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Abstract— Clustering categorical data is more challenging than numerical data since there is no inherent distance measure hetween
categorical objects. In the categorical data, a standard parametric model used in latent class clustering is independent product of
multinomial distributions. Meanwhile, multi-valued attributes on the categorical data can be represented without binary values as a
multi soft set. In this paper, we proposed a clustering technique based on soft set theory for categorical data via multinomial distribution.
The data will be represented as a multi soft set which is every soft set have its probability to be a member of the cluster. The data with
highest probability will be assigned as the member of the cluster. The experiment of the proposed technique is evaluated based on the
Dunn index with respect to the number of clusters and response time. The experiment results show that the proposed technique has
lowest response time with high stability as compared to baseline techniques.
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I. INTRODUCTION

Clustering is a fundalme problem that frequently arises
in a broad variety of fields such as pattern recognition, image
processing, machine learning and statistics [1]-[4]. It can be
defined as a process of partitioning aﬂven data set of multiple
variables into groups [5], [6]. The k-means algorithm is the
most popular among clustering algorithms developed to date
because of its effectiveness and efficiency in clustering large
data sets [7]. However, k-means clustering algorithm fails to
handle data sets with categorical variables because am only
minimize a numerical cost function. Thus, clustering

egorical data is more challenging than numerical data since
there is no crent distance measure between categorical
objects [8]. Clustering algorithms developed for managing
numerical data cannot directly be used to cluster categorical

data. To address this deficiency, several clustering algorithms
have been developed to deal with categorical data. Asa result,
Huang [9] proposed the k-modes clustering method that
removes the numeric-only limitation of the k-means
algorithm. Since then major improvements have been made in
k-modes algorithms including ne@similurity measures to
the k-modes clustering [10]-[12] and a fuzzy set based k-
modes alg()rimli*a],To improve the efficiency of fuzzy k-
modes, Kim et al. [10] proposed a technique called fuzzy
centroids approach. However, almost all fuzzy categorical
data clustering algorithms mentioned above represent data set
in the binary values. Thus, the issue with the aforesaid
approaches is that they tend to have high computational time
and low clusters purity. This indicates that an approach that
does not suffer fmlalighC()mputzni()mll time and low clusters
purity is needed. In this paper, we propose the clustering




technique based on soft set theory for categorical data via
multinomial .tnbull()n The categorical data can be
represented as multi-valued information system (multi soft set)
[14]. It can be following Eamd()m sample from multivariate
multinomial distribution. For multivariate categorical data, a
standard parametric model used in latent class clustering is a
locally (i.e., within-clusters) independent pl'()dle of
multinomial distributions [15]. Moreover, the multi-valued
information system can be represented the categorical data as
a soft set [14] without representing in the binary values.

II. RELATED WORKS

Recently, fuzzy-based clustering has been widely focused
by many scholars and some significant results have been
achieved in the theoretical and practical aspects. Huang [9]
proposed the k-modes clustering method that removes the
numeric-only limitation of the k-means algorithm. Since then
major improvements have been made in k-modes algorithms
including new dissimilarity measures to the k-modes
clustering and a fuzzy set based k-modes algorithm [6-8].
Lets it be a mcml:m]ip function, ¥ is a data and v is a
centroid of cluster, the objective function of fuzzy k-mode is
to minimize the function H,, (i, v).

Hpy(u,v) = Eloy Bfoy ulid (v, v

subject to
YK e =1, fori=12,...,1,

where d(y;, vy) = Ej:'=1 8y, vyy) is called the simple
matching dissimilarity measure, E(yij, v,q-) =01if yi; = vy
and 6(}!”,17,”-) =1, if y;; # vg;. ¥ 1s the categorical data

value and v is the cluster centroid. where m is the fuzziness
index. The update equations for hard k-modes are as follow:

. _{1 if  d(ypve) = min d(yuvy)
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¢ 0 otherwise
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Huang extended the hard k-mode to fuzzy k-modes [9].
Thus, the solution is given by update the equation as follows:

if 21—1#1::3-&;: = max Yo HaeViju,
otherw1se

1

alyy m-1
k= 1/Ef*=1[ e ™

d(yipyr)
1 if E£=1#$}'£ﬂ = max Z£=1)‘J$}’iﬂ,
Uji = 1=l"=L
0

otherwise

The use of hard centroids can give rise to the artifacts. For
example, although the Fuzzy k-modes algorithm efficiently
handles categorical data sets, it uses a hard centroid

representation for categorical data in a cluster. The use of hard
rejection of data can lead to misclassification in the region of
doutt [1EB)

Kim et al. [17] improved the performance of fuzzy k-
modes by changing hard centroids to fuzzy centroid with

By = (Bugps o B, ), for k=12,..K and j=12,...],

where T j; € [0,1] and 21_1 Wt =1 . The

objective function of fuzzy centroid is as follows:

minimize

Hyp (11, v) = Tioq e uied (1, B)

subject to

The distance measure with the centroid updates equation
which is given as following equation:

d(y;, o) = E: S(yij, Brj) = Z Z(l = Y1) Puju

=

21_1 K Vi
Ui =51 m
/ Eloimik
The update equation of memberships can be obtained as
follows:

A(yby) |- 1
=1/2ba[ies]

Both of the Fuzzy k-modes with hard centroid and fuzzy
centroid are non-parametric techniques. The algorithms use
the dissimilarity functional based on the least total within
cluster matching dissimilarity.

III. PROPOSED TECHNIQUE

The proposed technique uses soft set to represent the data.
The data which have the same value are decompose into multi
soft set. Since the value of each soft set is the same, thus all
members in each soft set have same probability to be assigned
on the cluster. Thus, we will find the high probability of each
instance with respect to all parameters on the data using
multinomial distribution function.

Definition 1. Let U be an universe set, E be a set of
parameters AcCE ., F is the function that mapping
parameter 4 into the set of all subsets of the set U as

F:A— P(U).

Then, the of (F,A) is called as soft set over
U .¥4eq, F(a) be considered as the set of a -aproximate
elements of (F,A4).




Definition 2. LetS = (U,4,V,f) be a catcgorica]-vallg
information system , where U = {u,, u,, ..., U, } is finite set
of instance, A = {a,, @, ...a,,} is finite set of attribute, V is
values set of e;é attribute A , f is maping function
f:(U,A) -V and  S=(U,a,V,,f)i =124
Boolean-valued information system, it can be decomposed to
be multi-boolean information system as

S=(uAv.f)
St = (U au Vi, f) = (F.a)
52=(UJ“21ﬂa1§:f]‘i’(F:ﬂzJ 7
i = ((F, ﬂl),(F,LIZ_},‘“,(F,ﬂMl))

S = (U, @, Vigap, f) = (Foa)

m’hcn, (F,E) = ((F, a,),(F, ay), ---,{F, a|A|)) can be
defined as a multi soft set over universe U representing a
categorical-valued information system S = (U, 4,V, f).

Consider to the pair (F, A), assign to multi-soft set over U,
representing  a ciltcg()ricall-valuediarmalti()l]systcm §=
(UAV,f) , where (F,a),,(Fay)<FA) and
(F, ah)""'(F' ajlﬂ;'l) c {F, aj). Lets say A:}I be a
p[()bilbm of u; € (F, aﬂ) into cluster Cp, k =12, ..., K,
where i =12,..,[U,j=12,.. |4 and [ =12, .., EZ}
thus, the multivariate multinomial distribution of multi soft
set can be defined as

Ul K 4 1l

Maximize Ley, (2, 1) = E Z zikz ln(it}l)lmhl
i=1k=1 J=11=1
Subject to
K
Zz;k =1,fori=12,..,|U|
k=1

|y

Z j‘kﬂ =1
=1

The maximization of the objective function Lpp, (2, A) can
be obtained by updating the equation as follows:

_ Zu.E{F,a}-J] 2y (1)
At =
14] 141
=l 0 20 = ) Ind
j=1 Jj=1
0 otherwise

Iv. RESULTsm) DISCUSSION

This section presents the validation of the proposed
algorithms using som nchmarks datasets form UCI
machine learning. The cxp@v:nts are conducted on a PC
with Intel i5-8400six core CPU 2.8 GHz and aiB RAM
using MATLAB programming language. The experiments
are conducted to compare the proposed technique with the

baseline technique which are fuzzy centroid and fuzzy k-
partition. Fuzzy centroid uses simple matching dissimilarity
function to measure the distance of centroid. It is non
parametric approach, but it is distance based which is to find
the best centroid where the member cluster is determined by
the closest centroid. Thus, it produces a spherical cluster. It
can be low of purity. Meanwhile, the fuzzy k-partition is
parametric approach which is depends on the likelihood
function of multinomal distribution function. However, the
data must be represented as binary variable. So, it tends to
produce high computational time. We eclaborate the three
approaches through the UCI benchmark datasets as follow:

s 7Zoodata set which is comprised of 101 objects, where
each data point represents information of an animal in
terms of 18 categorical variables.

e Balloon dataset which contains 20 instances and 4
categorical variables.

e Monk dataset which contains 432 instances and 6

variables.

e  Spect dataset which contains 187 instances and 922
variables.

o  Breast dataset which contains 683 instances and 9
variables.

All the comparisons made in this section are evaluated
based on the Dunn index with respect to number of clusters
and response time. The experiments are set for all techniques
algorithm form 2 to 100 number of clusters or maximum
number of instance. Each technique runs for 20 times. The
technique called divergent if the data is clustered into number
of cluster set or maximum number of instance, it means that
the number of member of cluster is only one. Obviously, all
data is clustered into one cluster when convergent approach
to 1. Table 1 shows that the proposed technique can reduce
the response times up to 9250 PZin average. Meanwhile,
Table 2 summarizes the stability with respect to the number
of cluster. It shows that the proposed technique have better
stability compared to the baseline techniques. An example to
illustrate the Dunn index for stability and number of cluster
created on the balloon data set is given in Fig. | and Fig. 2.

TABLE 1.

RESPONSE TIMES FOR DIFFERENT DATASETS

Data set Response Times Improvement
FC FkP | Proposed | )

Zoo 0.8732 | 02617 | 00236 90.98

Balloon 0.6914 | 1.2404 | 0.0273 97.80

Monk 09206 | 03754 | 0.0253 93.26

Spect 05662 | 04645 | 0.0995 78.58

Average | 0.7629 | 05855 | 0.0439 92.50




TABLE 2.

STABILITY COMPARISON BASED ON NUMBER OF CLUSTERS

Number of cluster created
Data Size of data fc Tkp proposed technigque
Balloon (204) Divergent Convergent to 1 Convergent to 9-10
Breast (683.9) Convergent ke 4 Divergent Convergent to 80-85
Monk (432,6) Divergent Divergent Convergent to 70
Spect (187.22) Divergent Convergent to 1 Convergent to 45-49
Zoo (101,16) Convergent 59 Convergent to 1 Convergent to 25-29
; Balloon
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