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1. INTRODUCTION  

Forests are an important aspect in mitigating the impacts of climate change because they act as carbon 

sinks, absorbing and storing carbon dioxide from the atmosphere [1], [2], [3]. Monitoring, reporting, and 

policy-making efforts to lower greenhouse gas emissions depend on accurate assessments of carbon stocks [4], 

[5]. The manual tree measurements used in traditional carbon stock calculation methods are expensive, time-

consuming, and have a restricted geographic coverage [5], [6]. According to recent estimates, between 1988 

and 2014, Russian woods stored about 354 teragrams (Tg) of carbon annually. This number, which is 

noticeably 47% greater than what was previously recorded in national inventories, shows how much carbon 

these forests can store because of their higher biomass density and larger forest area.  

The combination of Unmanned Aerial Vehicles (UAVs) and Google Earth Engine (GEE) has emerged as 

a promising remote sensing technology advancement that could help overcome the drawbacks of traditional 

approaches. A supplementary dataset for tracking vegetation dynamics is made possible by GEE's broad, 

global-scale coverage and UAVs' high-resolution, localized observations [7], [8]. Higher spatial resolution 

carbon stock estimations can be obtained by researchers by utilizing both approaches, particularly in remote or 

intricate forest environments [9], [10]. For instance, merging GEE and UAV data enables the integration of 
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large-scale geographical patterns with fine-grained vegetation data, which is crucial for precise and scalable 

carbon monitoring [11], [12], [13]. Studies have demonstrated that GEE and UAVs have different color and 

texture extraction characteristics. GEE often uses conventional methods to isolate and transform raw data into 

a set of measurable attributes that can be used for further analysis, a process known as feature extraction 

techniques that may not be able to capture the same level of detail in texture analysis, where UAV-based uses 

advanced algorithms to improve classification accuracy [14], [15]. Therefore, combining the different 

properties of these two data will be a contribution that can support similar research in the future.  

Convolutional Neural Networks (CNN), in particular, are deep learning models that have proven to be 

efficient tools for evaluating data from GEE and UAVs. CNNs excel at extracting hierarchical spatial 

properties, which describe CNNs' capacity to identify patterns at various granularities, including edges, forms, 

and intricate structures in pictures and makes them ideal for tasks involving images, such as classification and 

segmentation [16]. Previous research has demonstrated the ability of CNNs in biomass estimation, with a good 

R2 value of 0.943 [8].  

CNN models outperformed conventional machine learning techniques in previous studies on individual 

tree biomass estimation in natural secondary forests using WorldView-3 images and aerial laser scanning 

(ALS) data, with RMSE values ranging from 7.47 kg to 36.83 kg and  R2 values between 0.68 and 0.85 [17]. 

Precision forestry and carbon management techniques were advanced by the combination of ALS with high-

resolution photography, which increased classification accuracy and gave comprehensive spatial AGB 

distribution. The integration of spectral and texture information, the requirement for sizable labelled datasets, 

and the dangers of overfitting persist despite CNNs' ability to detect spatial patterns [16].. In order to improve 

CNN's scalability and generalization across various forest types, settings, and regions in carbon stock 

estimation, these problems must be resolved. 

For non-spatial data analysis, Multilayer Perceptrons (MLP) have been employed extensively in addition 

to CNNs. Although MLP works well with numerical and categorical data, it is not as useful for tasks like carbon 

stock estimation because it cannot capture the spatial hierarchy of image data. Nonetheless, a hybrid strategy 

that combines MLPs for examining supplementary spectral or textural characteristics with CNNs for extracting 

spatial features may have a great deal of promise for increasing prediction accuracy [18], [19]. 

In the calculation of carbon stocks based on remote sensing, feature extraction is essential. Green 

Chromatic Coordinates (GCC), Color Vegetation Index (CVI), and Excess Green Index (ExG) are a few 

examples of vegetation indicators that offer useful spectral data about biomass and vegetation health. In a 

similar vein, texture attributes such as homogeneity, contrast, and entropy provide information on structural 

complexity and spatial patterns, both of which are connected to carbon storage capability [20], [21]. Although 

previous studies have demonstrated that each of these traits can increase prediction accuracy on its own, little 

is known about how to integrate and use them with CNNs [22], [23]. 

This study fills a major gap in current approaches by evaluating the integration of color and texture 

information with CNNs for carbon stock classification. It does this by investigating the best way to combine 

spectral and spatial characteristics to increase classification accuracy. In contrast to earlier research that 

concentrated on texture features like homogeneity, contrast, and entropy or spectral indices like ExG, CVI, and 

GCC independently, this study employs CNN architecture to capture the structural complexity and spectral 

richness of vegetation by integrating these features into a single, unique framework. Furthermore, this study 

aims to determine the most effective method for classifying carbon stocks by methodically comparing the 

performance of several feature combinations, including color-based, texture-based, and mixed features. This 

research is a new addition to the field of remote sensing-based carbon stock estimation, as it contributes to the 

development of an integrated approach that combines spectral and textural features for carbon stock 

classification, identifies the most effective classification method by comparing feature combinations, and 

proposes a scalable framework that combines UAV and GEE data for applications in various forest ecosystems. 

As far as the authors are concerned, in order to classify carbon stocks, the majority of previous research either 

only looks at textural features or spectral indices, without merging the two in a cohesive manner.  By connecting 

local high-resolution observations with global-scale data, the complementing datasets from UAVs and GEE 

enhance this research and provide a precise and scalable approach that can be tailored to different forest 

ecosystems. In addition to increasing the precision of carbon stock monitoring, this novel framework is 

anticipated to be a significant step in the development of dependable and scalable approaches to tackle climate 

change issues and guide conservation policies. 

 

2. METHODS  

This section describes the methodical process used in this study to create and assess a machine learning-

based framework for classifying carbon stocks. Data collection, preprocessing, feature extraction, and 
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convolutional neural network (CNN) classifier implementation are all included in the techniques. The work 

intends to solve issues like data imbalance and model overfitting while overcoming the drawbacks of 

conventional carbon stock estimating techniques by utilizing remote sensing data and combining spectral and 

textural properties. The thorough approach guarantees the research's reproducibility and lays the groundwork 

for future developments in this field. 

 

2.1. Proposed Method  

The research method that will be carried out will go through several stages as can be seen in Fig. 1. Data 

gathering, which includes field carbon stock assessments, drone data, and Google Earth Engine (GEE) data, is 

the first step in the technique. To guarantee that the dataset labelling is accurate and that the geographic 

properties of the GEE and UAV data are aligned, field data is utilized. Following data gathering, a data labeling 

procedure is carried out to give the photos carbon stock values derived from field measurements. Data cleaning 

is the next step, which eliminates noise and irregularities that could impair model performance. 

 

 
Fig. 1. Research methodology flowchart 

 

In order to rectify class imbalances and guarantee that minority classes—such as low and high carbon 

stocks—are fairly represented, the cleaned dataset is oversampled. In order to standardize the feature values 

and provide consistent input for machine learning models, a normalization phase comes next. 

Six essential features—the Excess Green Index (ExG), Color Vegetation Index (CVI), Green Chromatic 

Coordinates (GCC), Homogeneity (HOM), Contrast (CON), and Entropy—are extracted from the photos 

during the feature extraction phase. In order to obtain spectral and geographic data about vegetation properties 

and carbon stock levels, these features are extracted. 

The dataset is divided into 80% for training and 20% for validation following feature extraction. A CNN 

model processes the training data for feature learning, and scalar extraction is used to separate and examine the 

contributions of individual features or feature combinations. Both scalar characteristics and image data can be 

integrated into the CNN framework using this multi-input method. 

In order to choose the best features for precise carbon stock categorization, the trained CNN model is 

lastly assessed and contrasted across several feature extraction scenarios. The process makes use of both UAV 

and GEE data to offer a reliable and scalable carbon stock assessment solution. 
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2.2. Dataset Preparation  

In addition to collecting image data using GEE and drones, field carbon stock data was obtained directly 

from Telkom University in Bandung, Indonesia. The main guideline for data collection, the Indonesian 

National Standard (SNI) for Carbon Stock Measurement and Estimation, formed the basis for the entire data 

collection mechanism. Telkom University provided six plots in total. These plots were obtained by dividing 

the 20m×20m dimension into four subplots: Sub-plot A (1m×1m). Sub-plots B, C and D were 5m×5m, 

10m×10m and 20m×20m respectively as seen in Fig 2. Each of these sub-plots contained the samples required 

for carbon accounting as stated in SNI [24]. 

 

 
Fig. 2. SNI carbon measurement plot 

 

The ZxHxPx naming system was used to identify the seedling and understorey biomass from each plot, 

which was then measured for wet weight (±300 grams) using pre-made sample containers. The samples were 

then taken to the lab so that the carbon content could be measured. During field data collection, coordinates 

were taken at each plot center in order to match plot conditions with Google Earth Engine satellite photos. A 

20 MP Hasselblad L1D-20c camera with Hasselblad Natural Color Solution (HNCS) technology for spectrally 

correct imagery was mounted on a DJI Mavic 2 Pro drone to take aerial photos. To match ground plot sizes, 

plot photos from Google Earth Engine and drones were cropped and edited. Table 1 shows the file naming 

format rules such as source (1 means data from drone & 2 means data sourced from GEE), plot name, and 

carbon count. 

 

Table 1. Sample of dataset 
Dataset Dataset Label Carbon Ammount (kg) 

Drone 

 
1-Z2H1P1-8365 

8.365 

GEE 

 
2-Z4H1P1-2826 

2.826 kg 

 

These data were then divided into classes: high, medium and low following the recommendations 

provided by the Ministry of National Development Planning/National Development Planning Agency of the 

Republic of Indonesia (BAPPENAS) [25].  
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The dataset was then staged and classified into three carbon classes: high, medium and low [25]. This 

classification was done at various plot sizes, such as 1×1 m, 5×5 m, 10×10 m, and 20×20 m, to ensure that the 

analysis was organized at different levels of granularity.  

In Sub-Plot A (1×1 m), the high category was defined by a carbon weight greater than 54 kg (Drone) or 

greater than 42 kg (GEE), while the stationary category was found in the weight range of 31-54 kg (Drone) 

and 20-42 kg (GEE). The weight range for this category was below or equal to 31 kg (Drone) and 20 kg (GEE). 

For Sub-Plot B (5×5 m), carbon in the high category had values close to 1086 kg (Drone) or 1138 kg 

(GEE). The medium category is 503-1086 kg (drone) and 594-1138 kg (GEE), while the low category is below 

or equal to 503 kg (drone) and 594 kg (GEE).  

In Sub-Plot C (1×10 m), the carbon weight in the high category was close to 4487 kg (Drone) or 4480 kg 

(GEE). The ranges 2467-4487 kg (Drone) and 2530-4480 kg (GEE) are the two categories. Carbon values in 

the low category are below or equal to 2467 kg (Drone) and 2530 kg (GEE).  

Finally, as can be seen in Table 2, Sub-Plot D (20×20 m) used a combination of Drone and GEE data, 

with high categories for carbon weights greater than 18249 kg, medium categories for carbon values between 

10339 and 18249 kg, and low categories less than or equal to 10339 kg. This classification is designed to 

facilitate carbon stock analysis based on data source and measurement scale, which can help decision-making 

in forest development and climate change mitigation. 

 

Table 2. Dataset classification table 
Sub-Plot Low Class Medium Class High Class 

A (1×1m) ≤ 31 Kg (Drone)  

≤ 20 Kg (GEE) 

31 – 54 Kg (Drone)  

20 – 42 Kg (GEE) 

> 54 Kg (Drone)  

> 42 Kg (GEE) 

B (5×5m) ≤ 503 Kg (Drone)  

≤ 594 Kg (GEE) 

503 – 1086 Kg (Drone)  

594 – 1138 Kg (GEE) 

> 1086 Kg (Drone)  

> 1138 Kg (GEE) 

C (10×10m) ≤ 2467 Kg (Drone)  

≤ 2530 Kg (GEE) 

2467 – 4487 Kg (Drone)  

2530 – 4480 Kg (GEE) 

> 4487 Kg (Drone)  

> 4480 Kg (GEE) 

D (20×20m) ≤ 10339 Kg (Drone & GEE) 10339 – 18249 Kg (Drone & GEE) > 18249 Kg (Drone & GEE) 

 

With 1,105 samples in the Medium class, 665 in the High class, and 550 in the Low class, the initial class 

distribution in this study was unbalanced. In order to solve this, synthetic examples for the minority classes 

were created by applying SMOTE to the training data, particularly for the Contrast feature. With 884 samples 

in each class and a training data shape of (2652.1) for features and (2652.3) for labels, the class distribution 

was balanced when SMOTE was applied. By guaranteeing that the model is exposed to every class equally, 

this balancing enhances the model's capacity to generalize and produce precise predictions, especially for the 

minority classes [26], [27]. 

Following initial classification, key spatial and spectral properties were extracted from the dataset images 

by processing. Various feature extraction techniques were applied to each image in order to turn visual data 

into scalar representations. The Green Chromatic Coordinate (GCC), Color Vegetation Index (CVI), and 

Excess Green Index (ExG) were important metrics. Furthermore, vegetation density, texture uniformity, and 

chromatic details were represented using texture-based metrics as Homogeneity (HOM), Contrast (CON), and 

Entropy. In order to prepare the dataset for input into the machine learning model, the extracted features were 

saved as numerical scalars for every image. The feature extraction procedure is demonstrated in Fig. 3, which 

shows samples of the original drone image together with the ExG, CVI, and GCC that correspond to it [28], 

[29]. 

 

 
Fig. 3. Example dataset with color extraction result 

 

To guarantee consistency among features, the scalar data was normalized before being fed into the 

Convolutional Neural Network (CNN) [30], [29], [28]. After that, the dataset was divided into 80% for training, 
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20%. This method guarantees that a significant amount of the data is used for model training while keeping 

enough data for validation to reliably evaluate the model's performance. According to the study, this split ratio 

aids in producing accurate forecasts and extending the model to new data, both of which are essential for 

evaluating carbon stocks in diverse settings [31]. 

 

2.3. Machine Learning Classifier 

In order to categorize carbon stock levels based on both image data and scalar characteristics extracted 

from various indices and texture metrics, this study uses a multi-input Convolutional Neural Network (CNN) 

architecture in conjunction with a Multi-Layer Perceptron (MLP) [43], [44]. The MLP branch deals with scalar 

features that are taken from the dataset, whereas the CNN branch processes the image data (RGB images of 

size 224×224). For precise carbon stock categorization, this approach enables the model to efficiently 

incorporate both spatial and spectral information [45]. 

Three convolutional layers with 32, 64, and 128 filters make up the CNN branch. Its 3×3 kernel size 

allows it to effectively extract spatial data while lowering computing costs. A 2×2 max-pooling layer comes 

after each layer to reduce spatial dimensions, prevent overfitting, and preserve important features. ReLU 

activation is used to improve non-linearity and deal with vanishing gradient problems. Generalization is 

ensured by randomly deactivating neurons during training, with a dropout rate of 0.25 following each layer. 

To enable precise carbon stock categorization, the resultant feature maps are compressed into a one-

dimensional vector for integration with the MLP branch. In investigations such as the identification of coconut 

palm disease, similar structures and dropout procedures have demonstrated better classification accuracy [46], 

[47]. 

Six features—Excess Green Index (ExG), Color Vegetation Index (CVI), Green Chromatic Coordinate 

(GCC), Homogeneity (HOM), Contrast (CON), and Entropy (ENT)—are processed by the MLP branch. These 

features were chosen because they are good at capturing the spectral and textural characteristics of vegetation. 

While HOM, Contrast, and ENT offer texture-based metrics on structural regularity, intensity variation, and 

randomness, ExG, CVI, and GCC use color bands to show the density and health of the vegetation. ReLU 

activation is used for non-linearity in two dense layers of 64 and 32 neurons, while batch normalization 

stabilizes and speeds up training. For accurate carbon stock categorization, a 0.5 dropout rate ensures robust 

integration of spectral and textural data by preventing overfitting [48], [49], [50]. 

A dense layer of 128 neurons comes after the fusion layer, which is made up of the concatenation of the 

CNN and MLP branch outputs. Lastly, the model uses a softmax activation function to generate a three-class 

classification output ("Low," "Medium," and "High"). The categorical cross-entropy loss function is minimized 

using the Adam optimizer, and overfitting is avoided by applying early halting with a 20-epoch patience. Five-

fold cross-validation is used in the training phase to ensure a reliable model evaluation [43], [51]. 

This study creates seven unique models to examine the effects of specific variables and their 

combinations: Excess Green Index (ExG) is the scalar feature used by M1_exg, Color Vegetation Index (CVI) 

by M2_cvi, Green Chromatic Coordinate (GCC) by M3_gcc, Homogeneity (HOM) by M4_hom, Contrast 

(CON) by M5_con, Entropy (ENT) by M6_ent, and all six features combined by M7_all. Every model 

combines the RGB image data with the scalar features mentioned above. To ensure alignment with the selected 

feature for each scenario, the dataset is sliced into relevant subsets to prepare the scalar features [52]. 

Data augmentation for underrepresented classes ("Low" and "High") is done throughout the training 

process by applying transformations such rotation, shifting, zooming, and flipping. This improves the 

robustness of the model and guarantees a balanced dataset [46]. To evaluate each model's performance, 

evaluation measures such as accuracy, precision, recall, and F1-score are computed. According to the results, 

each feature makes a distinct contribution to classification accuracy; texture-based features, such M4_hom, 

frequently surpass individual color indices. Though there is still opportunity for development in feature 

integration techniques, the combined feature model (M7_all) offers insights into how features interact [43], 

[50].  

 

2.4. Model Evaluation  

Any classification activity must include model evaluation since it offers information on the effectiveness 

and dependability of the models being employed. The accuracy, recall, precision, F1-score, and confusion 

matrix are among the measures used to evaluate the performance of classification models. 

The frequency with which a model accurately forecasts the result is known as accuracy [53], [54]. It is 

computed by taking the total number of guesses and dividing it by the number of right forecasts. Overall 

accuracy (OA) in image classification is the percentage of pixels that are properly identified. Although accuracy 

is simple to comprehend and offers a broad perspective on performance, it can be deceptive when datasets are 
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unbalanced. In these situations, a model may achieve high accuracy by accurately categorizing the minority 

classes but only predicting the majority class [53], [55]. 

Recall, sometimes referred to as sensitivity, gauges how well a model can locate all pertinent examples. 

It determines the percentage of real positive examples that the model accurately detects. Recall is calculated 

as: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

where TP stands for true positives (positive cases that were accurately predicted to be positive) and FN 

for false negatives (positive cases that were mistakenly projected to be negative) [53], [56]. When it comes to 

reducing false negatives, recall is very vital. The goal is to prevent missing any positive examples since, for 

instance, in medical diagnostics, it is crucial to identify all patients with a certain ailment, even if some healthy 

individuals are misdiagnosed. 

Precision quantifies how well optimistic predictions work. It determines the percentage of expected 

positive cases that turn out to be actual positive. 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

Above is the precision formula, where FP stands for false positives (negative cases that were mistakenly 

projected as positive) and TP is the number of true positives. In order to minimize false positives, precision is 

vital  [53]. When determining whether an email is spam, for example, it is more crucial to prevent incorrectly 

labelling a crucial communication as spam than to identify every spam email. 

The F1-score offers a balance between precision and recall by taking the harmonic mean of the two 

measures. The following is the formula:   

 F1 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

When working with imbalanced datasets and minimizing both false positives and false negatives, the F1-

score is especially helpful [56]. A higher F1-score indicates that the model is performing better at striking a 

balance between recall and precision. The macro F1-score, which gives an overall evaluation of the model's 

performance in multi-class classification scenarios, is the average F1-score for all classes.  

A table that shows a classification model's performance is called a confusion matrix. The counts of true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) are displayed, along with a 

thorough analysis of the forecasts [57]. By highlighting the model's mistakes, the confusion matrix helps to 

clarify its advantages and disadvantages. In conclusion, accuracy gives a general indication of correctness, but 

it might be deceptive when dealing with unbalanced data. Finding all pertinent examples is the focus of recall, 

whereas the accuracy of positive predictions is the focus of precision [58]. A confusion matrix offers a thorough 

analysis of classification performance, and the F1-score effectively handles imbalanced classes by striking a 

compromise between precision and recall. Any classification model will be evaluated more thoroughly and 

robustly if these measures are used together [59], [60]. 

To improve the robustness of the model evaluation, a five-fold cross-validation procedure was used. This 

method helped create a reliable and scalable carbon stock categorization algorithm by converting visual 

information into scalar data [32], [33], [34], [35].  A five-fold cross-validation strategy was chosen to improve 

the model evaluation's resilience. The usefulness of five-fold cross-validation in improving model evaluation 

is supported by research. For example, a study on machine learning models for nitrate load prediction showed 

that k-fold cross-validation lowers bias in model evaluation and yields accurate performance estimates [36]. 

Compared to alternative validation techniques like holdout validation, five-fold cross-validation is a good fit 

for the size of the dataset used in this study and lessens the impact of data splits on performance measurements. 

This method ultimately helped create a reliable and scalable carbon stock categorization algorithm by 

converting visual information into scalar data [37]. This procedure highlights how crucial feature extraction 

and preprocessing are to converting unprocessed image data into useful scalar representations for machine 

learning [38]. Accurate categorization and analysis of carbon stocks were made possible by the extensive 

dataset that the generated scalar features gave CNN for training [39], [40]. This procedure highlights how 

crucial feature extraction and preprocessing are to converting unprocessed image data into useful scalar 

representations for machine learning. Accurate categorization and analysis of carbon stocks were made 

possible by the extensive dataset that the generated scalar features gave CNN for training [41], [38], [42]. 
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3. RESULTS AND DISCUSSION  

The research findings are presented in this section along with a detailed analysis of the outcomes of the 

models that were put into practice. The performance of several feature extraction techniques, such as ExG, 

CVI, and GCC, as well as texture-based features including homogeneity, contrast, and entropy, constitute the 

basis of the evaluation. The outcomes of distinct feature sets and their combinations are examined in order to 

pinpoint important trends, the method's advantages, and its drawbacks. In order to offer suggestions for future 

advancements, possible issues such as overfitting and class imbalance are also examined. To solve the flaws 

found and improve the model's performance, suggestions are made, one of which is the application of transfer 

learning. 

 

3.1. Baseline Model 

Table 3 displays the findings from the examination of the baseline model. For each class—Low, Medium, 

and High—precision, recall, F1-score, and support measures are used to assess the model. To give a general 

picture of the model's performance, the accuracy, macro average, and weighted average numbers are also 

displayed. 

 

Table 3. Classification results for baseline model 
 Precision Recall F1 Score Support 

Low 0.5400 0.7636 0.6279 110 

Medium 0.8547 0.6063 0.7087 221 

High 0.6835 0.7744 0.7255 133 

Accuracy   0.6918 464 

Macro Avg 0.6927 0.7148 0.6874 464 

Weighted Avg 0.7292 0.6924 0.7029 464 

 

The table indicates that the baseline model's performance differs for each class. With an F1-score of 0.72, 

the High class has the highest precision, while the Low class has the lowest, at 0.54. The model is more adept 

at identifying data from the High class than the other classes, as seen by the High class's greatest recall of 0.77. 

The baseline model's overall accuracy value is 0.69. 

With precision, recall, and F1-score of 0.69, 0.71, and 0.69, respectively, macro averaging reveals that 

the model's performance is comparatively balanced across the classes. With an accuracy of 0.73 and an F1-

score of 0.70, the weighted average, on the other hand, produces somewhat better findings, indicating the larger 

contribution of the class with more samples (Medium). These findings demonstrate that while the baseline 

model does a respectable job, it may still be improved, particularly in terms of recall for the Medium class and 

precision for the Low class. 

 

3.2. Classification Results for Color Features 

Using the three main vegetation indices—Excess Green Index (ExG), Color Vegetation Index (CVI), and 

Green Chromatic Coordinates (GCC)—this section investigates how well color-based characteristics work in 

carbon stock classification. The accuracy, precision, recall, and F1-score of the models trained on these features 

are summarized in Table 4 and the confusion matrix for each model is shown in Fig. 4. 

 

Table 4. Classification results for Color Features 
 Accuracy Precision Recall F1 Score 

M1_exg 0.7110 0.7190 0.7110 0.6930 

M2_cvi 0.6940 0.7090 0.6940 0.6980 

M3_gcc 0.6590 0.7270 0.6590 0.6200 

 

Table 4 displays the classification results for models trained on the three primary vegetation indices: 

Green Chromatic Coordinate (GCC), Color Vegetation Index (CVI), and Excess Green Index (ExG). Fig. 4 

displays the confusion matrices. The ExG-based model had the best overall accuracy of 0.7110 and the highest 

weighted average F1-score of 0.6930 among these indices. Strong classification performance is shown in the 

confusion matrix for ExG (Fig. 4, top left), especially in the "Medium" and "High" carbon stock classes. This 

better performance is explained by ExG's capacity to highlight green spectral components, which are highly 

associated with vegetative density and health and hence useful for differentiating carbon stock levels. 

With an accuracy of 0.6940 and an F1-score of 0.6980, the CVI-based model again demonstrated 

encouraging performance, notably outperforming the "Low" carbon stock class (Fig. 4, top right). Its inability 

to distinguish between the "Medium" and "High" classes, however, led to somewhat worse performance than 
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ExG. The CVI's sensitivity to both red and green bands may be the cause of this limitation, as overlapping 

spectral responses impair the CVI's capacity to discriminate in these categories. 

Out of the three indices, the GCC-based model showed the lowest F1-score (0.6200) and overall accuracy 

(0.659). Even though it performed worse, GCC had the highest precision of 0.7270 (Fig. 4, bottom), suggesting 

that it could be helpful in situations that need accurate classifications. GCC's weak sensitivity to changes in 

vegetation density, which are crucial for differentiating carbon stock levels, may be the cause of the decreased 

accuracy. These results imply that CVI and GCC might be complementing features, although ExG is the most 

successful independent color-based feature. To improve overall classification accuracy and resilience, future 

studies should investigate integrating these indices with additional characteristics or applying sophisticated 

fusion algorithms. 

 

 
Fig. 4. Color features confusion matrix 

 

3.3. Classification Results for Texture Features 

The classification performance of scalar features, such as homogeneity, contrast, and entropy, was 

assessed using confusion matrices, classification reports, and accuracy measures. Understanding the function 

of these textural characteristics in distinguishing between carbon stock classes and determining their 

advantages and disadvantages in classification tasks were the main goals of this investigation. Table 5 provides 

specifics on the evaluation's findings. 

 

Table 5. Classification results for Texture Features 
 Accuracy Precision Recall F1 Score 

M4_hom 0.7070 0.7110 0.7070 0.6970 

M5_con 0.6120 0.6910 0.6120 0.5480 

M6_ent 0.6880 0.7210 0.6880 0.6710 

 

The confusion matrices for models M4_hom, M5_con, and M6_ent are displayed in Fig. 5 to help further 

comprehend these findings. In the confusion matrix for M4_hom (Fig. 5, top left), every category shows 

consistent classification. In contrast to the other two models, the high carbon stock group benefits the most 

from a significant reduction in misclassification. It is implied that homogeneity as a characteristic can 

effectively represent the structural uniformity in the dataset. 

Nonetheless, the confusion matrix for M5_con (Fig. 5, top right) shows a considerable level of 

misclassification, especially in the high carbon stock group, where many samples were mistakenly categorized 

as medium carbons. In particular, for higher levels, this result suggests that contrasts are not able to distinguish 

between various types of carbon stores. 
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Lastly, the confusion matrix of the entropy-based model (bottom, Fig. 5) performs admirably. Despite its 

challenges in correctly identifying low and high carbon stock classes, it has a respectable balance between 

groupings. Notwithstanding these drawbacks, entropy is still a valuable characteristic since it offers crucial 

details regarding structural complexity and randomness. 

The study's results demonstrate that homogeneity is the most effective texture-based characteristic for 

carbon stock classification, as evidenced by a balanced confusion matrix and improved performance metrics. 

Entropy, which might be a complementary attribute, is more suited than contrast because of its restricted ability 

to distinguish between categories. 

 

 
Fig. 5. Texture features confusion matrix 

 

3.4. Classification Results for Combined Features 

Utilizing the complementing advantages of both feature types, the combination feature model (M7_all) 

was created to increase classification accuracy for carbon stock categories by combining texture-based and 

color-based features. With an F1-score of 0.5480, accuracy of 0.6120, precision of 0.6910, and recall of 0.6120, 

M7_all's evaluation metrics are compiled in Table 6. The best individual models, including M4_hom 

(homogeneity) and M6_ent (entropy), outperformed the composite feature model, even though it contained a 

variety of information. 

 

Table 6. Classification results for Texture Features 
 Accuracy Precision Recall F1 Score 

M7_all 0.6120 0.6910 0.6120 0.5480 

 

The confusion matrix for M7_all, which displays the comprehensive classification performance across 

the three carbon stock categories, is shown in Fig. 6. Based on these results, it can be seen that combining 

texture and color information into a single representation can be difficult. The model's strong categorization of 

the “Medium” carbon stock category is shown in the confusion matrix (Fig. 6); however, this matrix also shows 

striking misclassification in the “Low” and “High” categories, with many “High” samples incorrectly 

categorized as “Medium”. This suggests that performance for more distinct categories may degrade as a result 

of the combination of texture and color data weakening the distinctive strength of certain attributes [61].  

The constraints of the combined model may be due to redundant and overlapping feature distributions, 

which degrade the ability of texture and color features to discriminate. Although the class imbalance has been 

addressed with SMOTE, performance across all classes may be hampered by biases still present in the dataset. 

In addition, it is possible that complex correlations between spectral and spatial data are missed by combining 
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features directly. To effectively utilize the complementary capabilities of these features, future research should 

investigate sophisticated merging strategies such as attention processes or deep learning-based integration. 

It is important to note that the results of this study are limited by the contextual and geographical 

limitations of the dataset - this dataset was only collected from Telkom University in Bandung, Indonesia. This 

geographical exclusivity raises questions regarding the generalizability of the model to other forest ecosystems 

with different vegetation patterns and biological conditions. The inaccuracy of the model classification, 

especially in the “Low” and “High” categories, may be due to the variation in spectral resolution and sensitivity 

produced by the mixture of drone footage and Google Earth Engine. In addition, the lack of a systematic 

sensitivity analysis to evaluate the robustness of the model under various conditions, such as alternative sensor 

types or environmental characteristics, limits the credibility of the results. 

 

 
Fig. 6. Texture features confusion matrix 

 

3.5. Model Comparison Across Scenarios 

Performance of all models is compared in various feature extraction scenarios, such as the combined 

feature approach (M7_all), texture-based features (M4_hom, M5_con, M6_ent), and color-based features 

(M1_exg, M2_cvi, M3_gcc). The evaluation measures, such as accuracy, precision, recall, and F1-score, are 

listed in Table 7 and are used to determine the best approach for classifying carbon stocks. 

 

Table 7. Classification results for Texture Features 
 Features Accuracy Precision Recall F1 Score 

M1_exg Color-based 0.7110 0.7190 0.7110 0.6930 

M2_cvi Color-based 0.6940 0.7090 0.6940 0.6980 

M3_gcc Color-based 0.6590 0.7270 0.6590 0.6200 

M4_hom Texture-based 0.7070 0.7110 0.7070 0.6970 

M5_con Texture-based 0.6120 0.6910 0.6120 0.5480 

M6_ent Texture-based 0.6880 0.7210 0.6880 0.6710 

M7_all Combined 0.6120 0.6910 0.6120 0.5480 

 

According to the results, the color-based model M3_gcc had the highest precision (0.7270), while the 

texture-based model M4_hom had the best accuracy (0.7070%). M6_ent's F1-score of 0.6710 indicated that it 

performed competitively as well. With an accuracy of 0.6120 and an F1-score of 0.5480, the combined model, 

M7_all, scored worse than the best individual models. These results imply that although the combined feature 

technique has potential, it is unable to fully utilize the advantages of distinct texture- and color-based features. 

Misclassifications are highlighted in the confusion matrix for M7_all, especially in the "Low" and "High" 

categories. This is probably because the feature distributions overlap and are redundant, which reduces 

discriminative power. Even though M7_all does not currently outperform the best single-feature models, it 

does demonstrate the potential advantages of incorporating complementary information [62]. 

A more thorough examination of the models' robustness and generalizability reveals some drawbacks. 

The study's dataset is unique to Telkom University in Bandung, Indonesia, which would limit the models' 

generalizability to other areas or forest types. Model performance may be impacted by changes in 

environmental factors like lighting or vegetation density. To determine wider application, future studies should 
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examine how well these models function in a variety of ecosystems, such as tropical, temperate, and boreal 

forests. Furthermore, sensitivity analyses incorporating differences in sensor kinds, resolutions, and 

preprocessing methods may offer a more thorough comprehension of the models' resilience in various 

scenarios. 

The present findings are usefully contextualized by comparisons with earlier research. High-resolution 

photography is excellent for classifying carbon stocks, as evidenced by previous studies that used WorldView-

3 and aerial laser scanning (ALS) data and produced 𝑅2 values ranging from 0.68 to 0.85 for biomass estimating 

tasks [17]. Although the accuracy of the combined feature technique was not as high in this study, integrating 

textural and spectral data is still a potential way to improve classification results. By addressing the drawbacks 

of basic feature concatenation, advanced fusion techniques like attention-based processes or deep feature 

integration may be able to uncover the complimentary strengths of texture and color features. 

To sum up, the comparison emphasizes how important it is to choose features that are suitable for certain 

carbon stock classification jobs [63]. More advanced feature fusion techniques that can successfully capture 

the connections between spectral and spatial information should be the main goal of future research in order to 

improve the combined feature model. Furthermore, improving oversampling methods like SMOTE and 

addressing residual dataset biases may enhance model performance for minority classes. Using transfer 

learning from previously trained models and investigating bigger, more varied datasets may also assist increase 

the results' generalizability. These developments could help the suggested methodology become a more reliable 

and scalable way to classify carbon stocks in various ecosystems and environmental settings. 

 

4. CONCLUSION 

Forests play a critical role in mitigating climate change by acting as carbon sinks, storing carbon dioxide 

from the atmosphere. This study introduces an integrated approach that combines spectral and textural features 

for carbon stock classification using UAV and GEE data.  

With the best accuracy of 0.7070 and an F1-score of 0.6970, the results show that texture-based features—

specifically, homogeneity and entropy—are the most successful in classifying carbon stocks. With an accuracy 

of 0.7110, the Excess Green Index model fared better than the others among color-based characteristics, while 

the Green Chromatic Coordinate model had the highest precision (0.7270). The difficulties in feature 

integration are highlighted by the mixed feature model (M7_all), which combines texture and color features, 

but only produced mediocre results. 

This research makes two contributions. In theory, it offers a fresh paradigm for merging textural and 

spectral characteristics, which have historically been examined separately. This strategy closes the gap in 

earlier research by providing a scalable mechanism for classifying carbon stocks that can be used in a variety 

of forest ecosystems. In practice, the findings have been provided to Telkom University as additional 

information to help guide carbon-related policy choices, demonstrating the value of combining GEE and UAV 

data for environmental monitoring. 

Nevertheless, the study has several limitations, including issues with feature integration and dataset size, 

the potential for overfitting, and the geographic constraint of relying solely on data from Telkom University. 

These limitations may impact the model’s generalizability to other forest types or environmental conditions. 

Future research should explore advanced fusion techniques, such as deep feature integration or transfer 

learning, to better leverage the complementary strengths of spectral and textural features. Expanding the dataset 

to include diverse geographic regions and addressing class imbalances could further enhance the model’s 

robustness. Additionally, incorporating temporal and multispectral data may improve the scalability of the 

proposed approach for carbon stock estimation across varied ecosystems. 
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