
PSS: New Parametric Based Clustering for Data
Category

Iwan Tri Riyadi Yanto1,3(B), Mustafa Mat Deris2, and Norhalina Senan3

1 Department of Information Systems, University of Ahmad Dahlan, Yogyakarta, Indonesia
yanto.itr@is.uad.ac.id

2 Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia,
86400 Parit Raja, Batu Pahat, Johor, Malaysia

mmustafa@uthm.edu.my
3 Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn

Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
halina@uthm.edu.my

Abstract. This paper proposes a new clustering technique for handling a cate-
gorical data called Parametric Soft set (PSS). It bases on statistical distribution
namely multinomial multivariate function. The probability of the data category
with binary value can be calculated by binomial distribution. Its generalization
called multinomial distribution function for data category with multivariate val-
ues. Firstly, the data is represented as multi soft set where every object in each soft
set has its probability. The probability of each object is calculated by cluster joint
distribution function following the multivariate multinomial distribution function.
The highest probability will be assigned to the related cluster. The first experiment
is conducted to estimate the parameter of the data drawn from random multivari-
ate mixtures distribution.While the second experiment is evaluated the processing
times, purity and rand index using benchmarks datasets. The experiment results
show that the proposed approach has improved the processing times up to 92.96%.
It also has better performance in term of purity and rand index and error mean of
the estimation parameters.

Keywords: Clustering · Categorical data · Multi soft set ·Multinomial
distribution function

1 Introduction

There are two definitions assumed on the partitioning process or clustering process to
group the data into several classes. First, well-defined notion of similarity or distance
between data objects is needed to measure the resemblance the object. Second, the
process to decide the object will be in the same groups or separate into differences group
can be developed based on the characteristic of the data [1, 2]. In practice, it called
unsupervised learning or clustering process.
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There are so many clustering techniques developed because of many various similar-
ity or distance measure in mathematics and many model which can be used to labeling
the object such as [3–6]. It makes the notion of clusters cannot be precisely defined and
create some various model of clustering i.e. centroid, density, distribution, connectivity,
graph-based, neural models, etc. [7]. The clustering technique can be categorized into
three types. i.e. pairwise distance cluster, target on optimizing by given merit function
and statistical modeling [8]. Only pairwise distances between clustered objects are used
in the first type. This is because a tractable mathematical representation for objects is
not necessary, these approaches have a wide range of applications. However, due to the
quadratic computational complexity of calculating all the pairwise distances, they do
not scale well with big data sets. Linkage clustering [9–11] and spectra clustering [12]
are two examples. The second type is concerned with optimizing a certain merit func-
tion. The merit function represents the widely held idea that good clustering requires
objects in the same cluster to be similar, while objects in other clusters should be as
diverse as possible. The similarity metric and criterion for evaluating the overall quality
of clustering differ amongst algorithms. K-means and k-centroid are two terms that are
included in this type. The third type is based on statistical analysis [8]. Each cluster is
distinguished by a fundamental parametric distribution (known as a component), such
as the multivariate Gaussian for continuous data, the Poisson distribution for discrete
data, multinomial distribution for multi values data.

The differences of typical of the data requires careful consideration to determine the
similarity or distance measure [2]. In practice, there are various types of data that are
used to implement the clustering algorithm, such as numeric, and categorical. Unlike the
numerical data, the categorical data contains the attributes which do not have any natural
order, so distance measure cannot be executed straightforwardly on categorical attribute
[13]. Data category can be assumed following the random multivariate multinomial
distribution function [14]. Other hand, categorical data havemulti-valued attributewhere
it can be represented as a multi soft set [15]. Thus, this paper proposes the parametric
clustering approach based on soft set theory. The data is decomposed to be amulti soft set
respect to all attributes where the probability every soft set in each attribute is calculated
using multinomial distribution function. Each object on attributes has different values
of probability respect to the cluster. The object with high probability will be assign into
the related cluster.

The rest of the paper is organized as follows: Sect. 2 describes related works on
information system, soft set, multinomial distribution. Section 3 describes the proposed
approach based on soft set multinomial distribution function. Section 4 describes the
experiment results on the estimation parameter. Finally, we conclude our work in Sect. 5.
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2 Related Works

This section describes the basic of multinomial distribution and soft set theory.

2.1 Multinomial Distribution

Multinomial distribution is a generalization of the binomial distribution [16]. Lets Ni
denote the number of results in category i in a sequence of independent trial a with
probability p i for a results in the ith category on each trial, 1 ≤ i ≥ m,where

∑m
i= 1 p i = 1

Then for every m-tuple of non-negative integers (n1, n2, . . . , nm) with sum n

P(N1 = n1,N2 = n2, . . . ,Nm = nm) =
n!

n1!n2! . . . nm!
p n11 p n22 . . . p nmm . (1)

A multinomial distribution with parameter ak =
(
ajlk , l = 1, . . . ,mj, j = 1, . . . , p

)

can be described as the probability mass function as follows;

f (x, ak) =
∏p

j= 1

∏mj

l= 1

(
ajlk

)xjl
, (2)

where
∑mj

l= 1 a
jl
k = 1. The generic polytomous variable j(j = 1, . . . , p ) consist of mj

categories, and m = ∑p
j= 1 mj indicates the total number of levels.

2.2 Soft Set Theory

Information system can be defined as a tuple S = (U ,A,V , f ), where U represents the
universe of objects, A be a set of variables or parameters, V is a domain (values set) of
variable a ⊂ A where the information function is a total function as in Eq. (3) such that
f (u , a) ∈ Va, ∀(u ,a)∈U×A.

f : U × A → V . (3)

Definition 1. GivenS = (U ,A,V , f ) as an information system. Suppose that a ∈ A,Va
= {0,1}, then S is a bivalued information system, and can be defined as S{0,1}.

S{0,1} =
(
U ,A,V{0,1}, f

)
. (4)

Obviously, for every u ∈ U , f (u , a) ∈ {0, 1}, for every ai ∈ A and v ∈ V , the map avi of
U is avi : U → {0, 1}, such that

avi =
{
1 f (u , a) = v
0 otherwise

. (5)

An information system can be represented as soft set by handle the uncertainty using an
adequate parametrization [17, 18]. Let U be a universe set, E be a set of parameters and
A ⊂ E,F is the function that mapping parameter A into the set of all subsets of the set
U as in Eq. (6).

F : A → P(U ). (6)
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Then, the pair of (F,A) is called as soft set over U .∀a∈A,F(a) be considered as the set
of a-approximate elements of (F,A).

Consider to an information system definition, a soft set can be interpreted as a special
type of information systems, termed a binary-valued information.

Proposition 1. Each Soft set (F,A) can be defined as S{0,1}.

Proof: Lets the set of universe U in (F,E) can be considered as the universe U , the set
of parameters denoted by E where A ⊂ E.Next, the function of the information system,
f is written as:

f =
{
1, u ∈ F(e)
0, u /∈ F(e)

. (7)

That is, when u i ∈ F
(
ej

)
, where u i ∈ U and ej ∈ E, then f

(
u i, ej

)
= 1, otherwise

f
(
u i, ej

)
= 0. To this, we have V

(
hi, ej

)
= {0, 1}. Therefore, for A ⊂ E, (F,A) can be

represented as
(
U ,A,V{0,1}, f

)
. Thus, based on Definition 1, it can be defined as S{0,1}.

Definition 2. The value-class of the soft set denoted by C(F,E) are the class of all value
sets of a soft set (F,E).

Based on Proposition 1, A Boolean-valued information system deals with the “stan-
dard” soft set. For a categorical value of information systemdenoted byS = (U ,A,V , f )
with·V = ⋃

a∈A Va and Va states the domain of attribute a. The domain Va has categor-
ical values or multi values. A decomposition can be constructed from S into |A| number
of Boolean-valued information system S =

(
U ,A,V{0,1}, f

)
. The decomposition of

A =
{
a1, a2, · · · , a|A|

}
into the disjoint-singleton attribute {a1}, {a2}, · · · ,

{
a|A|

}
is the

basis of decomposition of S = (U ,A,V , f ).

Definition 3. [15] Suppose that S = (U ,A,V , f ) is a categorical-valued information
systemandaBoolean-valued information system is expressed byS =

(
U , ai,Vai , f

)
, i =

1, 2, · · · , |A| with

S = (U ,A,V , f ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S1 =
(
U , a1,V{0,1}, f

)
⇔ (F, a1)

S2 =
(
U , a2,V{0,1}, f

)
⇔ (F, a2)

.

.

. =
(
(F, a1), (F, a2), · · · ,

(
F, a|A|

))

S|A| =
(
U , a|A|,V{0,1}, f

)
⇔

(
F, a|A|

)

. (8)

Furthermore, a multi soft set over universe U representing a categorical-
valued information system S = (U ,A,V , f ) is expressed as (F,E) =(
(F, a1), (F, a2), · · · ,

(
F, a|A|

))
.

3 Proposed Approach

Lets U be an information system random sample following distribution f (y, λ). U ={
u 1, u 2, . . . , u |U |

}
will be partition into K cluster C = {c1, c2, . . . , cK } by indicator zik

where zik = 1 if u i ∈ ck and zik = 0 if otherwise. Then,
∏K

k= 1
∏

u i∈ck zik fk(y, λ) is as
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the cluster joint distribution function of U based on cluster C. For the case data cate-
gory, the f (y, λ) is following the multinomial distribution function. More than that, the
categorical data is called a categorical-valued information system S = (U ,A,V , f ).
It can be represented as a multi soft set over of U with (F, a1), · · · ,

(
F, a|A|

)
⊆

(F,A) and
(
F, aj1 , · · · ,

(
F, aj|aj|

)
⊆

(
F, aj

))
. Suppose that λikjl is a probability of

u i ∈
(
F, ajl

)
into cluster Ck , k = 1, 2, . . . ,K, i = 1, 2, . . . , |U |, j = 1, 2, . . . , |A| and

l = 1, 2, . . . ,
∣∣aj

∣∣. Thus

fk(y, λ) =
∏|A|

j= 1

∏|aj|
l= 1

(
λikjl

)∣∣F,ajl
∣∣
,where

∑|aj|
l= 1

λkjl = 1,∀k, j (9)

By substituting themultinomial distribution function into the cluster joint distribution
function, then the maximum objective function is defined as

MaximizeLCML(z, λ) =
K∑

k= 1

|U |∑

i= 1

zik

|A|∏

j= 1

|aj|∏

l= 1

(
λ
i
kjl

)∣∣F,ajl
∣∣

=
K∑

k= 1

|U |∑

i= 1

zik

|A|∑

j= 1

|aj|∑

l= 1

ln
(
λikjl

)∣∣F,ajl
∣∣
. (10)

Subject to

K∑

k= 1

zik = 1, zik ∈ {0, 1} for i = 1, 2, . . . , |U | and
|aj|∑

l= 1

λkjl = 1.

The solution of the objective function are

λkjl =
∑

u i∈
(
F,ajl

) zik
∑|aj|

l= 1
∑

u i∈
(
F,ajl

) zik
, (11)

zik =

⎧
⎪⎨

⎪⎩
1 if

|A|∑
j= 1

ln
(
λikjl

)
= max

1≤k ′≤K

|A|∑
j= 1

ln
(
λikjl

)
.

0 otherwise

(12)

4 Experimental Results

In this section, the computational complexity is analyzed to show the computational
cost of the proposed approach compared to the baseline technique. The experiment is
conducted to estimate the parameter of the data drawn from randommultivariatemixtures
distribution and evaluated the processing times, purity and rand index using benchmarks
datasets.
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4.1 Computational Complexity

The PSS technique need O(J ) to decompose multi soft set (F,A), and parameter λikjl
and indicator zik are O(KM ) and O(KIM ), respectively. Therefore, the polynomial of
O(KM (I + 1)t + J ) is a form of the computational complexity for the PSS technique.
For fuzzy centroid technique, the computational cost for update fuzzy centroid vkjl is
O(KIM ) and partition matrix µik is O(KIJ ), in each iteration. Thus, the complexity
of fuzzy centroid is O(KI(M + J )t). Meanwhile, fuzzy k-partition need O(KIM ) and
O(KIM ) to update the parameters λkjl and fuzzy partition µik , respectively, thus the
overall isO(2KIMt).Thus, thePSS technique has the smallest computational complexity,
and it can be seen as in Table 1.

Table 1. A comparison results of three algorithms in computational complexity

Algorithms Computational complexity

FC [4] O(2KIMt)

FkP [19] O(2KIMt)

PSS O(KM (I + 1)t + J )

4.2 Estimation Parameters

In this part, the experiments are designed to estimate the parameters of multivariate
multinomial mixtures. The data samples are assumed and generated randomly using
distribution function f (y, λ)

f (y, λ) =
∑K

k= 1
αk fk(y, λ)with fk(y, λ) =

∏J

j= 1

∏Lj

l= 1

(
λkjl

)yjl . (13)

It is called as the mixture distribution. The mixing proposition αk are estimated
by αk = ∑I

i= 1
gik
I ,αk = ∑I

i= 1
µik
I ,αk = ∑I

i= 1
zik
I , k = 1, . . . ,K, where gik , µik

and zik are the results of the Fuzzy Centroid, Fuzzy k-partition and the PSS approach,
respectively.

In this experiment, the data are taken from the multinomial binomial mixture distri-
bution as in [19]. The algorithms are used to estimate the parameters of a four-variable
binomial mixture of two classes as in Eq. (13). Thus, the data are create randomly from
the mixture distribution f (y, λ) with

f (y, λ) =
2∑

k= 1

αk fk(y, λk) = αB(1, λ11)B(1, λ12)B(1, λ13)B(1, λ14)

+ (1 − α)B(1, λ21)B(1, λ22)B(1, λ23)B(1, λ24), (14)

where B(1, p ) is a Bernoulli distribution with four different α and two different λ.

α1 = (0.30.7),α2 = (0.40.6),α3 = (0.10.9),α4 = (0.70.3),α4 = (0.90.1)
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λa =
(
0.7 0.5 0.8 0.6
0.9 0.3 0.4 0.4

)
, λb =

(
0.3 0.4 0.5 0.6
0.6 0.5 0.4 0.3

)

There are 200 random samples for all combinations from mixture distribution and
random initial values used in the implementation of this algorithm. Each technique is
run 10 times. In this experiment, MATLAB version 9.0.0.341360 (R2016a) is used to
determine the performance in terms of time responses (tr) andMean Square Error (MSE)
of parameters of both the estimates and true parameters. They are executed sequentially
on the specifications of a computer with an Intel Core i5, the total main memory is 8
GB, and the operating system is Mac OS High Sierra. Table 2 shows the achievement of
mean square error and response time of the techniques. The average of mean square of
the PSS are 0.0848 and 0.0867 in term of estimating parameter λa in all a combinations.
It is lowest than the fuzzy centroid and fuzzy K partition. Meanwhile for the estimate
parameter λa in all a combinations, the PSS get 0.0813 and 0.0838, a little higher than
the fuzzy K partition and fuzzy centroids. However, in average the PSS able to improve
up to 5.92%, 2.25% in term of estimating λ and α, respectively, and up to 92.96% in term
of response times as in summarized in Table 3. These results show that PSS possesses
more efficient and accurate.

Table 2. Average response times and MSE for all experiments

Fuzzy centroid Fuzzy K partition PSS

λa λ α tr λ α tr λ α tr

a1 0.0840 0.0502 0.0808 0.0821 0.0612 0.0923 0.0834 0.0482 0.0061

a2 0.1096 0.0136 0.0982 0.1024 0.0127 0.0872 0.1046 0.0155 0.0062

a3 0.0419 0.1979 0.0512 0.0641 0.1800 0.0562 0.0499 0.1557 0.0042

a4 0.1101 0.0394 0.1019 0.1047 0.0310 0.1086 0.1053 0.0304 0.0091

a5 0.1058 0.1792 0.0827 0.0886 0.1900 0.0608 0.0808 0.1836 0.0040

Average 0.0903 0.0961 0.0884 0.0884 0.0950 0.0810 0.0848 0.0867 0.0059

λb λ α tr λ α tr λ α tr

a1 0.0864 0.0230 0.0687 0.0837 0.0292 0.0757 0.0779 0.0408 0.0052

a2 0.1111 0.0102 0.0846 0.1092 0.0148 0.0879 0.1165 0.0153 0.0067

a3 0.0597 0.1697 0.0604 0.0877 0.1584 0.0554 0.0704 0.1690 0.0037

a4 0.1044 0.0411 0.0637 0.0900 0.0510 0.0816 0.0741 0.0447 0.0048

a5 0.1075 0.1737 0.0453 0.0704 0.1436 0.0392 0.0677 0.1491 0.0027

Average 0.0938 0.0835 0.0645 0.0882 0.0794 0.0680 0.0813 0.0838 0.0046
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Table 3. The improvement of the results

Parameter Fuzzy centroid Fuzzy K partition PSS Improvement

λ 0.0920 0.0883 0.0831 5.92%

α 0.0898 0.0872 0.0852 2.25%

tr 0.0738 0.0745 0.0053 92.96%

4.3 Applying to the Dataset

Three categorical datasets obtained from the UCI Machine Learning Repository [20],
namely Soybean, Tic-tac-toe, and Balloons are used. Table 4, describes the dataset used
which consists of dataset number, the name of the dataset, the number of attributes and
the number of dataset instances. The 100 of FC, FkP and PSS implementation for all
dataset are run to give different random initial membership function. The average in
term of cluster purity and Rank Index are captured in Fig. 1 and Fig. 2, respectively. It
shows that the PSS have better performance comparing to FC and FkP techniques on
soybean dataset. Even, on the balloon and tic-tac-toe datasets the PSS has close similar
result. Is shows that the PSS technique is able to maintain the cluster purity and Rank
index compared by the FC and FkP. Nevertheless, The result of time response as shown
in Fig. 3 indicates that PSS overcome FC and FkP technique. In detail, FC and FkP
respectively consume approximately 0.6161 s and 0.7062 s of execution time to Process
three datasets in average. In contrast, PSS technique requires only approximately 0.0193
s of execution time in average for three datasets. It clearly shows a reduction of execution
time by 0.6419 s in average. Thus the PSS is superior in terms of computational time
with able to maintenance the rank index and purity comparing to the baselines.

Table 4. Dataset used for experiments

No Dataset name #Attributes #Instances

1 Soybean 35 47

2 Balloon 4 20

3 Tic-tac-toe 9 958



22 I. T. R. Yanto et al.

Fig. 1. Experimental result of the cluster purity

Fig. 2. Experimental result of the rand index

Fig. 3. Experimental result of time responses
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5 Conclusion

Thenewparametric clustering techniquehas beenproposed for data category. It is applied
cluster joint distribution assumed following the multinomial multivariate distribution.
The highest probability will be assigned to the related cluster. Comparative analysis of
the proposed algorithm called PSS and two baseline algorithms with respect to error
mean of the statistically testing is carried out to estimate the parameter and response
times. The results show that the proposed approach outperforms the existing approaches
in terms of lower response times up 92.96%. Then, the techniques is implemented to
benchmark datasets to know the performance in terms of Rank index, Purity and time
responses. The experiment shows that the PSS technique is out performance compared
to the baseline techniques.
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