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Abstract— Categorical data clustering is difficult because categorical data lacks natural order and can comprise groups of data only 
related to specific dimensions. Conventional clustering, such as k-means, cannot be openly used to categorical data. Numerous 
categorical data using clustering algorithms, for instance, fuzzy k-modes and their enhancements, have been developed to overcome 
this issue. However, these approaches continue to create clusters with low Purity and weak intra-similarity. Furthermore, transforming 
category attributes to binary values might be computationally costly. This research provides a categorical data with fuzzy clustering 
technique due to soft set theory and multinomial distribution. The experiment showed that the approach proposed signifies better 
performance in purity, rank index, and response times by up to 97.53%.  
 
Keywords—. Function of multinomial distribution, clustering, categorial data, multi soft-set. 
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I. INTRODUCTION 
Data clustering is categorizing data according to their 

similarity, which aims to create similar or difference data 
category [1], [2]. It is a partition of a given data set from 
multiple variables into groups, which is a vital step in 
exploratory data mining. It is useful for revealing the data 
becomes natural structure. Clustering has been used in various 
fields, including earth science, life science, social sciences, 
information sciences, medical sciences, policy, and decision-
making. It is also applicable to the preliminary stages in other 
studies, such as bioinformatics, collaborative filtering, 
customer breakdown, data exploration and summarization, 
dynamic trend detection, information retrieval, market analysis, 
medical diagnostics, and text mining as well as analysis on 
multimedia, social network, and web [3]–[5]. Clustering can be 
in the form of hard and fuzzy, depending on how they assign 
data points to clusters. Each data point is assigned to exactly 
one cluster in hard clustering, but multiple clusters in fuzzy 
ones [6]. Fuzzy clustering is often natural and effective, 
especially when the data is not separable into distinct clusters 
[7]. 

Categorical data differs from numeric data in that it 
organizes it into categories rather than numerical values. 
Categorical data is normally applied in real-world, for instance, 

medical data and retail purchase transactions. Categorical 
factors, for example, nationality, gender, occupation, level of 
education, marital status, and smoking status, for example, are 
included in medical data. Product classifications, consumer 
types, and locales play a role in retail purchase transactions. [8], 
[9]. Due to the absence of natural order, the possibility of 
subspace clusters, and the conversion of categorical to numeric 
data, data with categorical features pose certain hurdles to 
existing clustering methods. 

Categorical data clustering algorithms have been developed 
and  proposed with k-modes clustering approach that 
overcomes the k-means algorithm's numerical-only constraint 
[10]. Data clustering have been developed with new 
dissimilarity measures to the k-mode clustering [11]–[13] and 
a fuzzy set-based k-mode algorithm [14], [15]. Kim et al. [16] 
suggested to improve the efficiency of fuzzy k-modes with the 
fuzzy centroids approach. Another fuzzy approach for grouping 
document data based on a new construction of category data 
has been developed by Umayahara et al. [17]. Non-parametric 
techniques due to the least sum of squared errors within clusters 
are used in categorical data clustering and its variants [14], [18], 
[19]. This choice involves, in essence, the expectation that data 
will be structured into spherical clusters and that either 
precision or purity will be reached [20]–[23].  

17
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Miin-Shen et al. [22] presented a parametric technique based 
on the likelihood function of multivariate multinomial 
distributions with the Fuzzy k-partitition (FkP) algorithm. FkP 
enhances the Grade of Membership (GoM) model for 
categorical data analysis [24]. However, almost all the data 
clustering techniques represent data sets in binary values. 
Furthermore, the maximum parameter of the classification 
likelihood function in the same categories has the same 
probability value in the FkP method [25]. Although the GoM 
and FkP models are useful for categorical data clustering, the 
algorithms include sophisticated iteration computations that 
take a long time to complete. This implies the significance of 
techniques that without high calculation times and low clusters 
purity. 

The converted values are arbitrary and appear to serve no use 
other than as a convenient label for a specific value. The reason 
for this is that each value in a categorical characteristic reflects 
a separate logical concept and, as such, cannot be meaningfully 
ordered or manipulated in the same way that numbers can  [26]. 
In probability theory and statistics, categorical data is likely to 
follow the function of multivariate multinomial-distribution 
randomly. Categorical data, in contrast, has multi-valued 
attributes that represent a multi-soft set [27]. Using a multi-soft 
set for multi-valued attributes has the advantage of capturing 
categorical data without the necessity for conversion into 
binary values [28]. Therefore, this study proposes a new fuzzy 
clustering method based on multi soft sets. 

II. RELATED WORKS 

A. Information system  
Let tuple 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓), where universe 𝑈 is signified, 𝐴 

represents parameters, 𝑉 embraces a value set of variable 𝑎 ⊂
𝐴. Thus, function of information comprises overall function as 
equation (1) shows, for instance, 𝑓(𝑢, 𝑎) ∈ 𝑉𝑎, ∀(𝑢,𝑎)∈𝑈×𝐴. 

𝑓:𝑈 × 𝐴 → 𝑉.    (1) 

 Definition 1. Assumed 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) as system of 
information. Assume that 𝑎 ∈ 𝐴, 𝑉𝑎={0,1}, so, 𝑆 contains a 
system of bivalued-information. Thus, the definition is 𝑆{0,1}. 

𝑆{0,1} = (𝑈, 𝐴, 𝑉{0,1}, 𝑓).    (2) 

Definitely, representing each 𝑢 ∈ 𝑈, 𝑓(𝑢, 𝑎) ∈ {0,1}, 
representing each 𝑎𝑖 ∈ 𝐴 and 𝑣 ∈ 𝑉, the map 𝑎𝑖𝑣of 𝑈 is 𝑎𝑖𝑣: 𝑈 →
{0,1}, as shown in equation below. 

𝑎𝑖𝑣 = {
1 𝑓(𝑢, 𝑎) = 𝑣
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.    (3) 

 

B. Theory of Soft-set 
A soft-set  encompasses a mathematical method to sort out 

the ambiguity through proper parametrization [25], [26].  Let 𝑈 
be a set of universe, 𝐸 be a parameter set and 𝐴 ⊂ 𝐸, 𝐹 be works 
for charts 𝐴 parameter into a set of completely subsets of set 𝑈 
as equation (4) presents. 

𝐹: 𝐴 → 𝑃(𝑈).     
 (4) 

Next, a (𝐹, 𝐴) pair is labelled a soft-set on 𝑈.∀𝑎∈𝐴, 𝐹(𝑎) be 
measured as 𝑎 estimated parts set of (𝐹, 𝐴). 

Considering the information system designation, a soft-set can 
be understood as an information-system exceptional category, 
which is called binary-valued information.  

 Proposition 1. For each soft-set (𝐹, 𝐴) could be classified 
as S{0,1}. 

 Proof: Let a universe set 𝑈 in (𝐹, 𝐸) be counted as universe 
𝑈, the parameter set represented by 𝐸 where 𝐴 ⊂ 𝐸. Then,  
information system function 𝑓 is shown in following equation: 

𝑓 = {1, 𝑢 ∈ 𝐹(𝑒)
0, 𝑢 ∉ 𝐹(𝑒).    (5) 

For example, when 𝑢𝑖 ∈ 𝐹(𝑒𝑗), where 𝑢𝑖 ∈ 𝑈 and 𝑒𝑗 ∈ 𝐸, 
then 𝑓(𝑢𝑖, 𝑒𝑗) = 1, then 𝑓(𝑢𝑖, 𝑒𝑗) = 0. Thus, we have 
𝑉(ℎ𝑖, 𝑒𝑗) = {0,1}. Hence, for 𝐴 ⊂ 𝐸, (𝐹, 𝐴) can be signified as  
(𝑈, 𝐴, 𝑉{0,1}, 𝑓).  So, based on Definition 1, it can be specified as 
S{0,1}. 

 Definition 2. The soft-set value-class is represented by 
𝐶(𝐹,𝐸) are all value soft-set class (𝐹, 𝐸).  

In proposition 1, it shows the Boolean-valued information 
system on the “standard” soft set. Representing an information-
system categorical value of represented by 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) with 
𝑉 = ⋃ 𝑉𝑎𝑎∈𝐴  and 𝑉𝑎 affirms the attribute 𝑎 domain. 𝑉𝑎 domain 
has multi-values. A breakdown can be structured from 𝑆 into |𝐴| 
number of Boolean-valued information system 𝑆 =
(𝑈, 𝐴, 𝑉{0,1}, 𝑓) , 𝐴 = {𝑎1, 𝑎2,⋯ , 𝑎|𝐴|} into the split-isolated 
attribute {𝑎1}, {𝑎2},⋯ , {𝑎|𝐴|} due to 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓).  

 

Definition 3. [31] Consider 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) is a system of 
categorical-valued information and a Boolean-valued 
information is denoted by 𝑆 = (𝑈, 𝑎𝑖, 𝑉𝑎𝑖, 𝑓), 𝑖 = 1,2,⋯ , |𝐴| in 
addition to 
𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) =

{
 
 

 
 𝑆1 = (𝑈, 𝑎1, 𝑉{0,1}, 𝑓) ⟺ (𝐹, 𝑎1)

𝑆2 = (𝑈, 𝑎2, 𝑉{0,1}, 𝑓) ⟺ (𝐹, 𝑎2)

⋮ = ((𝐹, 𝑎1), (𝐹, 𝑎2),⋯ , (𝐹, 𝑎|𝐴|))

𝑆|𝐴| = (𝑈, 𝑎|𝐴|, 𝑉{0,1}, 𝑓) ⟺ (𝐹, 𝑎|𝐴|)

.(6) 

Also, a multi-soft set on universe 𝑈 represent a system of 
categorical-valued information 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓), which is 
represented as (𝐹, 𝐸) = ((𝐹, 𝑎1), (𝐹, 𝑎2),⋯ , (𝐹, 𝑎|𝐴|)). 

 

C. Multinomial Distribution 
A binomial distribution generalization comprises the 

multinomial distribution [32]. Let 𝑁𝑖 be the number of  category 
𝑖 in a individual experiment series using probability 𝑝𝑖 for 
respectively experiment, where, 1 ≤ 𝑖 ≤ 𝑚,∑ 𝑝𝑖𝑚

𝑖=1 = 1. So, 
every 𝑚-tuple of non-negative integers (𝑛1, 𝑛2,… , 𝑛𝑚) with 
sum 𝑛.  

𝑃(𝑁1 = 𝑛1, 𝑁2 = 𝑛2, … , 𝑁𝑚 = 𝑛𝑚) =
𝑛!

𝑛1!𝑛2!…𝑛𝑚!
𝑝1
𝑛1𝑝2

𝑛2 …𝑝𝑚
𝑛𝑚. (7) 

1

1

1

1

1

1

2

2

4

4

5

5

15

19
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Example 1. Assume ten balls in a basket entails some balls 
with two in red, three in green, and five in blue color. Four balls 
will be chosen from the basket with substitution. So, the 
probability of drawling two green and blue balls, respectively 
are as follows: 

𝑃(𝑛1 = 0, 𝑛2 = 2, 𝑛3 = 2) =
4!

0! 2! 2!
0.200.320.52 = 0.135 . 

A multinomial distribution with parameter 𝑎𝑘 = (𝑎𝑘
𝑗𝑙, 𝑙 =

1,… ,𝑚𝑗, 𝑗 = 1,… , 𝑝) could be called as the probability mass 
function as shown in equation below: 

𝑓(𝑥, 𝑎𝑘) = ∏ ∏ (𝑎𝑘
𝑗𝑙)

𝑥𝑗𝑙
,𝑚𝑗

𝑙=1
𝑝
𝑗=1    (8) 

where∑ 𝑎𝑘
𝑗𝑙𝑚𝑗

𝑙=1 = 1. Variable of standard polytomous 𝑗(𝑗 =
1,… , 𝑝) have 𝑚𝑗 categories, and 𝑚 = ∑ 𝑚𝑗

𝑝
𝑗=1  denotes the total 

levels number.  

III. PROPOSED METHOD 

A. Model Objective function 
The categorical data clustering objective function and 

constraints are constructed using a function of multinomial 
distribution due to soft-set. The hypothesis of the function is 
how to find the weight of the object to be given to high 
probability cluster. The function of cluster joint distribution 
defines general model first by assuming that the data follows a 
certain function of distribution. The cluster intersection 
distribution function is supposed in Definition 4.  

Definition 4. Suppose 𝑈 includes a unsystematic sample-
size |𝑈| since division 𝑓(𝑦, 𝜆). Partition 𝑈 = {𝑢1, 𝑢2,… , 𝑢|𝑈|} 
into 𝐾 cluster 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} through value 𝑧𝑖𝑘 where 𝑧𝑖𝑘 =
1 if  𝑢𝑖 ∈ 𝑐𝑘 and 𝑧𝑖𝑘 = 0 if else. The function of cluster shared 
distribution of 𝑈 due to cluster 𝐶 could be described as  
∏ ∏ 𝑧𝑖𝑘𝑓𝑘(𝑦, 𝜆)𝑢𝑖∈𝑐𝑘
𝐾
𝑘=1 . 

Representing the data as multi soft set, assuming that the 
categorical data has multi-valued attributes following a 
multivariate multinomial distribution function can be defined as 
a Multivariate Multinomial Distribution Function of Soft set as 
in Definition 5.  

Definition 5. Suppose (𝐹, 𝐴) is a multi-soft set concluded 𝑈 
signifies a system of categorical-valued information 𝑆 =
(𝑈, 𝐴, 𝑉, 𝑓), with (𝐹, 𝑎1),⋯ , (𝐹, 𝑎|𝐴|) ⊆ (𝐹, 𝐴) and 

(𝐹, 𝑎𝑗1) ,⋯ , (𝐹, 𝑎𝑗|𝑎𝑗|) ⊆ (𝐹, 𝑎𝑗).  lets 𝜆𝑘𝑗𝑙𝑖  is a probability of 

𝑢𝑖 ∈ (𝐹, 𝑎𝑗𝑙) into cluster 𝐶𝑘, 𝑘 = 1,2, … , 𝐾, 𝑖 =
1,2, … , |𝑈|, 𝑗 = 1,2, … , |𝐴| and 𝑙 = 1,2, … , |𝑎𝑗|; hence, the 
function of the multivariate multinomial distribution soft-set can 
be written as follows. 

𝑓𝑘(𝑦, 𝜆) =∏∏(𝜆𝑘𝑗𝑙𝑖 )|𝐹,𝑎𝑗𝑙|
|𝑎𝑗|

𝑙=1

|𝐴|

𝑗=1

, 𝑤ℎ𝑒𝑟𝑒∑𝜆𝑘𝑗𝑙

|𝑎𝑗|

𝑙=1

= 1, ∀𝑘, 𝑗. 

From definition 5, function of multinomial distribution is 
substituted into function of cluster shared distribution in 
definition 4. So, it is obtained as a conditional maximum 
likelihood function. 

𝐶𝑀𝐿(𝑧, 𝜆) =∏∏𝑧𝑖𝑘∏∏(𝜆𝑘𝑗𝑙𝑖 )
|𝐹,𝑎𝑗𝑙|

|𝑎𝑗|

𝑙=1

|𝐴|

𝑗=1

|𝑈|

𝑖=1

𝐾

𝑘=1

.                                 (9) 

 

where ∑ 𝜆𝑘𝑗𝑙
|𝑎𝑗|
𝑙=1 = 1 and  ∑ 𝑧𝑖𝑘 = 1, zik ∈ {0,1} 𝑓𝑜𝑟𝑖 =𝐾

𝑘=1
1,2, … , |𝑈|. 

Consider the extension to allow the indicator functions 𝑧𝑖𝑘 =
𝑧𝑘(𝑦𝑖) to be functions 𝜇𝑖𝑘 = 𝜇𝑘(𝑦𝑖) assuming values in the 
interval [0,1] such that ∑ 𝜇𝑖𝑘 = 1𝐾

𝑘=1  for all 𝑖 = 1, . . . , 𝐼. In this 
case 𝜇 = {𝜇1, 𝜇2, … , 𝜇𝑘} is called a Fuzzy partition of 𝑈 that had 
been used for fuzzy clustering. Now, the CML procedure can be 
extended to be likelihood CML as in (27). 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝐿𝐶𝑀𝐿(𝜇, 𝜆) =∑∑𝜇𝑖𝑘∏∏(𝜆𝑘𝑗𝑙
𝑖 )

|𝐹,𝑎𝑗𝑙|
|𝑎𝑗|

𝑙=1

|𝐴|

𝑗=1

|𝑈|

𝑖=1

𝐾

𝑘=1

 

 

=∑∑𝜇𝑖𝑘

|𝑈|

𝑖=1

𝐾

𝑘=1

∑∑ln(𝜆𝑘𝑗𝑙𝑖 )|𝐹,𝑎𝑗𝑙|.                       (10)

|𝑎𝑗|

𝑙=1

|𝐴|

𝑗=1

 

Subject to  

∑𝜇𝑖𝑘 = 1, μik ∈ [0,1] 𝑓𝑜𝑟𝑖 = 1,2, … , |𝑈|.
𝐾

𝑘=1

 

∑𝜆𝑘𝑗𝑙

|𝑎𝑗|

𝑙=1

= 1. 

The solution of the objective function (27) can be obtained 
by changing into the unconstrained problem by adding lagrange 
multiplier i.e 𝑤1,𝑤2.  The Lagrangian of 𝐿𝐶𝑀𝐿 should be as 
equation below. 

𝐿𝐶𝑀𝐿(𝜇, 𝜆, 𝑤1,𝑤2) =∑∑𝜇𝑖𝑘𝑚
𝐾

𝑘=1

|𝑈|

𝑖=1

∑∑ln(𝜆𝑘𝑗𝑙i )
|𝐹,𝑎𝑗𝑙|

|𝑎𝑗|

𝑙=1

|𝐴|

𝑗=1

− 𝑤1 (∑𝜇𝑖𝑘𝑚 − 1
𝐾

𝑘=1

) − 𝑤2 (∑𝜆𝑘𝑗𝑙

|𝑎𝑗|

𝑙=1

− 1) (11) 

The first derivative of the lagrangian 𝐿𝐶𝑀𝐿 is taken regarding 
the 𝑧𝑖𝑘, 𝜆𝑘𝑗𝑙, 𝑤1, 𝑤2 and set to 0 with the following equation. 

𝜕𝐿𝐶𝑀𝐿
𝜕𝑢𝑖𝑘

= 𝑚𝜇𝑖𝑘𝑚−1∑∑ln(𝜆𝑘𝑗𝑙i )|𝐹,𝑎𝑗𝑙|
|𝑎𝑗|

𝑙=1

|𝐴|

𝑗=1

− 𝑤1 = 0, 

𝜕𝐿𝐶𝑀𝐿
𝜕𝜆𝑘𝑗𝑙

=
∑ 𝜇𝑖𝑘𝑚|𝐹, 𝑎𝑗𝑙|
|𝑈|
𝑖=1

𝜆𝑘𝑗𝑙
− 𝑤2 = 0, 

𝜕𝐿𝐶𝑀𝐿
𝜕𝑤1

= −(∑𝜇𝑖𝑘 − 1
𝐾

𝑘=1

) = 0, 

𝜕𝐿𝐶𝑀𝐿
𝜕𝑤2

= −(∑𝜆𝑘𝑗𝑙

|𝑎𝑗|

𝑙=1

− 1) = 0. 
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We can obtain w1 and w2 from (18) to (21) and then 
substitute them back into Eqs. (18) and (19). Thus, the solution 
are obtained  as follows:  

𝜆𝑘𝑗𝑙 =
∑ 𝑧𝑖𝑘𝑢𝑖∈(𝐹,𝑎𝑗𝑙)

∑ ∑ 𝑧𝑖𝑘𝑢𝑖∈(𝐹,𝑎𝑗𝑙)
|𝑎𝑗|
𝑙=1

,                                              (12) 

𝜇𝑖𝑘 =

[
 
 
 
 
∑[

∑ ∑ ln(𝜆𝑘𝑗𝑙i )|𝐹,𝑎𝑗𝑙||𝑎𝑗|
𝑙=1

|𝐴|
𝑗=1

∑ ∑ ln(𝜆𝑠𝑗𝑙i )|𝐹,𝑎𝑗𝑙||𝑎𝑗|
𝑙=1

|𝐴|
𝑗=1

]

1
𝑚−1𝐾

𝑠=1
]
 
 
 
 
−1

 

The algorithm of the proposed technique can be described in 
Figure 1. The algorithm starts by decomposing the data into 
multi-soft sets and computing the initial membership randomly. 
Then, the probability and membership are updated until one of 
the three stopping criteria is fulfilled. The three stopping criteria 
are cost function has been convergent (| 𝐿𝑐𝑚𝑙𝑖𝑡 (𝑧, 𝜆) −
 𝐿𝑐𝑚𝑙𝑖𝑡−1 (𝑧, 𝜆)| < 𝜀1), membership function has been convergent 
(∥ 𝑧𝑖𝑘𝑖𝑡 − 𝑧𝑖𝑘𝑖𝑡−1 ∥< 𝜀2) and the iteration has reached to maximum 
given iteration (M), where  𝜀1, 𝜀2 are the small positive 
tolerance. 

Input: Categorical data set, tolerance given (𝜀1, 𝜀2), number 
of iterations 𝑀 
Output: Clusters  
Begin  
Spoil the data into the multi-soft set.  
Run the random initial 𝑧𝑖𝑘 
Update 𝜆𝑘𝑗𝑙 
Update 𝜇𝑖𝑘  
Repeat  3 and 4 until (| 𝐿𝑐𝑚𝑙𝑖𝑡 (𝑧, 𝜆) −  𝐿𝑐𝑚𝑙𝑖𝑡−1 (𝑧, 𝜆)| < 𝜀1  or ∥
𝜇𝑖𝑘𝑖𝑡 − 𝜇𝑖𝑘𝑖𝑡−1 ∥< 𝜀2 ) or iteration =M. 
End 

Figure 1. Soft-set on Function of Multinomial Distribution for 
Fuzzy Soft Set Algorithm 

B. Experimental Results 

MATLAB 9.0.0.341360 (R2016a) version was used in 
examining the working of cluster purity, rank index, and 
estimation time of the Proposed Method and other categorical 
data clustering. The experiment was conducted chronologically 
using an Intel Core i5 computer, 8GB Memory, and supported 
by Mac Operating System.  Seven categorical dataset from UCI 
Machine Learning Repository was experimented [33], i.e. Zoo, 
Spect, Soybean, Tic-tac-toe, and Balloons as shown in Table 1 
below.  Table 1 defines the dataset name, attributes, and 
instances. 

Table 1. Dataset Tested for Experiments Purpose 
No Dataset #Attributes #Instances 
1 Zoo 18 101 
2 Soybean 35 47 
3 Balloons 4 20 
4 Tic-tac-toe 9 958 
5 Spect 922 187 

 
Figure 2 explains the comparison results of the seven 

algorithms in terms of cluster purity implemented on the five 
datasets used. Based on Figure 2, it can be shown that the 
proposed technique can be said “comparable” to baseline 
techniques. Among the five data set, the proposed technique 
surpasses the Purity for five data sets (Zoo, Soybean,Tic-tac-toe, 
Monk, and Car) than the Hard Mode, Fuzzy K mode, Hard 
Centroid, Fuzzy Centroid, and GoM, respectively. Although, 
Fuzzy K partition has better purity on the soybean dataset, and 
GoM has better purity on the Ballon and Spect datasets. 
However, the proposed technique outperforms the baseline 
techniques in almost all datasets used. Moreover, Figure 3 
shows the rank index results. It is illustrated that the proposed 
technique outperformed the baseline techniques while 
implementing the clustering problems. It can show that the 
proposed approach's rank index value achieves the highest value 
compared to the baseline techniques.  

 

 
Figure 2. The results of the Cluster Purity experiment 
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Figure 3. The results of The Rand Index experiment 

Table 2. The results of comparison regarding time responses 

Data Set  
Hard 
Mode 

Fuzzy 
K Mode GOM 

Hard 
Centroid 

Fuzzy-
Centroid 

Fuzzy-K 
partition 

Proposed 
Approach 

Zoo 0.0388 0.0388 0.1193 0.4508 0.8732 0.2617 0.0236 
Soybean 0.0327 0.0327 0.1425 0.6198 0.6534 0.7101 0.0199 
Tic-tac-toe 0.0174 0.0174 0.3967 0.5333 0.5034 0.1682 0.0106 
Monk 0.0416 0.0416 0.1018 0.1627 0.9206 0.3754 0.0253 
Car 0.0176 0.0176 0.6279 0.8259 0.7037 0.0099 0.0107 
Average  0.0296 0.0296 0.2776 0.5185 0.7309 0.3051 0.0180 
Improvement 39.20% 39.20% 93.51% 96.52% 97.53% 94.09%   

 

 

Table 2 explains the results of comparison among the three 
algorithms regarding computational time implemented on the 
five datasets used. It indicates that the proposed technique 
successfully overcomes baseline techniques in terms of 
computation time for clustering problems. In detail, Hard Mode, 
Fuzzy K Mode, GOM, Hard Centroid, Fuzzy Centroid, and 
Fuzzy K partition consume approximately 0.0296, 0.0296, 
0.2776, 0.5185, 0.7309, 0.3051 seconds of execution time of 
dataset processing in average, respectively. On the other hand, 
the proposed technique demands merely almost 0.0180 seconds 
of execution time on average. Thus, it indicates an average 
decrease of execution time of up to 97.53%. Therefore, the 
proposed technique is superior in computational time in most 
data sets. Meanwhile, the proposed technique worked better 
than baseline techniques regarding Purity, Rank Index, and 
computation time, respectively.  

 

 

IV. CONCLUSION 
Several algorithms can solve the challenge of fuzzy-based 

categorical data grouping. These techniques, however, do not 
give improved cluster purity or faster reaction times. As a result, 
hard categorical data clustering through multinomial 
distribution is suggested. To produce a multi-soft set, the data is 
rotted based soft set, and the data is clustered using a 
multivariate multinomial distribution. A comparison of the new 
technique and the baseline algorithms reveals that the suggested 
approach overtakes the current approaches regarding purity, 
rank index, and response times by up to 97.53% 
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