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Abstract—Categorical data clustering is problematic since it 

is difficult or complex to determine how comparable the data is. 

Several methods, most recently centroid-based strategies, have 

been developed to reduce the complexity of the similarity of 

categorical data. These methods nevertheless result in lengthy 

processing durations. Another method, soft set-based clustering 

(SSC), based on the probability function of multivariate 

multinomial distributions, is suggested in this article. Soft sets 

are used to represent the data, and each soft set has a probability 

for each object. The joint cluster distribution function 

determines the probability for each object after the multivariate 

multinomial distribution function. The connected cluster would 

receive the highest likelihood. Benchmark data sets from UCI 

machine learning are used to compare the performance of the 

approach to the baseline techniques. The outcomes demonstrate 

that the suggested strategy performed better in purity, rank 

index, and calculation time. 

Keywords—Soft set; categorical data; multinomial 

distribution. 

I. INTRODUCTION (HEADING 1) 

The concept of a cluster differs amongst algorithms; 
therefore, choosing the best approach for a given task requires 
making some choices. The belongings of the clusters 
discovered by various algorithms have differed greatly, and 
understanding the variations between these various clusters 
among the various techniques depends on these belongings. 
Two definitions are the foundation for the partitioning or 
clustering technique used to categorize the data into different 
groups. To quantify the similarity of two data objects, you 
must first define similarity or distance. Second, the 
characteristics of the data can be used to construct a method 
for deciding whether the item will be in the same groupings or 
divided into distinct groups [1], [2]. 

Because some metrics can reveal structural features, the 
clustering of numerical data in continuous space has been 
actively investigated in recent years. However, due to the 
discrete nature of the attribute value in categorical data, it may 
be challenging to determine the structural information of the 
data right once  [3]. 

Due to the lack of natural order, high dimensionality, and 
conversion of categorical to numerical data, categorical data 

 

 

are hurdles to the existing clustering approaches [4].  Distance 
calculations cannot be performed directly on a categorical 
characteristic because, unlike numerical data, categorical data 
comprises attributes without a natural order. As a result, many 
data mining experts are drawn to the demanding and 
promising task of clustering categorical data [5]. 

Another issue is the lack of an inherent distance 
measurement between objects in categorical data. Clustering 
categorical data using the clustering techniques created for 
managing numerical data is impossible. Therefore, not only 
numbers make categorical data difficult to organize. Tallies 
from a predefined number of trials, where each trial makes a 
single decision from a predetermined set of categories, are 
typically observed for categorical data. It is reasonable to 
assume that the categorical data follows the multinomial 
distribution and is, therefore, trial independent. Therefore, the 
parametric technique is more appropriate for categorical data.  
[6]. A locally independent product of a multinomial is a 
widely used parametric model for categorical data in latent 
class clustering. 

Contrarily, categorical data have several values for their 
attributes, which can be depicted as multiple soft 1. The multi-
soft set used for multi-valued characteristics provides benefits 
when encoding categorical data without transforming it to 
binary values. This study suggests a method based on soft set 
theory for multinomial distribution-based clustering of 
categorical data. 

II. LITERATURE REVIEW 

A. Related Works of Clustering 

Observations within a data collection are divided into 
various groups using the clustering technique known as 
partitional clustering. The related work on categorical data 
clustering is given in Table 1. The first extension of k-mean to 
avoid the numerical limitation problem for categorical data 
clustering is hard k-modes. It takes advantage of a 
straightforward comparison of matching and centroid 
dissimilarities. In order to minimize the cost function, it 
employs a frequency-based update in each iteration and 
computes the cluster centroids in each iteration by substituting 
modes for the means. Using simple matching dissimilarity 
distance obtains the weak intra-similarity [7] and makes either 



accuracy or purity will be low. In order to recognize this 
problem, the relative frequency of the parameters in the 
distance metric was added to modify the straightforward 
matching dissimilarity measure called Ng’s and He’s distance 
[8], [9].  The centroids are updated in the original k-modes 
using only the information contained within the cluster. As a 
result, weak clustering results may be obtained when the 
between-cluster separation is not considered. Fuzzy k-modes 
is the generalized form of the k-modes that includes fuzzy sets 
in the clustering procedure. To do so, fuzzy k-modes are added 
to the hard k-mode [10].  

Despite efficiently handling categorical data sets, the 
Fuzzy k-modes technique employs a hard centroid 

representation for categorical data in a cluster. Hard rejection 
of data might result in misclassification in the area of 
uncertainty [11]. The initialization issue with the centroids, 
the final local solution found, and the need to change an extra 
control parameter for the membership fuzziness are all 
problems the fuzzy k-modes share with the k-modes. To avoid 
this limitation, Kim et al.  [12] revealed that converting hard 
centroids to fuzzy centroids enhanced the performance of 
fuzzy k-modes. 
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THE CLUSTERING TECHNIQUE FOR CATEGORICAL DATA 
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𝛿(𝑦𝑖𝑗, 𝑣𝑘𝑗) = {
0 𝑖𝑓 𝑦𝑖𝑗 = 𝑣𝑘𝑗
1 𝑖𝑓 𝑦𝑖𝑗 ≠ 𝑣𝑘𝑗

.   
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The techniques mentioned above are non-parametric. The 
algorithms employ the least total within-cluster matching 
dissimilarity-based dissimilarity functional where obtaining 
weak intra-similarity makes either accuracy or purity will be 
low [13]. The Fuzzy k-partition model was proposed by Yang 
et al. [11]. It is one of the parametric techniques for categorical 
data clustering based on the likelihood function of the 
multivariate multinomial distribution. Another parametric-
based technique is the GoM model. Each object can be a 
limited membership of the ultimate profile.  

Given the multinomial distribution, the categorical data 
may be regarded as trial independent. This is because 
categorical data is frequently observed as tallies coming from 
a predefined number of trials, where each trial entails selecting 
one option from a predetermined set of categories. As a result, 
the parametric technique works better with categorical data 
[6].   

 

B. Multinomial Distribution  

The multinomial distribution is a broadening of the 
binomial distribution [14]. Let 𝑁𝑖  represent the quantity of 
outcomes in 𝑖  category in a series of standalone trials with 
probability 𝑝𝑖 for outcomes in 𝑖 category for each trial, , 1 ≤
𝑖 ≤ 𝑚, where ∑ 𝑝𝑖

𝑚
𝑖=1 = 1 . Any 𝑚 -tuple of non-negative 

integers (𝑛1, 𝑛2, … , 𝑛𝑚) is with sum 𝑛 

𝑃(𝑁1 = 𝑛1, 𝑁2 = 𝑛2, … ,𝑁𝑚 = 𝑛𝑚) 

=
𝑛!

𝑛1!𝑛2!…𝑛𝑚!
𝑝1
𝑛1𝑝2

𝑛2 …𝑝𝑚
𝑛𝑚 .   (1) 

The probability mass function for a multinomial 

distribution with the parameter parameter 𝑎𝑘 = (𝑎𝑘
𝑗𝑙 , 𝑙 =

1, … ,𝑚𝑗 , 𝑗 = 1, … , 𝑝)  is as follows: 

𝑓(𝑥, 𝑎𝑘) = ∏ ∏ (𝑎𝑘
𝑗𝑙
)
𝑥𝑗𝑙

,
𝑚𝑗

𝑙=1
𝑝
𝑗=1    (2) 

where∑ 𝑎𝑘
𝑗𝑙𝑚𝑗

𝑙=1 = 1.  𝑚𝑗categories make up the generic 

polytomous variable 𝑗(𝑗 = 1, … , 𝑝) , where 𝑚 = ∑ 𝑚𝑗
𝑝
𝑗=1  

denotes the total number of levels.  

 

C. Soft Set  

Information system can be defined as a tuple 𝑆 =
(𝑈, 𝐴,𝑉, 𝑓), where 𝑈 represents the universe of objects, 𝐴 be 
a set of variables or parameters, 𝑉 is a domain (values set) of 
variable 𝑎 ⊂ 𝐴  where the information function is a total 
function as in equation (3)  

A tuple 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) can be used to represent an 
information system, with 𝑈  standing for the universe of 
objects, A for a set of variables or parameters, and V for the 
domain (set of values) of a 𝑎 ⊂ 𝐴  variable, and the 
information function being a total function as in equation (3) 
such that 𝑓(𝑢, 𝑎) ∈ 𝑉𝑎, ∀(𝑢,𝑎)∈𝑈×𝐴 . 

𝑓:𝑈 × 𝐴 → 𝑉.    
 (3) 

 Definition 1. Given  𝑆 = (𝑈,𝐴, 𝑉, 𝑓)  as an information 
system. Suppose that 𝑎 ∈ 𝐴,𝑉𝑎={0,1}, then 𝑆  is a bivalued 
information system, and can be defined as 𝑆{0,1}. 

As an information system, consider 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) . If an 
𝑎 ∈ 𝐴, 𝑉𝑎={0,1}, then S is a bivalued information system and 
is defined as 𝑆{0,1}. 

𝑆{0,1} = (𝑈, 𝐴,𝑉{0,1}, 𝑓).    (4) 

Definitely, for each 𝑢 ∈ 𝑈, 𝑓(𝑢, 𝑎) ∈ {0,1}, for each 𝑎𝑖 ∈ 𝐴 
and 𝑣 ∈ 𝑉, the map 𝑎𝑖

𝑣of 𝑈 is 𝑎𝑖
𝑣: 𝑈 → {0,1}, such that  

𝑎𝑖
𝑣 = {

1 𝑓(𝑢, 𝑎) = 𝑣
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.    (5) 

When handling uncertainty with the proper parametrization, 
an information system can be described as a soft set [25], [26].  
Let 𝑈 be a universe set, 𝐸 be a set of parameters and 𝐴 ⊂ 𝐸. 
According to equation (4), F is the function that maps the 
parameter A into the set of all subsets of the set 𝑈. 

𝐹: 𝐴 → 𝑃(𝑈).  (6) 

Therefore, the (𝐹, 𝐴) pair is named a soft set over 
𝑈 .∀𝑎∈𝐴 , 𝐹(𝑎)  is considered as the set of 𝑎 -approximate 
elements of (𝐹, 𝐴). 

When it comes to the notion of an information system, a soft 
set can be thought of as a specific category of information 
systems known as binary-valued information.  

 Proposition 1. All soft sets (𝐹, 𝐴) can be defined as S{0,1}. 

 Proof: Let us say that the universe 𝑈  in (𝐹, 𝐸)  can be 
represented by the set of universes 𝑈, where 𝐸 stands for the 
set of parameters and 𝐴 ⊂ 𝐸. Next, the information system's 
function, 𝑓, is expressed as follows: 

 𝑓 = {
1, 𝑢 ∈ 𝐹(𝑒)
0, 𝑢 ∉ 𝐹(𝑒)

.   (7) 

For example, once 𝑢𝑖 ∈ 𝐹(𝑒𝑗), 𝑢𝑖 ∈ 𝑈  and 𝑒𝑗 ∈ 𝐸 , then 

𝑓(𝑢𝑖 , 𝑒𝑗) = 1,  then 𝑓(𝑢𝑖 , 𝑒𝑗) = 0.  We have 𝑉(ℎ𝑖 , 𝑒𝑗) =
{0,1}. Therefore, for𝐴 ⊂ 𝐸 , (𝐹,𝐴) can be represented as  
(𝑈, 𝐴,𝑉{0,1}, 𝑓).  Thus, Definition 1 can be defined as S{0,1}. 

 Definition 2. All value sets of a soft set (𝐹, 𝐸) fall within 
the value-class of the soft set indicated by 𝐶(𝐹,𝐸). 

A Boolean-valued information system works with the 
"standard" soft set based on Proposition 1. For an information 
system's categorical value defined by 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓), with 
𝑉 = ⋃ 𝑉𝑎𝑎∈𝐴 and 𝑉𝑎 state the attribute's domain, respectively. 
Multi-valued or categorical values are available in the domain 
𝑉𝑎. It can be decomposed from 𝑆 into |𝐴|number of Boolean-
valued information systems using the formula 𝑆 =
(𝑈, 𝐴, 𝑉{0,1}, 𝑓).  The decomposition of 𝐴 = {𝑎1, 𝑎2, ⋯ , 𝑎|𝐴|} 
into the disjoint-singleton attribute {𝑎1}, {𝑎2},⋯ , {𝑎|𝐴|} is the 

basis of the decomposition of  𝑆 = (𝑈, 𝐴, 𝑉, 𝑓).  

Definition 3. According to Herawan and Deris [17], the 
following equation describes the relationship between a 
categorical-valued information system, 𝑆 = (𝑈,𝐴, 𝑉, 𝑓), and 

a Boolean-valued information system, 𝑆 = (𝑈, 𝑎𝑖 , 𝑉𝑎𝑖 , 𝑓), 𝑖 =

1,2,⋯ , |𝐴|. 

𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) =

{
 
 

 
 

𝑆1 = (𝑈, 𝑎1, 𝑉{0,1}, 𝑓)⟺ (𝐹, 𝑎1)

𝑆2 = (𝑈, 𝑎2, 𝑉{0,1}, 𝑓) ⟺ (𝐹, 𝑎2)

⋮ = ((𝐹, 𝑎1), (𝐹, 𝑎2),⋯ , (𝐹, 𝑎|𝐴|))

𝑆|𝐴| = (𝑈, 𝑎|𝐴|, 𝑉{0,1}, 𝑓) ⟺ (𝐹, 𝑎|𝐴|)

. 

(8) 



Furthermore, a multi soft set over universe 𝑈 representing 
a categorical-valued information system 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓)  is 

expressed as (𝐹, 𝐸) = ((𝐹, 𝑎1), (𝐹, 𝑎2),⋯ , (𝐹, 𝑎|𝐴|)). 

III. PROPOSED APPROACH 

As shown in Figure 1 below, the objective function of the 
clustering problem is created under the assumptions of a well-
defined notion of similarity, or distance, between data objects 
and a method for determining whether a collection of objects 
is a homogenous cluster. A clear understanding of the 
similarity or distance between data elements forms the first 
presumption. The multinomial distribution function is used in 
this approach as the parametric measure because the distance 
measure for categorical data will only generate weak 
similarity. The second assumption is a method for determining 
if a collection of objects is a homogenous cluster. 

 

Figure 1. The illustration of Proposed Approach 

 
Categorical data can be represented as an attribute-values 

system in a multi-valued information system. The multi-
valued information system U shall be. The pair (𝐹, 𝐴) , 
selected to multi-soft set over 𝑈  which represents a 
categorical-valued information system 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓), with 

(𝐹, 𝑎1),⋯ , (𝐹, 𝑎|𝐴|) ⊆ (𝐹, 𝐴)  and (𝐹, 𝑎𝑗1) ,⋯ , (𝐹, 𝑎𝑗|𝑎𝑗|
) ⊆

(𝐹, 𝑎𝑗).  Assume that 𝜆𝑘𝑗𝑙
𝑖 represents the likelihood that 𝑢𝑖 ∈

(𝐹, 𝑎𝑗𝑙)  will enter the cluster 𝐶𝑘 , 𝑘 = 1,2, … , 𝐾,  with 𝑖 =

1,2,… , |𝑈|, 𝑗 = 1,2, … , |𝐴| and 𝑙 = 1,2, … , |𝑎𝑗|. Assume that 

𝑈  is a sample of size |𝑈|  drawn at random from the 
distribution 𝑓(𝑦, 𝜆). An indicator 𝑧𝑖𝑘divides a partition 𝑈 =
{𝑢1, 𝑢2, … , 𝑢|𝑈|} into a 𝐾  cluster 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} , where 

𝑧𝑖𝑘 = 1 if 𝑢𝑖 ∈ 𝑐𝑘 and 𝑧𝑖𝑘 = 0  otherwise. The cluster joint 
distribution function of 𝑈  based on cluster 𝐶  may then be 

written as ∏ ∏ 𝑧𝑖𝑘𝑓𝑘(𝑦, 𝜆)𝑢𝑖∈𝑐𝑘
𝐾
𝑘=1 . When the Multinomial 

Multivariate Distribution function of Multi Soft Set is 
substituted into the Cluster Joint Distribution function, the 
objective is to determine the highest probability ( 𝜆 ). 
𝐿𝐶𝑀𝐿(𝑧, 𝜆) can be used to specify the conditional objective 
function as a result. 

𝐿𝐶𝑀𝐿(𝑧, 𝜆) =∑∑𝑧𝑖𝑘

|𝑈|

𝑖=1

𝐾

𝑘=1

∑∑ln(𝜆𝑘𝑗𝑙
𝑖 )

|𝐹,𝑎𝑗𝑙
|
.

|𝑎𝑗|

𝑙=1

|𝐴|

𝑗=1

 

Subject to  

∑𝑧𝑖𝑘 = 1, zik ∈ {0,1} 𝑓𝑜𝑟 𝑖 = 1,2, … , |𝑈|.

𝐾

𝑘=1

 

∑𝜆𝑘𝑗𝑙

|𝑎𝑗|

𝑙=1

= 1. 

The objective function 𝐿𝐶𝑀𝐿(𝑧, 𝜆)  is the constrained 
optimization problem. Using the Lagrange multiplier, the 
solution can be reduced to a single function of a constrained 
optimization problem. The necessary condition can then be 
implemented by obtaining the function's first derivative and 
setting it to 0. It is a set of nonlinear equations. Proposition 1 
provides evidence that the model process's resolution.  

Proposition 1: Let (𝐹, 𝐴)  remain a soft set on 𝑈 
corresponding to a categorical-valued information system 

with (𝐹, 𝑎1),⋯ , (𝐹, 𝑎|𝐴|) ⊆ (𝐹, 𝐴)  and 

(𝐹, 𝑎𝑗1) ,⋯ , (𝐹, 𝑎𝑗|𝑎𝑗|
) ⊆ (𝐹, 𝑎𝑗).  Suppose 

(𝐹, 𝑎1),⋯ , (𝐹, 𝑎|𝐴|) ⊆ (𝐹, 𝐴)  and (𝐹, 𝑎𝑗1) ,⋯ , (𝐹, 𝑎𝑗|𝑎𝑗|
) ⊆

(𝐹, 𝑎𝑗) remain a multi soft set of 𝑈. So 𝑧𝑖𝑘  and 𝜆𝑘𝑗𝑙 are local 

maximum for 𝐿𝐶𝑀𝐿(𝑧, 𝜆) if merely if meets. 

𝜆𝑘𝑗𝑙 =
∑ 𝑧𝑖𝑘𝑢𝑖∈(𝐹,𝑎𝑗𝑙

)

∑ ∑ 𝑧𝑖𝑘𝑢𝑖∈(𝐹,𝑎𝑗𝑙
)

|𝑎𝑗|

𝑙=1

, and  

 𝑧𝑖𝑘 = {
1 𝑖𝑓 ∑ ln(𝜆𝑘𝑗𝑙

𝑖 )
|𝐴|
𝑗=1 = max

1≤𝑘′≤𝐾
∑ ln(𝜆𝑘𝑗𝑙

𝑖 ).
|𝐴|
𝑗=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

IV. EXPERIMENTAL RESULTS 

The clustering results are evaluated based on benchmarks 
dataset taken from UCI machine learning as shown in Table 2.  

TABLE II 

THE UCI DATASETS 

No Data set Name #Attributes #Instances 

1 Zoo 17 101 

2 Soybean 35 47 

3 Balloons 4 20 
4 Tic-tac-toe 9 958 

5 Monk 6 432 

6 Spect 22 187 

7 Car 6 1728 
 

The processing time, rank index, and cluster purity are 
used to gauge performance.  Table 3 provides a summary of 
the Rank index. The suggested strategy outperforms the 
standard methods in the data set from Zoo and Monk. For the 
soybean and balloon data sets, FkP has a superior rank index, 
whereas HC has a better one for the Spect data set. Concerning 
the Tic-Tac-Toe and automobile datasets, GoM has a higher 
rank index. Therefore, it may be argued that the proposed 
technique is "comparable" to standard techniques. Moreover, 
Table 4 displays the purity results. When compared to the HC, 
FC, GoM, and FkP, the technique outperforms the purity for 
five of the seven data sets (Zoo, Soybean, Tic-Tac-Toe, Monk, 
and Car).  

TABLE III 

RANK INDEX 

 Zoo Soybean Tic Monk Spect Car Ballon 

HC 75.21 64.79 51.06 50.02 53.30 50.40 56.46 

FC 78.38 80.01 50.82 49.93 50.61 49.64 62.05 

GoM 23.30 25.06 54.66 50.03 50.57 54.24 49.47 

FkP 87.89 93.66 50.63 52.55 50.57 48.88 82.82 

SSC 88.50 81.30 50.82 52.87 50.91 48.93 65.00 

 

 



TABLE IV PURITY 

 Zoo Soybean Tic Monk Spect Car Ballon 

HC 0.174 0.328 0.649 0.531 0.943 0.704 0.713 

FC 0.667 0.749 0.651 0.529 0.943 0.698 0.781 
GoM 0.058 0.090 0.326 0.263 0.459 0.175 0.300 

FkP 0.668 0.759 0.651 0.594 0.927 0.699 0.892 
SSC 0.674 0.782 0.651 0.597 0.919 0.705 0.666 

 

 

 

Figure 2. Time responses 

 

Moreover, the proposed technique is superior in 
computational time in most data sets. In Figure 2, the average 
computation time is displayed. The technique effectively beats 
HC, FC, GoM, and FkP regarding calculation time for 
clustering issues. Specifically, processing the data set by HC, 
FC, GoM, and FkP takes around 0.2209, 0.7017, 0.4202, and 
0.4614 seconds, respectively. In contrast, the execution time 
for the proposed method is only about 0.0309 seconds. As a 
result, the execution time was reduced on average by up to 
0.4201 seconds. Therefore, the suggested technique 
outperformed HC, FC, GoM, and FkP in terms of purity, Rank 
Index, and computing time. 

 

V. CONCLUSION 

Several strategies can solve the issue of centroid-based 
categorical data grouping. These methods do not, however, 
deliver purer clusters or quicker responses. This paper 
suggests a soft set-based clustering method. The data is 
clustered using a multivariate multinomial distribution after 
being deconstructed based on a soft set to produce a multi-soft 
set. A comparison of the suggested technique and the baseline 
algorithms has been conducted regarding purity, rank index, 
and response time. The outcomes demonstrate that the 
suggested approach outperforms the already-used approaches 
regarding faster response times (up to 92.96%), improved 
cluster stability, and Rank Index performance. 
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