111411.00054.

A. Sulistio et al., “An Adaptive Scoring
Job Scheduling algorithm for grid
computing,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol.
5, no. 1, pp. 68–72, 2015, doi:
10.1177/1094342006068414.
A. Pujiyanta, L. E. Nugroho, and
Widyawan, “Resource allocation model
for grid computing environment,” Int.
J. Adv. Intell. Informatics, vol. 6, no. 2,

[13] M. D. de Assuncao, “Enhanced Red-
Black-Tree
Facilitating
Reservations,”
Available:

Data
the

Structure
Scheduling

for
of

2015, [Online].

http://arxiv.org/abs/1504.00785.
[14] A. Gadkar, T. Entel, J. M. Plante, and

V. M. Vokkarane, “Slotted advance
reservation for multicast-incapable

[6]

optical wavelength division
multiplexing networks,” J. Opt.
Commun. Netw., vol. 6, no. 3, pp. 340– pp. 185–196, 2020, doi:

289

Jurnal Teknologi Volume 16 No. 2 July 2024
Website : jurnal.umj.ac.id/index.php/jurtek

ISSN : 2085 – 1669
e-ISSN : 2460 – 0288

354, 2014, doi:
10.1364/JOCN.6.000340.

[15] M. Barshan, H. Moens, J. Famaey, and
F. De Turck, “Deadline-aware advance
reservation scheduling algorithms for
media production networks,” Comput.
Commun., vol. 77, no. 2015, pp. 26–40,
2016, doi:
10.1016/j.comcom.2015.10.016.

[16] M. Barshan, H. Moens, B. Volckaert,
and F. De Turck, “A comparative
analysis of flexible and fixed size
timeslots for advance bandwidth
reservations in media production
networks,” 2016 7th Int. Conf. Netw.
Futur. NOF 2016, 2017, doi:
10.1109/NOF.2016.7810118.

[17] R. Brown, “Calendar Queues: A Fast
0(1) Priority Queue Implementation for
the Simulation Event Set Problem,”
Commun. ACM, vol. 31, no. 10, pp.
1220–1227, 1988, doi:
10.1145/63039.63045.

[18] R. A. Guerin and A. Orda, “Networks
with advance reservations: The routing
perspective,” Proc. - IEEE INFOCOM,
vol. 1, pp. 118–127, 2000, doi:
10.1109/infcom.2000.832180.

[19] A. Brodnik and A. Nilsson, “A Static
Data Structure for Discrete Advance
Bandwidth Reservations on the
Internet,” Swedish Natl. Comput. Netw.
Work., vol. 41, pp. 1–15, 2003.

[20] A. Sulistio, U. Cibej, S. K. Prasad, and
R. Buyya, “GarQ: An efficient
scheduling data structure for advance
reservations of grid resources,” Int. J.
Parallel, Emergent Distrib. Syst., vol.
24, no. 1, pp. 1–19, 2009, doi:
10.1080/17445760801988979.

[21] L. Wu, P. Dang, T. Yu, and L. Nie,
“Research on efficient non-slotted tree
structures for advance reservation,”
Commun. Comput. Inf. Sci., vol. 401,
pp. 50–61, 2013, doi: 10.1007/978-3-
642-53959-6_6.

290

