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1. INTRODUCTION  

CSTR are widely employed in various industrial processes due to their efficiency in maintaining a 

continuous flow and uniform reaction conditions [1]. The CSTR is also plays a pivotal role in wastewater 

treatment due to its effective mixing, stability, and versatility [2]. However, CSTR system is non-linear and 

multivariable system, which make them prone to uncertainty. Additionally, like any complex system, CSTRs 

are susceptible to faults and disturbances that can compromise their performance and safety. To identify faults 

as they arise and determining the specific type and location of the fault, led us to fault diagnosis. It also includes 

uncovering one or more root causes of the issues, enabling corrective actions to be implemented [3]. As 

physical systems become increasingly complex, the need for effective fault diagnosis grows more critical, since 

it is vital for maintaining system safety and reliability [4]. A key element in fault diagnosis is the residual, 

defined as the difference between estimated measurements and actual outputs from the system. When the 

system is fault free, the residual should be zero or close to zero, and otherwise the fault is present [5], [6]. This 

underscores the importance of accurate state estimation. Fault diagnosis methods are often classified into three 

big ideas: hardware-based method, model-based method, and historical-based method [7]-[10]. 

Hardware-based methods rely on additional physical sensors and components to monitor the system's 

condition, usually is costly. History-based methods, also known as data-driven methods, use historical data and 

statistical analysis to identify patterns and anomalies indicative of faults, and it depend on the big data. The 

last term which is model-based methods utilize mathematical models of the system to detect and diagnose 
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This research proposes fault detection in a Continuous Stirred Tank Reactor 

(CSTR) system using an Extended Luenberger Observer (ELO). The ELO is 

chosen due to the non-linearity of the CSTR system. Accurate state estimation 

is critical for effective fault diagnosis; therefore, the performance of the ELO 

is initially tested using two indicators: robustness and sensitivity in estimating 

the level and concentration within the CSTR system. The sensitivity test 

yields promising results, with the ELO accurately estimating the actual 

system despite variations in input and initial conditions, and with a fast 

convergence time of 1 seconds. The robustness test also demonstrates positive 

outcomes, as the ELO continues to estimate the system accurately even in the 

presence of noise with standard deviation 2.5% of measurements. 

Furthermore, faults that can be related to sensor malfunctions or the 

disturbances in the CSTR process were successfully detected using the ELO. 

Performance analysis and fault detection in the CSTR system are presented 

through simulation. The contributions of this research include development 

of ELO for non-linear dynamics CSTR system and evidence of its 

effectiveness in detecting fault within the in CSTR system.  
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faults by comparing the actual system behavior with the expected behavior derived from the model. This 

method is straightforward, requiring at least a mathematical model of the system, which functions as an 

observer . Given the non-linearity of many systems, there has been a growing demand for designing non-linear 

observers that can effectively handle such complexities [5]. In this research, the model-based method is the one 

we are going to focus on, particularly the non-linear observer method. There are various types of observers 

which are the Luenberger Observer, High Gain Observer (HGO), Extended Kalman Filter (EKF), Sliding Mode 

Observer (SMO), and others. As outline in [11] criteria for selecting an observer, focusing on sensitivity to 

noise and robustness against model errors. The High Gain Observer (HGO) is commonly applied to nonlinear 

systems, however, selecting the observer gain can amplify disturbances [12], [13] which may obscure 

information about faults. On the other hand, the Luenberger Observer (LO) is suited for linear systems [14], 

[15], providing local convergence , while the Extended Kalman Filter (EKF) assumes Gaussian white noise for 

modeling errors [16]-[18]. 

Given that the CSTR system's mathematical model is nonlinear, as will be detailed shortly, we opted to 

utilize Extended Luenberger Observer (ELO). The ELO is a modified or extended versions of LO which is 

work based on the linear model. Numerous studies have shown the ELO's effectiveness in state estimation and 

fault diagnosis in the similar systems, such as, three tanks system [19], [20], quadruple-tank [21], heat-

exchanger [22], liquid-tanks [23], [24], and other. Its ability to accommodate nonlinearities in system models 

while maintaining robustness to disturbances makes the ELO particularly suitable for our application in the 

nonlinear CSTR system. Thus, the ELO stands out as a compelling choice for achieving accurate state 

estimation and effective fault diagnosis, particularly in CSTR system. Therefore, the main contributions of this 

research include the development of an ELO specifically designed for the nonlinear CSTR system, offering a 

novel approach to fault detection. Additionally, this research demonstrates the robustness and sensitivity of the 

ELO in estimating states accurately under varying conditions, achieving a quick convergence time, and 

effectively detecting faults even in the presence of noise.  

 

2. METHODS  

2.1. CSTR System Mathematical Model 

The CSTR system has two inputs: flow rate (𝐹1) with constant concentration (𝐶1)and flow rate (𝐹2)  with 

variable concentration (𝐶2). The output is the flow (𝐹0) which affects the level in the tank. Assuming that the 

fluid in the tank is perfectly stirred, the output fluid flow has the same concentration as the concentration in the 

tank as present in Fig. 1(a). The mathematical representation of the level and concentration in the CSTR are 

formulated as follows [25]-[27]. 

 𝑑ℎ(𝑡)

𝑑𝑡
=

1

𝐴
(𝐹1 + 𝐹2) − 𝐾𝑐√ℎ(𝑡) (1) 

 𝑑𝐶0(𝑡)

𝑑𝑡
=

𝐾𝑝

𝐴ℎ(𝑡)
((𝐶1(𝑡) − 𝐶0(𝑡)𝐹1(𝑡)) + (𝐶2(𝑡) − 𝐶0(𝑡)𝐹2(𝑡))) (2) 

where ℎ(𝑡) is the level of the tank, 𝐴 is the cross-section area, 𝐹𝑖𝑛 = 𝐹1 + 𝐹2  is the input flowrates. 𝐾𝑐 and 𝐾𝑝  

a mixer constant and gap constant, respectively. We can see the parameter of the CSTR system in Table 1. 

 

Table 1. Parameters of CSTR System 

Parameters 
Value, Symbol, and Unit 

Value Symbol  Unit 

Flow rate 1 0.6 F1 (m3/s) 

Flow rate 2 0.15 F2 (m3/s) 

Volume 1 V (m3) 

Cross section 1 A (m2) 

Mixer constant 0.2 Kc (SI) 

Gap constant 0.2 Kp (SI) 

Concentration 1 1 C1 (Kmol3/sec) 

Concentration 2 1.2 – 1.4 C2 (Kmol3/sec) 

 

The CSTR system is a coupled system, which refers to a system in which multiple variables or states are 

interconnected and influence one another [28], [29]. In CSTR, the state that interconnected are the level and 

concentration. Therefore, if the first input experiences a disturbance, the second output will also be directly 

affected by this disturbance, and vice versa. To eliminate this coupled influence, a decoupler is designed [30]. 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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The block diagram of the CSTR system with a decoupler is shown in Fig. 1(b). The decoupler designed to 

ensures that if there is a disturbance in the 𝐹𝑖𝑛 only affects the level output, while a disturbance in the 𝐶𝑖𝑛 only 

affects the concentration output. This separation simplifies the observer design, as it allows for independent 

state estimation for each output without interference from the other. 

 

(a) (b)

New System CSTR
Fin

F1

F2

h

h

F1

C1

F2

C2

Fo, Co

 
Fig. 1. (a) CSTR System (b) Diagram block of Decoupler 

 

Fig. 1(a) shows the physical of the CSTR system, while Fig. 1(b) show the block diagram of the decoupler 

for the CSTR system. The designed decoupler is mathematically represented by rewriting equations (1) and 

(2). Based on the obtained mathematical model of the system, we can proceed to design of ELO for state 

estimation.  

 𝑑ℎ(𝑡)

𝑑𝑡
=

1

𝐴
𝐹𝑖𝑛(𝑡) − 𝐾𝑐√ℎ(𝑡) (3) 

 
𝑑𝐶0(𝑡)

𝑑𝑡
=

𝐾𝑝

𝐴ℎ(𝑡)
(𝐶𝑖𝑛(𝑡)𝐹𝑖𝑛(𝑡) − 𝐶0(𝑡)𝐹𝑖𝑛(𝑡)) 

 

(4) 

 

where, 

 𝐹𝑖𝑛(𝑡) = 𝐹1(𝑡) + 𝐹2(𝑡) (5) 

 
𝐶𝑖𝑛(𝑡) =

𝐶1(𝑡)𝐹1(𝑡) + 𝐶2(𝑡)𝐹2(𝑡)

𝐹1(𝑡) + 𝐹2(𝑡)
 

 

(6) 

 
2.2. The design of Extended Luenberger Observer (ELO) 

The ELO is used for non-linear systems [31]-[33]. To better understand the ELO, we begin by modelling 

the CSTR system using equation (3) and (4). The non-linear CSTR system can be written as the following 

equation: 

 𝑥̇(𝑡) = 𝑓(𝑥, 𝑢, 𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) 
(7) 

where 𝑥 ∈ ℝ2 is the state system, 𝑢 ∈ ℝ2  is the input signal, and 𝑦 ∈ ℝ2  is the output of the system. The non-

linear function 𝑓(⋅) related to state 𝑥, input signal 𝑢, and time t, are described below: 

 

𝑓(𝑥, 𝑢, 𝑡) = [

1

𝐴
(𝑢1(𝑡) − 𝐾𝑐√𝑥1(𝑡))

𝐾𝑝

𝐴ℎ
(𝑢2(𝑡)𝑢1(𝑡) − 𝑥2(𝑡)𝑢1(𝑡))

] 

 

(8) 

and the matrix C is presented as follows:  

 𝐶 = [
1 0
0 1

] (9) 

The ELO algorithm is presented as follows: 
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 𝑥̇̂(𝑡) = 𝐴(𝑡)𝑥̂(𝑡) + 𝐾(𝑡)(𝑦(𝑡) − 𝐶𝑥̂(𝑡)) (10) 

where 𝑥̂ ∈ ℝ2 is the state estimation, the observer gain 𝐾(𝑡) varies with time to ensure precise state estimation 

and is design based on the linearized system. The choice of observer gain 𝐾(𝑡) plays a crucial role in achieving 

accurate and fast error reduction during the estimation process [34], [35]. The dynamics of the error 𝑒(𝑡) =

𝑥(𝑡) − 𝑥̂(𝑡), can be described as 𝑒̇(𝑡) = (𝐴(𝑡) − 𝐾(𝑡))𝑒(𝑡). The matrix must be chosen such that 

(𝐴(𝑡) − 𝐾(𝑡)𝐶) is stable. This linearized representation allows for the utilization of well-established 

techniques like pole placement to shape the observer's behavior to guide the selection of 𝐾(𝑡). By employing 

a first-order Taylor expansion and computing the Jacobian matrix [36], the time-varying matrix 𝐴(𝑡) is 

obtained by: 

 

𝐴(𝑡) =
𝜕𝑓(𝑥, 𝑢, 𝑡)

𝜕𝑥
|
𝑥=𝑥

= 

[
 
 
 
 −

𝐾𝑐

2√𝑥1(𝑡)
0

−
𝐾𝑝

𝐴𝑥1
2(𝑡)

(𝑢2(𝑡)𝑢1(𝑡) − 𝑥2(𝑡)𝑢1(𝑡))
𝐾𝑝

𝐴𝑥1(𝑡)]
 
 
 
 

 

(11) 

 

 

The design of ELO shown in Fig. 2. In Fig. 2, the gain observer 𝐾(𝑡) obtained using pole placement, 

allowing the determination of a suitable gain to achieve accurate state estimation. In the next section, we present 

the simulation results along with their analysis. The results illustrate the performance of the ELO in accurately 

estimating the states of the CSTR system under various operating conditions. Additionally, we discuss the 

impact measurements noise for estimation.  

 

 
Fig. 2. The block diagram of ELO [37] 

 

3. RESULTS AND DISCUSSION  

3.1. State estimation performance 

The simulation was conducted using a sampling time 𝑇𝑠 = 0.1 s and a simulation duration of 50 s. The 

input signal was set to a constant value 𝐹𝑖𝑛 = 0.75𝑚3/𝑠  and 𝐶𝑖𝑛 = 1.27𝑘𝑚𝑜𝑙3/𝑠. The simulation is shown in 

Fig. 3(a). 

Fig. 3(a) depicts the behavior of the CSTR system. The input signal, referred as 𝐹𝑖𝑛, is determined by 

adding 𝐹1 and 𝐹2 as described in equation (5), while 𝐶𝑖𝑛 is defined in equation (6). It is evident that upon 

applying the input (𝐹𝑖𝑛 = 0.75𝑚3/𝑠), the system output i.e., level stabilizes at ℎ = 0.39𝑚 within 5s. The 

concentration behaviour is different from level, while the input (𝐶𝑖𝑛 = 1.27𝑘𝑚𝑜𝑙3/𝑠), the output stabilizes 

within 50 seconds of simulation. Based on the design in (10), the state estimation with ELO is conducted using 

same sampling and simulation time. The observer gain chosen for this scenario is:  

 
𝐾∞ = [1.99 × 103 0.0281

0 3 × 103]
 

(12) 

The simulation is shown in Fig. 3(b). It seen that the estimation of level and concentration given by ELO 

accurately reflects the real state. This alignment between the estimated and actual level and concentration 

Observer gain 

+ 

𝑦(𝑡) 

measurements 

- 

𝑦̂(𝑡) 

estimated measurements 

𝑢(𝑡) 

Input 

CSTR system  

(Σ) 

ELO 

K(t)

) 
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signifies the accuracy of the estimation process with error of estimation consistently at zero. This further 

validates the precision of the ELO in accurately estimating the system's state 

 
  

(a) (b) 

Fig. 3. (a) Input signal (b) Output level and concentration of CSTR system 

 

3.2. Sensitivity analysis 

To conduct sensitivity analysis for the ELO, our next step involves modifying both the input signal to 

different operating points and adjusting the initial conditions for the ELO. This approach aims to evaluate the 

observer's sensitivity under varying operating conditions. By systematically testing the observer's performance 

against different operating points, we aim to further validate its effectiveness in maintaining accurate 

estimations. This analysis will help demonstrate the ELO's potential for real-time applications.  

 

3.2.1. State estimation performance with different input signal  

We initiate the validation process by modifying the input signal, as illustrated in. The input signal 

undergoes an alteration, transitioning from zero to 𝐹𝑖𝑛 = 0.75𝑚3/𝑠 at 10 second with the step shape. While 

the concentration input signal is change at 20 second from zero to 𝐶𝑖𝑛 = 1.27𝑘𝑚𝑜𝑙3/𝑠. The inputs signals are 

shown in Fig. 4(a). The operating point is change two times at  𝑡 = 0 and 𝑡 = 10𝑠.  

 

  

(a) (b) 

Fig. 4. (a). Inputs signal in CSTR system with different operating point (b) ELO state estimation system with 

different operating point in input signal 

 

This deliberate adjustment aims to assess the observer's response and adaptability to different operation 

point in the CSTR system. In Fig. 4(b) it is evident that the ELO maintains its ability to accurately estimate the 

true state and track changes in the input. In Fig. 4(a), the input is altered at 10 seconds in accordance with the 

input signal level, and 20 seconds in the input signal concentration. The convergence time is rapid, as the 

estimation quickly converges to the actual state from the initial conditions. Remarkably, these consistent results 

are achieved while maintaining the same initial conditions for both the system and the ELO. This simulation 

reflects real implementation scenarios where the input signal may not always be constant due to variability. 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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The subsequent analysis will offer valuable insights into the ELO's capability to accurately estimate system 

dynamics when the initial conditions are changed. Understanding the impact of initial condition variations on 

the observer's performance is crucial for assessing its sensitivity [38], [39]. We aim to determine whether the 

state estimation converges to the actual state even when starting from different initial conditions.  

 

3.2.2.   State estimation performance with different initial conditions 

To further validate the sensitivity of the ELO, we introduce a change in the initial conditions. In this 

validation, the initial condition for the system is set to 0, while the ELO's initial condition is set to 1. The results 

of the state estimation under these adjusted initial conditions are presented in Fig. 5. 

 

 
Fig. 5. ELO state estimation of with different initial condition in CSTR system 

 

According to Fig. 5, ELO exhibits no issues related to initial conditions when estimating the level and 

concentration in the CSTR system. Despite the introduction of different initial conditions, the estimation 

consistently yields favorable results. It seen in Fig. 5, both the level and concentration estimates converge to 

the actual state within 1s, with a total simulation time of 50 s, indicating fast convergence. To further assess 

the robustness of our proposed ELO, the next phase of simulation focuses on evaluating its performance with 

respect to measurement noise.  

 

3.3. Robustness analysis with respect to measurement noise 

In this subsection, the validation of robustness is realized by introducing noise into the measurements. 

We describe the noise as 𝑣~𝒩(0, 𝑅), where R is presented as follows: 

 𝑅 = [9.4 × 10−4 0
0 9.4 × 10−4] (13) 

The choice of noise is set at a standard deviation of 2.5% of the measurement to ensure that the noise is 

small enough to avoid overwhelming the system while still being realistic for practical scenarios. Fig. 6 displays 

the simulation result of state estimation with noisy measurements. 

 

 
Fig. 6. The ELO estimation with noisy measurements 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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Fig. 6 present how resistant ELO is against noisy measurement. The estimation of the state continues to 

follow the trajectories of the true state even in the presence of noise. These results indicate that the estimation 

performs well under these conditions. While noisy measurements introduce challenges, ELO does not 

encounter difficulties in estimation on both level and concentration in CSTR system. 

 

3.4. Fault Detection with ELO in CSTR System  

The main objective of this research is to detect fault in CSTR. The signal fault is added to flow input 𝐹𝑖𝑛. 

Therefore, the fault is set as 𝑓(𝑡) = 5𝑚3/𝑠 starting at 10 s to 20 s with ramp shape as shown in Fig. 7(a). 

 

  

(a) (b) 

Fig. 7. (a) Fault signal (b) Residuals 

 

The detect fault, the residual 𝑟(𝑡) = 𝑦(𝑡) − 𝐶𝑥̂(𝑡) is used as fault indicator [40]. The robustness to noise 

is a critical aspect of this analysis. It is important to consider the noise levels tested in relation to real-world 

scenarios. The chosen noise levels, with a standard deviation of 2.5% of the measurement, are intended to 

mimic realistic conditions. In many CSTR systems, typical measurement noise can vary, but levels around 1% 

to 5% are common due to factors like sensor accuracy and environmental conditions. Therefore, the selected 

noise levels in this study are representative of typical measurement noise, striking a balance between being 

realistic and challenging enough to assess the performance of the ELO.The result is shown in Fig. 7(b), where 

it can be seen that the fault was successfully detected in the first residual, corresponding to the level, as expected 

since the fault was introduced only in the inlet flow rate (Fin). The fault signal in the first residual is visualized 

as a ramp shape, consistent with the scenario. Based on these results, we can conclude that the ELO is effective 

for both state estimation and fault diagnosis in the CSTR system. Although the ELO shows robustness at the 

tested noise level (2.5% of the measurement), higher noise levels may significantly impact its performance, 

indicating a need for further research.  

The results of this study can have significant implications for real-world CSTR systems and similar 

processes. Implementing the ELO in industrial settings could provide several benefits, including the ELO can 

enhance the accuracy of state estimations (e.g., level and concentration) in real time, enabling better process 

control and optimization. The observer's ability to estimate system states can also aid in early fault detection, 

allowing for maintenance and reducing downtime. The robustness demonstrated against measurement noise 

ensures that the observer can function effectively in the often-noisy environments of industrial processes. 

 

4. CONCLUSION 

In this study, ELO has been designed for state estimation and fault detection in CSTR systems. This 

research represents the first application of the ELO specifically for state estimation and fault detection in CSTR 

systems. Fault detection relies on accurate and robust system estimation against disturbances. Therefore, an 

evaluation of ELO's performance in level and concentration estimation is conducted first. Simulation and 

analysis results demonstrate ELO's strong performance in estimation, as indicated by sensitivity and robustness 

to measurements noise. ELO exhibits high sensitivity, providing accurate estimation even with varying inputs 

and converging to the real system despite differences in initial conditions. Moreover, ELO shows robustness 

to measurement noise. Finally, fault detection using ELO is successful, accurately identifying simulated fault 

in the CSTR system. This success underscores ELO's potential as an effective tool for fault detection and 

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
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anticipation in multivariable non-linear systems CSTR, particularly in industrial applications requiring precise 

monitoring.  
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