

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

2

the Penetration Testing Execution Standard method, developed

by the Pentest Organization, to analyze system security.

Previous studies, such as those on the Internet of Things,

indicate vulnerabilities across three layers: application,

network, and perception, as well as weaknesses in unencrypted

passwords and risks of sniffing and spoofing. This result

emphasizes the importance of local tax application managers

enhancing system security to protect sensitive data and

financial transactions. Penetration testing can help identify

vulnerabilities and strengthen system protection [8].

Syarif Hidayatulloh, Desky Saptadiaji (2021) on "Penetration

Testing on the ARS University Website Using the Open Web

Application Security Project (OWASP)," This research

analyzes the stages of penetration testing and attacks, with a

report based on the OWASP Top 10-2017. From the five

subdomains tested using TheHarvester, the results indicate that

the security of the ARS University website is rated satisfactory,

based on the CIA TRIAD aspects. The website uses SIAKAD

Cloud and NiagaHoster servers, which play a role in

maintaining adequate security. [9].

Ichsan Ichsan Octama Riandhanu (2022) "Analysis of the Open

Web Application Security Project (OWASP) Method Using

Penetration Testing on Attendance Website Security" The best

method to assess a company's information security is through

penetration testing, which helps identify new vulnerabilities.

This research demonstrates that web application security

analysis using the OWASP method is effective in identifying

vulnerabilities in the attendance application sub.domain.com,

with 1 critical vulnerability, 3 high, 4 medium, and 7 low.

Suggestions for improvement are anticipated to assist the

development team in enhancing the application's security and

safeguarding sensitive data from potential attacks [10].

2.1.2 Security
Security is an essential system that protects against crime and

accidents, including serious threats such as terrorism and

cyberattacks. Information security prevents data theft, illegal

access, and system damage, while system security protects

networks, hardware, software, and data [11].

With the increasing reliance on online systems, organizations

must maintain the confidentiality, integrity, and authentication

of data in accordance with international standards. The CIA

Triad includes Confidentiality, Integrity, and Availability,

which ensure that data is protected, accurate, and accessible to

authorized users [12].

2.1.3 Website
Accessed at any time via the internet. To facilitate the search,

these pages are grouped in a menu linked from the main page.

Although its appearance is simple, website security remains

important to prevent data theft, unauthorized access, and

system damage. The creation of a website involves six stages:

Planning, Design, Scripting, Testing, Promotion, and

Maintenance to ensure that the website functions well and is

secure.

2.1.4 Web Server
Web server is software or a server that provides data and media

services over a network using the HTTP and HTTPS protocols.

The main task is to send the files requested by the user, such as

text, video, or images. The mechanism begins when the user

types a domain into the browser, which then searches for the IP

address through cache or DNS servers. After connecting to the

web server, a file request is sent via HTTP. If the file is

available, the server sends it; if not, the server sends a 404 error

code. The entire process is transparent and easy to understand.

The entire process is transparent and easy to understand. Then,

the browser receives the file or error code from the server and

displays it to the user. In general, a web server only processes

requests received from the client, and the entire process occurs

transparently, making it easy to understand.

2.1.5 Penetration Testing
Penetration testing is a simulation of an attack on an

organization's network to identify system vulnerabilities. The

person conducting this testing is called a pentester. This method

begins with planning, which includes determining the scope,

objectives, and the system being tested. After that, the pentester

conducts a scan, then uses attacks such as cross-site scripting

and SQL injection to exploit vulnerabilities. The final stage is

analysis and reporting, which identifies risks and provides

recommendations to enhance the security of the network

system [15] The workflow of the penetration testing show in

Figure 1.

Figure 1: Stages of Penetration Testing

2.1.6 Blackbox Testing
Black Box Testing is a security testing method where the tester

simulates an external attack without in-depth knowledge of the

target system, relying only on basic information such as the

website address. The tester acts as an outsider, similar to a

hacker, and must gather information to determine attack

methods. In this testing, the tester does not have access to the

source code or system configuration, so attacks are carried out

without internal technical details. Black Box Testing is

conducted by simulating attacks as would be done by an

attacker who lacks internal information [16] The Blackbox

Testing method show in Figure 2.

Figure 2 : Method Blackbox

2.1.7 Cross-Site Scripting (XSS)
XSS (Cross-Site Scripting) is a type of cybersecurity attack that

occurs when an attacker injects malicious scripts into a web

page, which are then executed by the browser of users visiting

that page. XSS attacks allow attackers to steal user information,

alter page content, or redirect users to malicious websites. [20].

2.1.6 Open Web Application Security Project (OWASP)
OWASP is a global community established in 2001 to enhance

web application security. They provide resources, guidelines,

and tools such as OWASP ZAP to help identify vulnerabilities

in applications. [18].

2.1.7 Kali Linux
Kali Linux is a powerful and flexible operating system,

specifically designed for security testing. It provides tools for

system exploitation, network analysis, web application testing,

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

3

and digital forensics. Kali Linux is often used by security

professionals to identify and fix vulnerabilities before they can

be exploited [25].

3. METHODOLOGY
This research method combines three main approaches:

literature study, observation, and interviews. Through the

literature review, the research gathers in-depth information on

various methods and tools used in web application security,

particularly those related to Cross-Site Scripting (XSS) attacks.

This review includes an examination of previous studies that

identify the best techniques for conducting penetration testing

as well as the implementation of OWASP security standards.

Additionally, the literature review aims to understand the latest

developments in security technology and effective mitigation

strategies against XSS attacks. Interviews with experts in web

application security were conducted to gain direct insights into

recommendations and best practices for protecting web

applications from cyber threats. By integrating the findings

from both the literature review and interviews, the study gains

a better understanding of the most common security

vulnerabilities and the strategies to address them. After

understanding the theory and concepts, the penetration testing

method was practically applied to analyze the security of the

Purwobakti village government website. The results of this

approach not only revealed eight vulnerabilities on the website,

including those with high to informational risk levels but also

provided guidelines for strengthening the site's defenses against

XSS attack threats.

3.1 Object Study
The research object is the website purwobakti.desa.id, which

serves as a platform for village residents to view the

transparency of activities carried out by the village government

and where the budget is being allocated.

3.2 Research Materials and tools
The selection of appropriate tools and materials is crucial in this

research to ensure the smoothness of the process and the

validity of the results. This section presents a list of hardware

and software used. Here are the tools and materials used, Table

1 lists the hardware, and Table 2 lists the software.

Table 1 : Hardware used in Research

Hardware Spesification

Laptop Acer Aspire A514-53G, RAM 8GB,

Intel CoreI i7-1065G7, 256GB SSD,

1TB HDD

Tabel 2 : Software used in Research

Software Spesification

Kali Linux Kali Linux 2.6 (x64bit)

OWASP ZAP OWASP ZAP 2.15.0 Version

3.3 Research Phase
In conducting web security analysis research using Penetration

Testing, several tools are required, namely the software and

hardware needed and used during the research. Here are the

specifications of the tools and materials that will be used during

the research as support for the study to be conducted. By

employing these specific tools, the research aims to effectively

identify and address potential vulnerabilities in the web

application under examination.

Figure 3 : Research Phase

Figure 3 show the stages of research conducted during the

research process.

3.3.1 Preparation

At this stage, the researcher develops a core understanding of

the existing problem and designs an appropriate action plan to

resolve it, while also involving the collection of data and

information about the target, including domain, IP address,

host, and other relevant factors for the next stage.

3.3.2 Scanning
At this stage, all the data collected from the previous phase is

scanned. In this stage, a scanning process is carried out to

identify vulnerabilities present on the Purwobakti regional

website. The method used is to search for, discover, and exploit

vulnerabilities on regional websites using the OWASP ZAP

tool.

3.3.3 Testing

This stage is an advanced phase of Scanning to analyze security

weaknesses from various aspects present on the website after

using OWASP.

3.3.4 Reporting
At this final stage, the results of the exploitation process are

complete, and a report is created to serve as a guideline for web

developers in addressing the security vulnerabilities found on

the website, so they can determine whether Cross-Site

Scripting is possible.

3.4 Scenario Simulation Study
The research scenario is designed to detail the steps that will be

taken in the study, with the aim of gaining a clear understanding

of the process that will be undertaken.

Figure 4 : Ilustration Simulation Study

Figure 4 show an illustration of the scenario or simulation that

will be conducted. This illustration includes the stages and

overall flow of the research, which consists of three main

phases: Pre-Testing, Testing, and Post-Testing. The details of

this case simulation illustration are as follows:

3.4.1 Pretesting

In the first stage of the Pre-Testing, it begins with obtaining

written permission from the owner of the website to avoid legal

violations or accessing the website illegally. At this stage, the

author requests permission from the Website Manager to obtain

research permission for the website purwobakti.desa.id. Then

proceed to the process of downloading and installing OWASP

ZAP from the official OWASP website.

3.4.2 Testing

In the second stage of testing, run ZAP after the installation

process is complete. Next, open the web browser that will be

tested. Configure the proxy settings in the web browser to use

ZAP as the proxy. Then, in the Manual Scan feature, set the

web browser to route all traffic through ZAP.

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

4

Scanning by starting the recording of browser activity by

pressing the "Attack" button in ZAP and browsing the website

using the available features and functions. After finishing

exploring the website, press the "Stop" button in ZAP to end

the recording process. In addition, you can also simply press

the "Attack" button on the Automated Scan feature to perform

an automatic scan. The automatic scan referred to here is

OWASP ZAP, which will directly explore the target website

without the need to manually navigate through the features

available on the websitel.

3.4.3 Post Testing

in the third stage of Post-Testing, analyze the scanning results

by examining the ZAP scan results that focus on Cross-Site

Scripting vulnerabilities, taking into account the severity level

and potential impact. After completing the task, prepare a

report that explains the findings, including details of

vulnerabilities, associated risks, and recommendations for

corrective actions. The report was then shared with the owner

or developer of the website so that necessary steps could be

taken to address the detected vulnerabilities.

4. Result and Discussion
Data collection in this research includes Observation,

Literature Study, and Interviews. The observation was

conducted using the OWASP ZAP tool to identify information

related to vulnerabilities present on the Purwobakti website.

4.1 Data Collection
This tool allows researchers to discover and analyze potential

security vulnerabilities, providing a deeper understanding of

the technical and security aspects of the website being studied.

The results of this observation serve as an important foundation

for developing recommendations for improvements and

enhancements in website security. Literature studies are

conducted to gather relevant information from various sources,

such as scientific journal.

4.2 Implementation
The results of the reporting in the research include Preparation,

Scanning, Testing, Reporting (analysis of test results), and

recommendations for improvement. In the Scanning section,

the researcher used OWASP tools. The type of scanning used

in the OWASP tools is automated scanning to identify

vulnerabilities on the Purwobakti website.

4.2.1 Preparation Testing

4.2.1.1 Preparation

The image at this stage is the initial step in preparing all the

necessary requirements to conduct penetration testing on the

subject to support the success of this research. One of them is

the installation of the OWASP software, which is the default

application already installed on Kali Linux that can be used to

find vulnerabilities using automated scanning. If it is not

installed, it can be done by following the guide on its official

website. https://www.zaproxy.org/download/.

4.2.1.2 Scanning

The scanning process is a crucial stage in identifying potential

security vulnerabilities in web-based applications. This

research combines automatic and manual scanning methods to

obtain comprehensive results. Start active scanning using ZAP

to directly evaluate the security of the target website. Provide

adequate time for ZAP to complete the scanning process

thoroughly. After the scan is complete, the results of the study

to identify potential vulnerabilities. Focus the analysis of the

scan results on findings related to Cross-Site Scripting

vulnerabilities, considering the level of risk and its potential

impact. Next, conduct manual testing on the detected

vulnerabilities to verify the accuracy and validity of the

findings. This process aims to provide a comprehensive and

accurate security evaluation of the tested website. The

Automatic Scanning stage is the process of identifying

vulnerabilities using the Owasp ZAP tool. At this stage, enter

the target URL to begin the scan. There are two spider options

to choose from, namely the Traditional spider and the Ajax

spider. Although the Ajax spider is slower than the traditional

spider, it is more effective in the scanning process. The

Automatic Scanning Process is show in Figure 5.

Figure 5 : Scanning Owasp

The scanning process conducted on Figure 5 produces an

output displayed in the Alerts section, as illustrated in image 6.

Each alert that appears indicates a specific classification of the

type of vulnerability detected. Scanning and Testing At this

stage, the author conducted testing on the website to scan and

test for vulnerabilities present on the website using the features

available in OWASP ZAP. Below are the tests conducted using

both Automated Scan and Manual Scan.

4.2.2 Scanning and Testing

At this stage, the author conducts testing on the website

https://purwobakti.ac.id/ to scan and test for vulnerabilities

present on the website using the features available in OWASP

ZAP. Below are the tests carried out using both Automated

Scan and Manual Scan.:

4.2.2.1 Automated Scan

In an Automated Scan, OWASP ZAP will automatically scan

all the features of a website to identify vulnerabilities. This

process involves mapping all pages, forms, and other functions

of the website, followed by a series of tests to identify various

types of security vulnerabilities. With this method, OWASP

ZAP can detect issues such as SQL injection, Cross-Site

Scripting (XSS), and other weaknesses without manual

intervention, allowing the tester to focus on analysis and

remediation.

Figure 6 : Scanning to Website

Figure 6 show the process of scanning features and parameters

on the website https://purwobakti.desa.id/ using OWASP ZAP

to identify any features on the purwobakty website. Besides,

also identifies the potential entry point of the attack,

vulnerabilities to the features and the parameters that are

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

5

present on the Purwobacty site. From the scanning shows that

the site has some linked parameters such as assets, themes and

others. These parameters are linked to each other on the website

https://purwobakti.desa.id/ which is then identified by OWASP

ZAP to find vulnerabilities to these parameters.

Figure 7 : Scanning Active on Feature Automated Scan

Figure 7 show an active scan of the features and parameters

using OWASP ZAP. This process involves a series of actions

from OWasp ZAP such as sending a request to an identified

entry point through a previous scan to test the vulnerabilities at

that entry point. After that, ZAP will display the results of the

scans and tests that have been performed. This active scan aims

to identify potential security vulnerabilities on various

emerging indicating the presence of specific classifications of

the type of vulnerability detected. The scan results provide a

comprehensive overview of the various security weaknesses

that may exist in the systems being analyzed. The vulnerability

classification shown helps security professionals quickly

identify and prioritize areas that require immediate attention.

With this detailed information, security teams can design and

implement appropriate mitigation measures to address each

type of vulnerability identified. The list of vulnerability alerts

show in Figure 8.

Figure 8 : Alert List of Vurbalities in Owaspzap

4.2.2.2 Testing

In the results of the identification in the Vulnerability

Assessment using Owasp Zap, several security vulnerabilities

were found. The first one is Server-Side Template Injection

(Blind), which is a security vulnerability where an attacker can

inject malicious code into a template processed on the server

side, without seeing the direct output of that injection. In this

attack, the attacker must use inference techniques or timing to

determine whether their injection was successful, as there is no

direct feedback from the serverIn the results of the

identification in the Vulnerability Assessment using Owasp

Zap, several security vulnerabilities were found. The first one

is Server-Side Template Injection (Blind), which is a security

vulnerability where an attacker can inject malicious code into a

template processed on the server side, without seeing the direct

output of that injection. In this attack, the attacker must use

inference techniques or timing to determine whether their

injection was successful, as there is no direct feedback from the

server.

1. Server-side template injection (blind)

Server-Side Template Injection (SSTI) is a type of

security vulnerability that occurs when user input is not

properly validated and is directly inserted into server-side

templates to be evaluated by the template engine. In the

case of "Blind SSTI," this vulnerability occurs without any

immediate results visible to the attacker, making it harder

to detect. When user input is evaluated by the template

engine instead of being used solely as an argument in

rendering, it can lead to remote code execution.

Figure 9 : Try Server-Side Template Injection

(Blind) in the Email Column

Figure 9 show test was conducted by entering a script into the

email input field to check whether the input parameter is

vulnerable to Server-Side Template Injection attacks. (Blind).

This test aims to identify whether the web application processes

user input unsafely, particularly regarding how that data is used

in server-side template rendering. If the script that is entered

can be executed, it indicates a potential vulnerability that

allows an attacker to run malicious code on the server.

In this test, a thorough observation was conducted to see if the

application shows signs of being vulnerable to template

injection, even though the server's direct response may not be

apparent. (dalam konteks Blind). This indicates that web

applications are at risk if the server template processes input

data insecurely. The steps taken in this testing help identify the

extent to which the system is vulnerable to Server-Side

Template Injection attacks, as well as provide a foundation for

security improvements at the application level.

Figure 10 : Server Side Template Injection (Blind) Trial in

the Email column

Figure 10 show web responses give an alert "new comment

published after admin approval," but when the page is

refreshed, the alert does not disappear, indicating that the code

is executed by the server. If the user input entered in the email

field is processed by the template engine without proper

validation, an attacker could inject malicious code that is

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

6

executed by the server, opening the possibility for server

takeover or unauthorized access to sensitive data. Notifications

that cannot be dismissed after executing the script indicate that

the script affects the performance and responsiveness of the

server. This is a direct impact of using the sleep 9 command,

which delays all server operations for 9 seconds. This

underscores that using eval to execute shell commands opens

the possibility for unwanted code execution. In a broader

context, this could lead to the server becoming unstable or

potentially being exploited for other malicious purposes.

2. Content Security Policy (CSP) Header Not Set

The vulnerability related to Content Security Policy (CSP) does

not provide clear details regarding parameters that could

potentially create security gaps. Therefore, the researchers

decided to shift the focus of the testing to the potential

vulnerabilities of Cross-Site Scripting (XSS) elsewhere.

However, after further analysis of the provided HTTP headers,

it was found that there is no CSP policy explicitly applied.

 Typically, the CSP header will appear in the HTTP response

as "Content-Security-Policy," which serves to control what

resources are allowed in the browser. The absence of this CSP

header indicates that the website is at risk of XSS attacks and

other types of attacks that can be exploited due to a lack of

security policy settings on the content loaded in the browser.

Therefore, the researchers recommend that the implementation

of CSP policies be carried out comprehensively to strengthen

protection against XSS threats and ensure that websites are

safer from exploitation that takes advantage of this

vulnerability.

Based on the scanning results, the vulnerability related to

Content Security Policy (CSP) does not provide clear details

regarding the parameters that could potentially create security

gaps.

Therefore, the researchers decided to shift the focus of the

testing to the potential vulnerabilities of Cross-Site Scripting

(XSS) elsewhere. However, after further analysis of the

provided HTTP headers, it was found that there is no CSP

policy explicitly applied. Typically, the CSP header will appear

in the HTTP response as "Content-Security-Policy," which

serves to control which resources are allowed in the browser.

The absence of this CSP header indicates that the website is at

risk of XSS attacks and other types of attacks that can be

exploited due to the lack of security policy settings on the

content loaded in the browser.

Therefore, researchers recommend that the implementation of

CSP policies be carried out comprehensively to strengthen

protection against XSS threats and ensure that the website is

more secure from exploitation that takes advantage of this

vulnerability.

SIDCSRF stands for Synchronizer Token Pattern for Cross-

Site Request Forgery. It is a security technique used to prevent

Cross-Site Request Forgery (CSRF) attacks. The Synchronizer

Token Pattern works as follows:

1. Strict Transport Security (HSTS) activated.

2. X-Content-Type-Options set to "nosniff".

3. X-Permitted-Cross-Domain-Policies set to "none".

4. Permissions Policy expected token for that session.

5. Cross-Origin Policies (Embedder, Resource, Opener) set

to "same-origin".

6. Use of secure cookies with "Secure" and "HttpOnly" flags.

7. SameSite attribute on cookies to prevent CSRF.

Figure 11 : Respon Body to Website Purwobakti

Figure 11 show security measures are good, adding a CSP will

provide an additional layer of security, especially in preventing

XSS and the injection of other harmful content. CSP allows you

to specify which resources are permitted to be loaded by the

browser, which can significantly reduce the risk of XSS attacks.

To further enhance security, consider adding a CSP header that

aligns with the needs of your web application.

3. Absence Of Anti-CSRF Tokens

The absence of Anti-CSRF tokens is a vulnerability detected in

OWASP scanning with a high risk. Based on the explanation

from its official website, Owasp ZAP, this vulnerability forces

victims to send HTTP requests to a specific destination without

their knowledge, exploiting application functionality that uses

predictable URL actions or forms. Unlike cross-site scripting

(XSS), which exploits the user's trust in a website, CSRF takes

advantage of the website's trust in the user. CSRF attacks are

effective in certain situations, such as when the victim has an

active session, is authenticated via HTTP, or is on the same

local network as the target site. Although different from XSS

attacks, CSRF techniques can also expose sensitive

information, especially when combined with XSS

vulnerabilities. Therefore, researchers are exploring this gap as

an aspect of testing for Cross-Site Scripting vulnerabilities

Based on image 11, evidence was found in the input form;

however, the parameters and attack were not mentioned. Upon

investigation, it was found that the form is located on the login

form. According to the explanation in the previous paragraph,

if this vulnerability is detected due to the absence of CSRF

token protection, it has been observed that there is a variable

named getCsrfToken. This variable indicates that the CSRF

token has been implemented on the website with the name

sidcsrf; the token is show in Figure 11. However, OWASP does

not capture this variable because the declaration of the token is

in the JavaScript tag, as show in Figure 12.

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

7

Figure 12 : Token sidcsrf Website purwobakti

SIDCSRF stands for Synchronizer Token Pattern for Cross-

Site Request Forgery. It is a security technique used to prevent

Cross-Site Request Forgery (CSRF) attacks. The Synchronizer

Token Pattern works as follows:

1. ⁠ A unique token (usually a random string) is generated for

each user session

2. This token is inserted into the HTML form as a hidden

field.

3. When the form is submitted,

4. The server checks whether the token sent matches the

expected token for that session

5. If the token does not match or is not present, the server

rejects the request.

This is effective because CSRF attackers cannot know the value

of a valid token, as this token is unique for each session and

cannot be predicted. After further investigation, researchers

found that SIDCSRF is often associated with the CodeIgniter

framework, a popular PHP framework. In the context of

CodeIgniter:

1. SID may refer to "Session ID" or session identification.

2. CSRF tentu mengacu pada Cross-Site Request Forgery.

CodeIgniter has built-in security features to prevent CSRF

attacks, which use synchronization tokens. This feature can be

enabled in the security configuration of CodeIgniter

Figure 13 : Discovery Token sidcsrf and Evindence on the

Website Purwobakti

Figure 13 show what has been explained in the paragraph

above, it is assured that the website has implemented CSRF

tokens and that the web is protected by those tokens. Next, the

researchers tested the input form by entering the input

<script>alert(document.cookie)</script> to observe the

response from the object. The web response is show in image

13, where the website rejects the script because it has the

potential to capture a session cookie if a user is currently

accessing the site. In addition, the website has also

implemented rate limiting, which restricts the number of

requests that users or client applications can make to the server

within a certain time period, as show in Figure 14. Here is a

complete explanation of rate limiting:

1. Definition: Rate limiting is a mechanism that controls the

rate and frequency of requests received by a web server or

API.

2. Here are the objectives regarding rate limiting:

 1. Preventing service abuse

 2. Protecting the server from overload

 3. Ensuring service quality for all users

 4. Saving server resources

 5. Preventing DDoS attacks (Distributed Denial of Service)

Figure 14: Web Response to XSS Script for

Display Cookie

4) Missing Anti-clickjacking Header

The missing Anti-clickjacking Header is a response that does

not include Content-Security-Policy with the 'frame-ancestors'

directive or X-Frame-Options to protect against 'ClickJacking'

attacks. The Content-Security-Policy (CSP) with the 'frame-

ancestors' directive specifies which sources are allowed to

frame content, while X-Frame-Options controls whether a page

can be framed by other sites.

Without these two protections, web applications become

vulnerable to ClickJacking attacks, where an attacker can trick

users into clicking on seemingly legitimate page elements. but

in reality interacting with different pages, often with malicious

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

8

intent. The results of the testing regarding the Missing Anti-

clickjacking Header are show in Figure 15.

Figure 15 : Missing Anti-Clickjacking

5) Strict-Transport-Security Header Not Set

HTTP Strict Transport Security (HSTS) is a web security

policy mechanism that allows a web server to declare that

compliant user agents (such as web browsers) should only

interact with it using a secure HTTPS connection (that is, HTTP

layered with TLS/SSL). HSTS is a protocol established by the

IETF and described in RFC 6797.

 In the identified case, the to robots.txt does not include the

Strict-Transport-Security header, making the website

vulnerable to attacks that exploit insecure data transmission.

6) User Controllable HTML Element Attribute (Potential

XSS)

A security vulnerability that focuses on analyzing input

provided by users, whether through query string parameters or

POST data, to identify potential manipulation of HTML

element attribute values. This process aims to detect vulnerable

points to XSS attacks. (cross-site scripting).

Although this examination may reveal potentially risky areas,

the findings require further evaluation by security analysts. The

ultimate goal is to determine whether the detected

vulnerabilities can actually be exploited, allowing developers

to take appropriate preventive measures and enhance the

overall security of the application.

This evaluation is important because not all findings are

critical, so the results of the analysis must be accompanied by

manual verification to ensure their relevance to actual security

risks. The ultimate goal is to help developers understand

potential threats and take appropriate preventive measures,

such as improving input validation or implementing stricter

security policies. Thus, the security of web applications can be

significantly improved, minimizing the risk of XSS attacks that

could compromise system integrity.

This process aims to detect vulnerable areas where an attacker

can inject malicious scripts to control HTML elements.

Although the results of this examination may indicate at-risk

areas, further evaluation by a security analyst is needed to

assess whether the detected vulnerabilities can actually be

exploited. allowing developers to take appropriate preventive

measures and enhance the overall security of the application.
Thus, the security of web applications can be significantly

improved, minimizing the risk of XSS attacks that could

compromise system integrity

Figure 16 : Testing using the XSS script on the category

and keywords parameters

Figure 16 show testing using Scanning OWASP ZAP, the

detected vulnerability lies in the parameter id_kategori.

However, the response is indicated by a keyword that shows

that the field is a search parameter. The researcher entered an

XSS payload to determine the response from the web, as shown

in image 16. The response [removed]alert(123)[removed]

appeared in the web input form after attempting to insert

JavaScript code for the attack. Reflected XSS has significant

implications for web security:

1. ⁠Filtering indication: The appearance of "[removed]"

indicates that the website has an active filtering or input

sanitization mechanism. The website's security system has

detected and removed potentially harmful content.

2. ⁠⁠ XSS Prevention: The original JavaScript code (alert(123))

has been removed, preventing the execution of unwanted

scripts in the user's browser. This is a preventive measure

against reflected XSS attacks.

3. Feedback Security feedback: By displaying "[removed],"

the website provides feedback that an attack attempt has

been detected and blocked, without revealing the details of

its security implementation.

4. Further testing needs: This indicates the necessity for

additional testing with various XSS payloads to ensure the

effectiveness of the protection.

5. Security implementation confirmation: Indicating that the

web developer has implemented several security measures,

although improvements may be necessary.

Although this indicates the presence of protection, it is

important to conduct comprehensive testing to ensure that there

are no other security vulnerabilities that could be exploited.

7. Re-examine Cache-control

The Cache-control directive is an important mechanism in web

content management that regulates how browsers and proxy

servers store and use cached data. In the identified case, the

robots.txt file has a cache-control header set as "public, max-

age=31536000". This setting indicates that the file can be

cached publicly for a full year. Although aggressive caching

strategies like this can significantly improve performance for

static content, these strategies also carry potential risks,

especially if the files contain sensitive information or require

more frequent updates. The result shows that there is a

discovery in the website directory, show in Figure 17.

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

9

Figure 17 : File robot.txt from website

Improper use of cache-control can lead to several security and

functional issues. For example, if the robots.txt contains

important instructions about the site's structure or restricted

areas, long-term caching can hinder rapid changes in the site's

crawling policy.

In addition, if this file accidentally reveals sensitive

information, loose cache settings can prolong the exposure of

that information. Therefore, it is very important to carefully

balance performance needs with security and flexibility

requirements when configuring cache-control directives,

especially for files that have security implications or are

frequently updated.

8) Modern Web Application

This application appears to be a modern web application,

indicating that the latest technologies and frameworks have

been used in its development. This often involves the use of

dynamic rendering techniques and asynchronous content

loading, which can enhance the user experience by speeding up

page load times and allowing for more responsive interactions.

In the context of automated testing and exploration,

conventional methods like standard spiders may not be able to

effectively handle such dynamic loading.

Links like this are often implemented through JavaScript to

enhance flexibility and control over behavior navigation

without having to reload the entire page. However, the use of

this technique also adds an additional layer of complexity in

terms of automated testing and security, as testing tools must

be able to understand and interact with the elements

manipulated by JavaScript.

4.3 Discussion
The discussion in the research includes an analysis of the

results from the testing phase conducted by the testers and

provides recommendations for improvements regarding the

vulnerabilities that have been successfully identified. The

results of the testing analysis (reporting) and recommendations

will later be given to the Purwobakti website management,

which will serve as evaluation material regarding the security

of the website.

4.3.1 Analysis od the tes result reporting

Based on the results of the website security testing, Purwobakti

tends to be safe. The detected vulnerabilities, such as the

absence of a content security policy (CSP), are not present on

the website; however, its security adds several layers that can

protect against potential exploitation. The vulnerability of the

Absence Of Anti-CSRF Tokens is not proven because the

website has already implemented CSRF tokens, as previously

explained. Therefore, the validated vulnerability does not exist.

User Controllable HTML Element Attribute Vulnerability

(Potential XSS) also indicates one of the vulnerabilities that can

be exploited, but the website also blocks scripts inputted by

researchers, thus mitigating the attack. The vulnerabilities

based on the risks obtained using OWASP ZAP scanning will

be explained presented in Table 3.

Table 3 : Test Reporting use owasp zap

No
Types of

Threats
Description

Risk

Level

Test

 Result

1 Server Side

Template

Injection

(SSTI)

Blind

Inserting

malicious code

into a server

template

without

directly

viewing the

output.

High Success, a

notification

that cannot

be

dismissed.

2 Content

Security

Policy

(CSP)

Header Not

Set

The Content

Security Policy

(CSP) is not

implemented

on the website.

Medium It didn't

work, but

there's no

CSP.

3 Absence Of

Anti-CSRF

Tokens

The HTML

form is not

equipped with

an anti-CSRF

token to

prevent attacks.

Medium It didn't

work, the

sidcsrf

website

was

applied.

4 Missing

Anti click

jacking

Header

The response

does not

include

protection

against

ClickJacking

attacks with

CSP or X-

Frame-

Options.

Medium Success, X-

Frame-

Options is

not used so

the website

can be

framed.

5 Strict-

Transport-

Security

Header Not

Set

The website

has not

implemented

the Strict-

Transport-

Security

header.

Low It didn't

work, the

website has

already

been

configured.

6 User

Control

HTML

Element

Attribute

(Potential

XSS)

User input

validation in

query

parameters and

Post data.

Information It didn't

work, the

result is

"[removed]

" in the

input field.

7 Re-

examine

Cache-

control

Directives

The cache-

control header

is not set

correctly,

allowing

sensitive

content to be

cached.

Information It was

found that

the

robots.txt

file has a

cache-

control

header set.

8 Modern

Web

Application

A modern web

that uses the

latest

technology.

Information Not found.

The

website

does not

have

attributes.

The results of the website security analysis conducted in Table

3 reveal several vulnerabilities and important findings that

require serious attention. From the eight types of threats tested,

several vulnerabilities were found with varying risk levels,

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

10

ranging from high to informational. This vulnerability opens a

gap for attackers to potentially access sensitive data and

manipulate applications, which is certainly a serious threat to

the security and integrity of the website.

4.3.2 Recommendation for improvement

Recommendations will be presented in the form of a table

containing vulnerability gaps from the testing results that have

been confirmed as vulnerabilities that could endanger the

system and user. The recommendations are expected to assist

the website manager or admin in taking preventive measures

against the gaps identified by the tester presented in Table 4.

Table 4 : Recommendation Repair Result Testing

No
Type of

Threat

Risk

Level

Improvement

Recommendation

1 Server Side

Template

Injection

(SSTI)

Blind

High Validate and sanitize user

input rigorously. Use a

secure template engine.

Limit access to dangerous

functions. Apply the

principle of least privilege.

Conduct security testing

regularly.

2 Content

Security

Policy

(CSP)

Header Not

Set

Medium Although the security on

the Purwobakti website is

already good, researchers

still recommend adding a

Content Security Policy

(CSP) that will provide an

additional layer of

security, especially in

preventing XSS and the

injection of other harmful

content.

3 Absence Of

Anti-CSRF

Tokens

Medium None, because the website

has already implemented

Synchronizer Token

Pattern protection against

Cross-Site Request

Forgery. (sidcsrf)

4 Missing

Anti-

clickjackin

g Header

Medium Implementing X-Frame-

Options with appropriate

values (such as 'DENY' or

'SAMEORIGIN')

5 Strict-

Transport-

Security

Header Not

Set

Low None, the website has

implemented Strict

Transport Security

(HSTS) which is activated

as show in Figure 11

6 User

Control

HTML

Element

Attribute

(Potential

XSS)

Information There is nothing; the

website already has an

active filtering or input

sanitization mechanism.

The website's security

system has detected and

removed potentially

harmful content.

7 Re-

examine

Cache-

control

Directives

Information Cache-control

configuration to ensure

that no sensitive

information is exposed

and crawling policies

remain effective.

8 Modern

Web

Application

Information This is an informational

notice, so no changes are

necessary.

Recommendations for improvements from vulnerabilities that

have been identified through Automated Scans as well as

Manual Testing during the testing phase and also the analysis

of the test results. Here is a series of mitigations that can be

implemented against the identified vulnerabilities.

1. Server Side Template Injection (SSTI) Blind

It is a high-risk vulnerability that requires serious attention. To

mitigate this risk, the recommended steps include strict

validation and sanitization of user input. This means that every

input received from the user must be checked and sanitized to

ensure that no harmful code can be executed. The use of a

secure template engine is also highly recommended, as these

engines typically have built-in mechanisms to prevent

injection.

2. Content Security Policy (CSP)

Although the security on the Purwobakti website is already

quite good, the addition of a Content Security Policy (CSP) is

still highly recommended. CSP serves as a highly effective

additional layer of security, especially in preventing Cross-Site

Scripting (XSS) attacks and the injection of other harmful

content. By implementing CSP, administrators can specifically

determine which resources are allowed to be loaded by the

user's browser.

3. Absence of Anti-CSRF Tokens

Regarding the Absence of Anti-CSRF Tokens, no corrective

recommendations are necessary. The Purwobakti website has

implemented adequate protection by using the Synchronizer

Token Pattern to prevent Cross-Site Request Forgery (CSRF).

4. Missing Anti-clickjacking Header

To address the vulnerability of Missing Anti-clickjacking

Header, the recommended step is to implement the X-Frame-

Options header with an appropriate value. Setting the value to

'DENY' or 'SAMEORIGIN' on the X-Frame-Options header

can effectively prevent the website from clickjacking attacks.

The implementation of this header is a simple yet highly

effective step in enhancing website security against framing-

based attacks.

5. Strict-Transport-Security Header

Regarding the Strict-Transport-Security Header, no

improvement recommendations are necessary. The Purwobakti

website has correctly implemented Strict Transport Security

(HSTS), as shown in figure 16. This step demonstrates a strong

commitment to the security of communication between users

and the server.

6. User Controllable HTML Element Attribute

Regarding the User Controllable HTML Element Attribute

(Potential XSS), no remediation recommendations are

necessary. The website has demonstrated good capability in

handling potential XSS attacks by implementing active input

filtering or sanitization mechanisms. The website security

system has successfully detected and removed potentially

harmful content, as indicated by the response "[removed]" to

the attempt at malicious code injection.

7. Re-examine Cache-control Directives

Regarding the User Controllable HTML Element Attribute

(Potential XSS), no remediation recommendations are needed.

The website has shown good capability in managing potential

XSS attacks by implementing active input filtering or

sanitization mechanisms. The website security system has

successfully detected and removed potentially harmful content,

as indicated by the response "[removed]" to the attempt at

malicious code injection.

8. Modern Web Application

Modern Web Application Findings, this is an informational

notice that does not require immediate corrective action.

Identifying a website as a modern web application indicates the

use of the latest technologies in the development and structure

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

11

of the website. This indicates that the security testing approach

may need to be adjusted, for example by using an AJAX spider

instead of a standard spider for a more comprehensive analysis.

5. Conslucion
Based on the research conducted by the researcher titled

"Analysis of the Security of Village Government Websites

Against Cross-Site Scripting Attacks Using Penetration

Testing," the results stem from the stages of research that have

been carried out, from information gathering, testing, analysis,

to reporting. In the research, penetration testing was conducted

using OWASP ZAP, which is used to identify security

vulnerabilities and aims to enhance the security of the website.

The test results found that the website has varying levels of

security, with 1 low risk categorized as High, 1 low risk

categorized as Low, and there are also 3 risks classified as

medium and informational. Of the 5 vulnerabilities or risks, the

website https://purwobakti.id/ still has a gap or potential for

Server-Side Template Injection (SSTI) Blind attacks, which

poses a very high risk of attack. And the implementation of the

OWASP method in analyzing and identifying vulnerabilities

present on the website, It runs well, as evidenced by the testing

of the website, which has been proven to be secure due to the

absence of vulnerabilities such as Content Security Policy

(CSP) on the website. However, its security adds several layers

that can protect against potential exploitation. The vulnerability

of Absence Of Anti-CSRF Tokens has not been proven because

the website has already implemented CSRF tokens, as

previously explained; therefore, the validated vulnerability

does not exist. User Controllable HTML Element Attribute

Vulnerability (Potential XSS) also indicates one of the

vulnerabilities that can be exploited, but the website also blocks

scripts inputted by researchers, thus mitigating the attack.

REFERENCE
[1] J. J. B. H. Yum Thurfah Afifa Rosaliah, “Pengujian

Celah Keamanan Website Menggunakan Teknik

Penetration Testing dan Metode OWASP TOP 10 pada

Website SIM,” Senamika, vol. 2, no. September, pp.

752–761, 2021.

[2] J. T. Elektro and P. N. Medan, “Perancangan Website

Pada Pt. Ratu Enim Palembang,” pp. 15–27,

[3] Muhammad Isfa Hany, Adhitya Bhawiyuga, and Ari

Kusyanti, “Implementasi Cross Site Scripting

Vulnerability Assessment Tools berdasarkan OWASP

Code Review,” J. Pengemb. Teknol. Inf. dan Ilmu

Komput, vol. 5, no. 9, pp. 3745–3753, 2021.

[4] B. Sakti, A. Aziz, and A. Doewes, “Uji Kelayakan

Implementasi SSH sebagai Pengaman FTP Server

dengan Penetration Testing,” J. Teknol. Inf. ITSmart,

vol. 2, no. 1, p. 44, 2016, doi: 10.20961/its.v2i1.620.

[5] I. M. Edy Listartha, I. M. A. Premana Mitha, M. W.

Aditya Arta, and I. K. W. Yuda Arimika, “Analisis

Kerentanan Website SMA Negeri 2 Amlapura

Menggunakan Metode OWASP (Open Web

Application Security Project),” Simkom, vol. 7, no. 1,

pp. 23–27, 2022, doi: 10.51717/simkom.v7i1.63.

[6] F. Fachri, A. Fadlil, and I. Riadi, “Analisis Keamanan

Webserver menggunakan Penetration Test,” J. Inform.,

vol.8,no.2,pp.183–190,2021,doi:10.31294/ji.v8i2.1085

4.

[7] H. Azis and F. Fattah, “Analisis Layanan Keamanan

Sistem Kartu Transaksi Elektronik Menggunakan

Metode Penetration Testing,” Ilk. J. Ilm., vol. 11, no.

2,pp.167–174,2019,doi:10.33096/ilkom.v11i2.447.1

67-174.

[8] Y. A. Pohan, “Meningkatkan Keamanan Webserver

Aplikasi Pelaporan Pajak Daerah Menggunakan

Metode Penetration Testing Execution Standar,” J.

SistimInf.danTeknol.,vol.3,pp.16,2021,doi:10.37034/js

isfotek.v3i1.3 6.

[9] S. Hidayatulloh and D. Saptadiaji, “Penetration Testing

pada Website Universitas ARS Menggunakan Open

Web Application Security Project (OWASP),” J.

Algoritm.,vol.18,no.1,pp77–86,2021,doi:10.33364/alg

oritma/v.18-1.827.

[10] I. O. Riandhanu, “Analisis Metode Open Web

Application Security Project (OWASP) Menggunakan

Penetration Testing pada Keamanan Website Absensi,”

J. Inf. dan Teknol., vol. 4, no. 3, pp. 160–165, 2022, doi:

10.37034/jidt.v4i3.236.

[11] S. Nurul, S. Anggrainy, and S. Aprelyani, “Faktor-

Faktor Yang Mempengaruhi Keamanan Sistem

Informasi : Keamanan Informasi , Teknologi Informasi

Dan Network (Literature Review Sim),” J. Ekon.

Manaj. Sist. Inf., vol. Vol. 3, no. No. 5, pp. 564–573,

2022.

[12] A. H. Harahap, C. Difa Andani, A. Christie, D.

Nurhaliza, and A. Fauzi, “Pentingnya Peranan CIA

Triad Dalam Keamanan Informasi dan Data Untuk

Pemangku Kepentingan atau Stakholder,” J. Manaj. dan

Pemasar. Digit., vol. 1, no. 2, pp. 73–83, 2023.

[13] M. Kamil, B. Rahmat, and O. Primadianti,

“Perancangan Dan Implementasi Web Server Untuk

Pemantauan Kualitas Air Berbasis Iot,” e-Proceeding

Eng., vol. 8, no. 6, p. 3515, 2022.

[14] Y. Mulyanto and A. A. Fari, “Analisis Keamanan Login

Router Mikrotik dari Serangan Brute Force

Menggunakan Metode Penetration Testing,” J. Inform.

Teknol. dan Sains, vol. 4, no. No.3, pp. 145–155, 2022.

[15] M. D. Al Vriano, “Pengujian Keamanan Web Juice

Shop Dengan Metode Pentesting Berbasis Owasp Top

10,” J. Multidisiplin Saintek, vol. 1, no. 06, pp. 81–90,

2023.

[16] M. Hasibuan and A. M. Elhanafi, “Penetration Testing

Sistem Jaringan Komputer Menggunakan Kali Linux

untuk Mengetahui Kerentanan Keamanan Server

dengan Metode Black Box,” sudo J. Tek. Inform., vol.

1,no.4,pp.171–177, 2022, doi: 10.56211/sudo.v1i4.160.

[17] C. Alderi Jeffta Soewoeh et al., “Analisa Kerentanan

Website FMIPA UNSRAT Berdasarkan Open Web

Application Security Project Top 10 Framework,”

JECSIT J. Eng. Comput. Sci. Inf. Technol., vol. 2, no.

2, pp. 2797–5045, 2022, [Online]. Available:http:

//jurnal.teknokrat.ac.id/index.php/JECSIT/article/view/

251.

[18] M. A. Mu’min, A. Fadlil, and I. Riadi, “Analisis

Keamanan Sistem Informasi Akademik Menggunakan

Open Web Application Security Project Framework,” J.

Media Inform. Budidarma, vol. 6, no. 3, p. 1468, 2022,

doi: 10.30865/mib.v6i3. 4099.

[19] H. Haikal Muhammad, A. Id Hadiana, and H. Ashaury,

“Pengamanan Aplikasi Web Dari Serangan Sql

Injection Dan Cross Site Scripting Menggunakan Web

Application Firewall,” JATI (Jurnal Mhs. Tek. Inform.,

vol.7,no.5,pp.3265–3273,2024,doi:10.36040/jati.v7i5.

7320.

[20] B. I. Dewangkara, K. S. Santi, V. A. Putri, and I. M. E.

Listartha, “Penerapan Analisis Kerentanan XSS dan

Rate Limiting pada Situs Web MTsN 3 Negara

Menggunakan OWASP ZAP,” J. Inform. Upgris,

vol.8,no.1,pp.92–97,2022,doi:10.26877/jiu.v8i1.102

66.

http://jurnal.teknokrat.ac.id/index.php/JECSIT/article/view/251
http://jurnal.teknokrat.ac.id/index.php/JECSIT/article/view/251
http://jurnal.teknokrat.ac.id/index.php/JECSIT/article/view/251

International Journal of Computer Applications (–)

Volume *– No.*, August 2024

12

[21] S. Suroto and A. Asman, “Ancaman Terhadap

Keamanan Informasi Oleh Serangan Cross-Site

Scripting (Xss) Dan Metode Pencegahannya,” Zo.

Komput.,vol.11,no.1,pp.1119,2021,[Online].Available

:http://www.hackers.com ?yid=

[22] I. M. Suartana, H. Endah Wahanani, and A. Noor

Sandy, “Sistem Pengaman Web Server Dengan

Application Firewall (WAF),” Scan, vol. X, no. 1, pp.

3–8, 2015.

[23] A. S. Hakim, T. A. Cahyanto, and H. Azizah, “Serangan

cross-site scripting (XSS) berdasarkan base metric

CVSS V.2,” J. Smart Teknol., vol. 2, no. 1, 2020.

[24] N. I. Aspriantama, “Pengujian Keamanan Sistem

Informasi Uajy Menggunakan Penetration Testing,”

2021,[Online].Available:http://ejournal.uajy.ac.id/id/e

print/24753

[25] Harry Dwi Sabdho and Ulfa Maria, “Analisis

Keamanan Jaringan Wireless Menggunakan Metode

Penetration Testing Pada Kantor PT. Mora Telematika

Indonesia Regional Palembang,” Semhavok, vol. 1, no.

1, pp. 15–24, 2018.

http://ejournal.uajy.ac.id/id/eprint/24753
http://ejournal.uajy.ac.id/id/eprint/24753

