
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI)

Vol. 10, No. 4, December 2024, pp. 1004-1020

ISSN: 2338-3070, DOI: 10.26555/jiteki.v10i4.30380 1004

Journal homepage: http://journal.uad.ac.id/index.php/JITEKI Email: jiteki@ee.uad.ac.id

Enhancing Network Security Through Real-Time Threat Detection

with Intrusion Prevention System (Case Study on Web Attack)

Tia Rahmawati1, Nyoman Karna2, Soo Young Shin3, Made Adi Paramartha Putra4
1School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia

2The University Center of Excellence for Intelligent Sensing-IoT, Telkom University, Indonesia
3Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea

4Faculty of Information Technology and Design, Primakara University, Denpasar, Indonesia

1. INTRODUCTION

Government websites in Indonesia have become primary targets in cyberattacks. The National Cyber

Security Operations Center (Pusopskamsinas) of the National Cyber and Crypto Agency (BSSN) recorded that

a total of 109,379,790 incidents occurred on websites from January to December 2023. According to a survey

conducted by Netcraft in December 2023, there were responses from 1,088,057,023 sites across 269,268,434

domains and 12,355,610 computers facing the web. Referring to the provided data, enhancing security becomes

crucial to prevent, reduce, and address occurring attacks [1]. Some reasons behind frequent web application

attacks include inadequate infrastructure usage and shortcomings in security concept implementation [2].

To gain a deeper understanding of this issue, a sample was taken from Micro, Small, and Medium

Enterprises (UMKM) employees who use the web in their business transactions. The study results showed that

51% of 100 respondents experienced web attacks on their business systems. Furthermore, 95% considered web

attacks highly disruptive to their daily business operations. This indicates that web security risks are significant

issues that need to be addressed seriously. In efforts to enhance web system security, the implementation of

ARTICLE INFO ABSTRACT

Article history:

Received December 02, 2024

Revised January 12, 2025
Accepted February 04, 2025

 Cyberattacks on government websites in Indonesia have been steadily

increasing, with over 109 million incidents recorded in 2023 by the National

Cyber Security Operations Center (BSSN). A Netcraft survey revealed that

more than one billion websites globally face similar threats, highlighting the

urgent need for improved security measures, especially given infrastructure

limitations and inadequate security implementations. Approximately 51% of

Micro, Small, and Medium Enterprises in Indonesia reported experiencing

web attacks, with 95% stating that these attacks severely disrupted their

operations. This study implements a Suricata-based Intrusion Prevention

System (IPS) to protect web servers from attacks such as SQL Injection, XSS,

and command injection. Suricata monitors network traffic and blocks threats

in real time. Detection logs in JSON format are managed through Filebeat,

processed by Logstash, stored in Elasticsearch, and visualized using Kibana.

The key contribution of this research lies in designing a comprehensive set of

rules and integrating all components into a single Docker container,

streamlining the deployment process. Testing confirmed that the designed

rules effectively detect and block attack payloads by leveraging a rule

structure in suricata and nfqueue capable of identifying all suspicious traffic.

The novelty of this research lies in deploying a fully operational real-time

security system on low-resource computers, demonstrating effective threat

management under constrained conditions.

Keywords:

Cyberattacks;

Elasticsearch;
Intrusion Prevention System;

Suricata;

Web Attack

This work is licensed under a Creative Commons Attribution-Share Alike 4.0

Corresponding Author:

Nyoman Karna, School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia

Email: aditya@telkomuniversity.ac.id

https://doi.org/10.26555/jiteki.v10i4.30380
http://journal.uad.ac.id/index.php/JITEKI
http://jiteki@ee.uad.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
mailto:aditya@telkomuniversity.ac.id

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1005

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

various appropriate strategies and technologies is required. One commonly used strategy is to build a robust

security topology. Security topology encompasses various steps and technologies designed to protect web

systems from various threats [3].

In a study titled "Centralized Log Management Using Elasticsearch, Logstash, and Kibana" by Farrukh

Ahmed (2020), a centralized log management using ELK was conducted, providing centralized logging

accessibility useful for identifying issues faced by servers or applications [4]. This will be continuous with this

study, which utilizes Logstash, Elasticsearch, and Kibana in retrieving logs from IPS. The study titled

“Integrated Security Information and Event Management (SIEM) with Intrusion Detection System (IDS) for

Live Analysis based on Machine Learning” by Adabi Muhammad, Parman Sukarno, and Aulia Wardana (2023)

focuses on developing a Security Information & Event Management (SIEM) system based on live analysis

using machine learning integrated with an Intrusion Detection System (IDS) [5]. This research aims to build a

system using commonly utilized open-source components for real-time analysis, detection, and monitoring of

cyberattacks. The study employs a combination of Elastic (ELK) Stack, Slips, and Zeek IDS to construct the

system. This study will be extended by implementing a similar framework but with an Intrusion Prevention

System (IPS) Suricata integrated with the ELK Stack to enhance the detection and prevention capabilities of

the system, ensuring comprehensive network security. The study titled “Automatic Decision Tree-Based

NIDPS Ruleset Generation for DoS/DDoS Attacks” by Antonio Coscia and Vincenzo Dentamaro (2024)

proposes an algorithm called Anomaly2Sign to automatically generate Suricata rules using a Decision Tree

(DT) for detecting and blocking Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks [6].

This research focuses on optimizing Suricata rules for real-time blocking of SQL Injection, XSS, and

Command Injection.

Among the commonly used technologies in security topology are Firewall, Intrusion Detection System

(IDS), and Intrusion Prevention System (IPS). Firewall acts as the first barrier in preventing unauthorized

access to the network [7]. however, without support from IDS and IPS, network security remains vulnerable to

various complex attacks. IDS detects suspicious attacks or unusual traffic patterns in the network [8]. However,

its weakness lies in its ability only to detect without directly stopping these attacks. This opens up opportunities

for attacks to continue and potentially cause greater losses [9]. Conversely, IPS offers a more proactive solution

by automatically stopping detected attacks [10]. This advantage makes IPS a superior choice compared to IDS

in dealing with web security threats.

The main focus of this research is to design a rule structure within Suricata and NFQueue as a firewall

capable of blocking all traffic indicating suspicious payloads, ensuring the system’s effectiveness in addressing

various types of attacks. The context of this research is to design an Intrusion Prevention System (IPS) where

the designed rules can detect patterns of SQL Injection, Cross-Site Scripting (XSS), and Command Injection

attacks. This research focuses on functionality validity testing, such as whether the created rules can be detected

and matched with Suricata logs, and ensuring that these logs are successfully ingested into Elasticsearch and

the attacks are detected by the IPS. In addition, reliability testing is conducted to evaluate the consistency of

the IPS performance by testing attack payloads such as SQL Injection, XSS, and Command Injection [11].

Kibana will be used to visualize the log data stored in Elasticsearch through various types of graphs, diagrams,

and interactive dashboards. The research results indicate, after conducting pentest trials with DVWA, the rules

designed to block SQL Injection, XSS, and Command Injection attacks successfully detected and blocked all

attack payloads with 100% effectiveness. All logs from Suricata were successfully integrated into Elasticsearch

for data storage, while Logstash parsed and processed the raw logs to make them easier to query. Kibana also

performed well in displaying data visualizations, enabling more effective and informative attack analysis.

2. METHODS

The methodology used in this research is the Network Development Life Cycle (NDLC) [12], which

offers a step-by-step approach to designing and building networks. This method includes various stages such

as needs analysis, design, implementation, testing, and maintenance. NDLC is considered an effective method

for developing and analyzing network infrastructure, as it ensures that each step taken meets specific

requirements and enhances network performance [12]. The system development method is shows on Fig. 1

carried out in several stages analysis, design, prototype simulation, implementation, monitoring, and

management. The first stage is problem identification, which aims to address the high risks of web-based

attacks, such as SQL Injection, XSS, and Command Injection, that threaten system security. Next, the problem

statement is formulated with a focus on developing an Intrusion Prevention System (IPS) using Suricata to

detect and block attacks in real-time and ensure log integration into Elasticsearch for further analysis. Suricata

operates as an IPS engine that directly blocks traffic based on predefined rules designed to detect and stop

payloads deemed suspicious or malicious. This approach ensures that only traffic meeting the criteria of the

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

1006 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

rules is allowed, thereby reducing the risk of threats to the system. Suricata provides only an IPS engine that

identifies packets strictly based on triggered rules, making its effectiveness highly dependent on the accuracy

and comprehensiveness of these rules in detecting various threats. A literature review is conducted to

understand attack detection techniques, optimal configurations, and the best log processing strategies [13].

Fig. 1. NDLC Methods

The needs analysis phase of this research identified key threats, including SQL Injection, Cross-Site

Scripting (XSS), and Command Injection, based on their frequent occurrence in web application attacks.

Specific criteria were defined, such as the selection of keywords like group by, script, and whoami, which are

commonly associated with these types of attacks. The analysis also focused on monitoring HTTP traffic

directed to the server (flow:to_server) to enhance threat detection effectiveness. The HTTP protocol was

prioritized as it is the primary vector for web-based attacks, with universal rule implementation (any any ->

any any) to allow flexible detection without restricting specific IP addresses or ports. During the design phase,

the drop action was implemented to block suspicious traffic immediately. Each rule included a descriptive

message (msg) to assist administrators in identifying the detected threat, such as “TIA-SQL Injection Group

by” or “TIA-XSS Injection Script.” The content examined targeted the HTTP URI (http_uri) with specific

keywords, while the nocase configuration ensured case insensitivity to account for variations in attack patterns.

Metadata was incorporated to record the creation and update timestamps of each rule, ensuring their continued

relevance to evolving threats. This design aims to detect and block threats in real-time while simplifying the

processes of system maintenance and security analysis [14]. During the simulation phase, testing is conducted

in a test environment to ensure that all components, from Suricata rules to log integration, function properly

before deployment in the production environment. The implementation stage includes deploying the system in

a production environment with full integration between Suricata, Filebeat, Logstash, Elasticsearch, and Kibana.

After implementation, monitoring is carried out to ensure that the system effectively detects and mitigates

threats and allows for adjustments if necessary. The final stage is continuous management, which involves

updating rules, optimizing the log pipeline, and maintaining infrastructure. All these processes are then

documented in a report containing test results and guidelines for future system development.

2.1. System Model

The proposed system model describes how Suricata is positioned as the primary line of defense for the

web server, safeguarding data and maintaining system integrity against threats originating from the internet

refer to the Fig. 2.

Fig. 2. System Model

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1007

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

This system model illustrates the implementation of an Intrusion Prevention System (IPS) using Suricata

to protect a web server from attacks originating from the internet. On the far left, there is an attacker who

attempts to access or attack the system through the internet, with attacks such as SQL injection, cross-site

scripting (XSS), or command injection. The internet acts as the medium connecting the attacker to the system.

In the middle, Suricata serves as the primary security layer, monitoring network traffic between the internet

and the web server. By using various rules, Suricata can detect attack patterns and issue alerts or even block

suspicious access, which is depicted by the red stop symbol on the connection line. Suricata ensures that only

safe traffic reaches the web server, thus safeguarding the server's data and integrity, for hardware implemetation

as shown on Fig. 3.

Fig. 3. Hardware Implementation

The detection logs from Suricata are sent in JSON format to Filebeat [15], which is responsible for

forwarding the logs to Logstash [16]. Logstash then processes and parses the logs before storing them in

Elasticsearch, which is used to efficiently store and search log data. Kibana connected to Elasticsearch, allows

administrators to visualize and analyze the log data in the form of graphs or interactive dashboards. With

Kibana, administrators can monitor attacks in real-time and gain clearer insights into network security [17],

[18], [19]. Overall, this system works to ensure real-time security of the web server and provides valuable data

for analysis and decision-making related to network security. The system specifications used for testing and

implementing the Intrusion Prevention System (IPS) with Suricata, as described in this study, are outlined in

Table 1.

Table 1. System Specification Information
System Specifications Information

CPU Intel Core i3-10110U @ 4x 4.1GHz

Kernel x86_64 Linux 5.15.0-124-generic

RAM 7.34 GB used / 15.33 GB total

OS Ubuntu 22.04

The proposed system model not only focuses on integrating Suricata with the ELK Stack to prevent

attacks and monitor the network but is also designed to operate on low-end and resource-limited computers as

shown on Fig. 3. This means the system can run on basic hardware with limited CPU, memory, and storage

capacity. Despite using low-specification devices, the system is still capable of detecting, blocking, and logging

attacks in real-time. This success is largely attributed to the use of Docker, which enables all components such

as Filebeat, Logstash, Elasticsearch, and Kibana to run together efficiently without consuming excessive

resources. Each component uses resources as needed, ensuring the system operates smoothly. For example,

resource-intensive tasks such as log storage and data visualization can be efficiently managed by Elasticsearch

and Kibana without placing an excessive load on the system. This approach demonstrates that robust security

solutions can still be implemented on resource-constrained devices. This is particularly relevant for

organizations or individuals with limited budgets that still require a reliable network security system. With this

design, the system is capable of providing maximum protection without the need for expensive hardware.

However, a key challenge in implementing this system lies in the limitations of low-specification hardware,

which has the potential to cause performance bottlenecks when handling high traffic or large volumes of logs.

The log pipeline involving Filebeat, Logstash, and Elasticsearch is also prone to bottlenecks if not properly

managed. To address this issue, optimizing Suricata rules can enhance detection efficiency, while

implementing a log rotation mechanism is essential to maintaining storage capacity. By leveraging

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

1008 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

performance monitoring through Kibana and conducting load testing before implementation, the system can

ensure reliability across various operational scenarios.

2.2. Intrusion Prevention System with Suricata

The flowchart illustrates the working process of an Intrusion Prevention System (IPS) using Suricata for

detecting and preventing attacks, refer to Fig. 4. The process starts when data or network traffic enters the

Suricata system. This data may contain potential attacks, such as SQL injection, XSS, or command injection.

Suricata then checks each incoming data packet by comparing it against a set of predefined rules. These rules

define specific attack patterns that the system needs to be aware of. If no attack is detected, the data is allowed

to pass through without intervention. However, if an attack is identified, Suricata immediately blocks the data

packet to prevent it from reaching the server or target system, as a precautionary measure. After blocking the

attack, Suricata logs information related to the incident, such as the type of attack and the source of the

traffic[20]. This data is useful for further analysis. Once all these steps are completed, the process ends. With

this approach, Suricata acts as an active defense system that can detect and mitigate threats in real-time, thereby

effectively securing the network [21], [22], [23].

Fig. 4. IPS Flowchart

2.3. Suricata Rules Configuration

The initial step in building this system is installing Suricata in a prepared environment, serving as a crucial

foundation for developing the threat detection system through proper configuration and rule implementation

[24]. Since the default Ubuntu repository may not provide the latest version of Suricata, it is necessary to add

the OISF (Open Information Security Foundation) repository to ensure access to the most recent officially

supported version [25]. Adding the OISF repository updates the system’s package list, enabling the download

and installation of the latest stable version of Suricata, along with all necessary supporting components.

Suricata is then configured to run automatically upon system startup using the command “sudo systemctl enable

suricata.service”, ensuring that the intrusion detection and prevention system remains active without requiring

manual intervention [26], [27], [28].

By default, Suricata runs in IDS mode, which only detects and logs network activity without taking any

blocking actions. Suricata can add a special ID, called the Community ID, to its JSON output. This Community

ID helps match Suricata’s event logs with datasets generated by other tools, like Elasticsearch. To do this, open

the Suricata configuration file “/etc/suricata/suricata.yaml” and find the community-id setting. Enabling this

ID makes it easier to integrate and correlate data across different network monitoring tools. A network interface

is a device, either physical or virtual, that connects a computer to a network [29], [30]. In the context of Suricata,

this interface is responsible for monitoring all incoming and outgoing network traffic.To enable IPS (Intrusion

Prevention System) mode, adjustments need to be made so that Suricata not only logs harmful traffic but also

stops or blocks it directly [31]. IPS mode is more proactive, as it allows Suricata to prevent attacks by stopping

unwanted packets. nfqueue is a feature of the Netfilter subsystem in the Linux kernel that allows network traffic

to be analyzed in user space through a queue. Suricata uses nfqueue to process network packets in real time,

inspecting the traffic based on predefined rules, and then deciding whether the packet should be forwarded or

blocked. When nfqueue is enabled, Suricata operates in IPS mode, meaning it not only detects threats but also

blocks traffic deemed dangerous. Here are some important points to take note of from the output. The line

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1009

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

“Active: active (running)” indicates that Suricata has successfully restarted and is currently running.

Additionally, the message “Starting suricata in IPS (nfqueue) mode… done.” confirms that Suricata is now

operating in IPS mode using nfqueue as shown on Fig. 5 [32], [33].

Fig. 5. Nfqueue IPS Mode

After IPS mode with nfqueue is activated on Suricata shows on Fig. 5. The next step is to ensure that

network traffic is directed to Suricata for processing. Without this step, Suricata won’t receive the traffic that

needs to be inspected [34], [35], [36]. Uncomplicated Firewall (UFW) is a commonly used firewall in Ubuntu,

and this configuration ensures that all incoming and outgoing traffic from the server is routed through Suricata

via nfqueue refer to Fig. 6 and Fig. 7.

Fig. 6. Nfqueue Configuration

The rules on Fig. 6 mentioned above are the added NFQUEUE rules, allowing Suricata to effectively

process network traffic [37], monitor and block any detected threats. Be sure to save these changes and restart

the firewall service so that the new rules are fully applied. The first rule (-I INPUT 1 -p tcp –dport 22 -j

NFQUEUE –queue-bypass) and the second rule (-I OUTPUT 1 -p tcp –sport 22 -j NFQUEUE –queue-bypass)

act as a bypass for SSH connections (port 22), ensuring that SSH access to the server is not interrupted if

Suricata fails or stops running. These rules are important because, without the bypass, SSH traffic could be

blocked, cutting off remote access to the server. The next rule (-I FORWARD -j NFQUEUE) makes sure that

all forwarded traffic passing through the server is also sent to Suricata for processing. Finally, the fourth (-I

INPUT 2 -j NFQUEUE) and fifth (-I OUTPUT 2 -j NFQUEUE) rules direct all incoming and outgoing traffic,

except SSH, to Suricata for analysis, ensuring that any non-bypassed packets are inspected by the system for

threat detection and prevention.

Fig. 7. UFW Status

Fig. 7 shows that the UFW (Uncomplicated Firewall) service has been successfully activated on the

system. Its status is “active” which means the firewall is active and running properly. To protect web

applications and networks from cyber threats, it’s important to implement a security solution that can detect

and stop attacks before they reach the server [38], [39]. Suricata is a powerful tool for this task, especially when

configured with rules based on specific attack patterns. These rules are designed to detect common attack

patterns, such as commands or terms typically used in injection or exploitation attacks on web applications.

These rules can be created to detect various types of attacks, such as SQL Injection, Cross-Site Scripting (XSS),

and Command Injection as shown on Fig. 8.

Fig. 8 displays a set of network security rules used in a Suricata-based Intrusion Prevention System (IPS).

These rules are designed to detect and block SQL Injection attacks that could potentially harm web

applications. Each rule instructs Suricata to monitor HTTP traffic and look for specific patterns commonly

used in SQL Injection attacks, such as the “group”, “order by”, “union”, “select” commands, among others. If

these patterns are detected, the system will automatically block the traffic to protect the server from further

exploitation. a set of rules used by Suricata to detect and block Cross-Site Scripting (XSS) attacks. These rules

are designed to identify patterns commonly used in XSS attacks within HTTP traffic, where attackers inject

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

1010 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

malicious code, such as JavaScript or specific HTML elements, to exploit vulnerabilities in web applications.

Each rule is crafted to inspect URIs containing content like “script”, “src=”, “javascript”, “IMG”, “onerror”

and “alert” and to block traffic that appears to be an XSS attack attempt. Fig.8 contains several rules configured

in Suricata to detect and block Command Injection attacks. These rules work by analyzing incoming HTTP

traffic to the server and looking for system command patterns commonly used in command injection attempts,

such as “whoami,” “sleep,” “uname,” and others. If these patterns are detected in the HTTP request URI, the

rules will block the request, protecting the server from executing malicious commands.

Fig. 8. Rules Configuration (SQL Injection, XSS and Command Injection)

These Suricata rules are designed to detect and block threats in HTTP traffic using the “drop” action,

which automatically blocks malicious packets. These rules are universally applicable to all IP addresses and

ports (any any -> any any) and focus on traffic directed to the server (to_server) [40]. Each rule includes a

descriptive message (msg) to explain the identified threat, such as “TIA-SQL Injection Group by” for SQL

Injection, “TIA-XSS Injection Script” for XSS, and “TIA-Command Injection Whoami” for Command

Injection. Detection is based on specific content within the HTTP URI (http_uri), such as “group by,” “script,”

or “whoami,” which are commonly used in attacks The rules are case-insensitive (nocase), have unique

Signature IDs (SIDs), and revision numbers (rev) for tracking updates [41], [42].

2.4. ELK Stack

In network traffic monitoring and cybersecurity management, particularly in intrusion detection systems,

the process of logging and data analysis is crucial. To effectively process the data generated by security

systems, a clear workflow is necessary for data collection, processing, storage, and visualization. Suricata, an

intrusion detection system, produces raw data logs that need further processing and analysis to be useful for

network administrators in detecting threats and anomalies. For diagram outlines the flow refer to Fig. 9.

Fig. 9. ELK Stack Monitoring

The diagram outlines the flow of log from Suricata through the Elastic Stack for monitoring purposes

shows on Fig. 9 Suricata generates logs in JSON format, recording network activity and potential security

threats detected. These JSON logs, representing raw data from Suricata, are then collected by Filebeat, a

lightweight data shipping tool. Filebeat is responsible for forwarding these logs to Logstash for further

processing. Acting as a gateway in this pipeline, Filebeat ensures that the logs are efficiently transferred to the

next stage for parsing [4]. For Docker status refer to Fig. 10.

Fig. 10 indicates that Docker is active and running, as shown by the status active (running). In the

subsequent stage, the logs reach Logstash, which is designed for parsing. Within Logstash, the raw logs are

processed, structured, and optimized for analysis by extracting useful information and applying necessary

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1011

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

transformations to make them more meaningful and easier to analyze. This parsing process is essential for

transforming raw data into a more structured form, ready to be stored in Elasticsearch. Once the data is in

Elasticsearch, users can utilize it for search, analysis, and reporting. At the end of the flow, Kibana provides a

visual representation of the data stored in Elasticsearch, allowing users to view analysis results in an easy-to-

understand format, such as graphs and interactive dashboards [43], [44], [45].

Fig. 10. Docker Status

3. RESULTS AND DISCUSSION

3.1. Validation and Analysis of Suricata JSON Logs and Elasticsearch Logs: Signature-Based

Detection and Traffic Blocking Test

The aim of this test is to ensure that Suricata can detect and block harmful network attacks, such as SQL

Injection, XSS, and command injection. The test is conducted by sending network traffic containing attack

patterns and verifying if Suricata can recognize them according to the preconfigured rules. This test will

evaluate suricata can detect the attacks based on the configured signatures and suricata successfully blocks the

attacks according to the set rules shown on Fig. 11.

Fig. 11. Detection Test Based on Signatures in Suricata (SQL Injection Curl, XSS Curl and Command

Injection Curl)

The attack attempt was made by accessing the URL 10.66.66.6 using a query that contained the pattern

(+group+BY+1--+-), indicating an attempt at SQL Injection. This attack aims to exploit SQL queries through

URL parameters shows on Fig. 11. The curl command was used to send a request to the address 10.66.66.6

with a querystring

(%3Cimg%20src%3Dx%20onerror%3Djavascript%3Aalert%28%27XSS%27%29%3B%3E) that included an

XSS (Cross-Site Scripting) attack. The attack pattern utilized a JavaScript script intended to trigger an alert in

the browser. The curl command was used to send a request to the address 10.66.66.6, with a query that

attempted to execute a command injection attack. The query was (?query=%3B%20whoami) aimed at running

the whoami payload on the target server. The Fast log from Suricata can be seen in Fig. 12.

Fig. 12. Fast Log Suricata (SQL Injection, XSS and Command Injection)

Based on the logs shows on Fig. 12. The Suricata system has been properly configured to detect and block

SQL Injection, XSS, and Command Injection attacks. All attack attempts recorded in the logs were successfully

blocked according to the rules, demonstrating the system’s effectiveness in preventing threats. This test ensures

that Suricata’s logs align with those stored in Elasticsearch by comparing key parameters such as timestamps,

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

1012 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

alert signatures, HTTP URLs, and IP addresses. The JSON log from Suricata is verified against the

Elasticsearch log to confirm the consistency of detection results, as shown in Fig. 13.

Fig. 13. JSON Log

JSON log from Suricata on Fig. 13 is compared with the log in Elasticsearch shows on Fig. 14 to verify

if the example for Fig. 12 the SQL Injection attack detection results match. The Suricata log recorded the

attack time on October 19, 2024, at 17:56:04 UTC, indicating that the system uses Universal Time

Coordinated (UTC). Suricata detected the SQL Injection attack with the signature “TIA: SQL Injection

Order,” where the attacked URL contains the query /?query=1+ORDER+BY+1--. The source IP address of

the attack was 10.66.66.5, and the destination IP was 10.66.66.6.

Fig. 14. Elasticsearch Log

In Elasticsearch, as shown in Fig. 14, the recorded time was October 20, 2024, at 00:56:08 GMT+7, with

the log capturing the same attack signature (/?query=1+ORDER+BY+1–) and identical source and destination

IP addresses (10.66.66.5 and 10.66.66.6). The test results confirm that Suricata’s detection and logging system

functions properly, and the logs forwarded to Elasticsearch are processed without any loss or alteration of data.

Both logs consistently reflect the same attack, with the time difference solely caused by the difference in time

zone settings.

3.2. Intrusion Prevention System (IPS) Suricata on Damn Vulnerable Web Application (DVWA)

DVWA (Damn Vulnerable Web Application) is a web application designed with security vulnerabilities

such as SQL Injection, XSS, and Command Injection, allowing easy exploitation for testing purposes. Suricata

is used to detect and monitor these attacks on the network. The testing aims to ensure that Suricata can detect,

block, and log attacks through DVWA while providing protection for vulnerable applications. The testing steps

include accessing DVWA through a browser connected to Suricata and setting the DVWA security level to

low to facilitate exploitation, as shown in Fig. 15 [3].

Fig. 15. DVWA (Vulnerability)

Once the configuration is complete, testing begins by selecting the type of vulnerability in DVWA as

shown in Fig. 15. Payloads, such as SQL commands or malicious scripts, are entered into the provided fields.

If the connection to DVWA is interrupted, it indicates that Suricata has successfully detected and blocked the

attacking IP [46], [47]. The system’s effectiveness is measured as the percentage of malicious payloads

successfully blocked compared to the total payloads tested. This percentage reflects the system’s ability to

detect and mitigate threats, with higher values indicating better performance, calculated using the following

formula:

 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝑠
 𝑥 100% (1)

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1013

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

Based on the testing of 300 payloads, consisting of 100 payloads for each type of attack SQL Injection,

Cross-Site Scripting (XSS) and Command Injection the IPS was able to detect and block all attacks with 100%

effectiveness shows on Fig. 16. In the SQL Injection test, every payload was successfully identified and

stopped, demonstrating the IPS’s ability to prevent exploits that could lead to data leaks or manipulation in the

database. For XSS attacks the system successfully detected and blocked all attempts to execute malicious

scripts in the browser, protecting users and applications from the threat of information theft or web page

manipulation. Similarly, in the Command Injection test, the IPS successfully prevented each attempt to execute

direct commands on the server, which could potentially jeopardize system control. Overall, these results show

the IPS is highly effective at detecting and mitigating these three types of attacks with 100% effectiveness. The

system is capable of maintaining the security and integrity of web applications, protecting sensitive data, and

responding swiftly to threats

Fig. 16. Elasticsearch Logs Indicate All Traffic Blocked (a) SQL Injection (b) XSS (c) Command Injection

(d) All Payloads Status

3.3. Analysis of Flow Bytes and Response Time on SQL Injection, XSS and Command Injection

Payloads in DVWA

This testing aims to analyze network data flow (flow bytes) and system response times against SQL

Injection, XSS, and Command Injection attacks using DVWA. The observed logs in Elasticsearch are utilized

to understand byte patterns between the client and server and the execution time of each payload to identify

system vulnerabilities [48]. The analyzed parameters include Flow Bytes To Server (bytes sent from the client

to the server), Flow Bytes To Client (bytes in the server’s response), Flow Start (time communication begins),

Timestamp (time a threat is detected), and Time Differences (time gap between Flow Start and Timestamp),

which indicates the system’s efficiency in detecting threats, especially for complex payloads.

The test results show on Table 2 Suricata effectively detects and blocks all types of attack payloads,

including SQL Injection, XSS, and Command Injection. Flow Bytes to Server demonstrates an increase in line

with the complexity of the payload, where more complex payloads generate a higher volume of data sent to

the server. Meanwhile, Flow Bytes to Client consistently remains low, with most payloads producing only 60

bytes, indicating that the system successfully limits server responses to protect sensitive data. Additionally, the

average Time Differences of 0.902 seconds indicates that the system is capable of detecting threats quickly,

even for payloads requiring more complex processing. The effectiveness of Suricata is evident in its ability to

not only detect but also comprehensively block all payloads, ensuring network security and preventing data

leaks.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

1014 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

Table 2. SQL Injection, XSS and Command Injection Payloads on Flow Bytes and Response Time
No

.
Payloads

Flow Bytes to

Server

Flow Bytes to

Client

Flow

start

Timesta

mp

Time Differences

(Seconds)

1 ') GROUP BY id-- 778 60
15:26:00

.980

15:26:01

.022
0.042

2
' OR 1=1 GROUP BY

username, password--
802 60

15:42:45

.144

15:42:45

.433
0.289

3
' UNION SELECT 1,2,

pg_sleep(5)--
798 60

16:00:06

.790

16:00:07

.852
1.062

4 ' SELECT @@version-- 781 60
16:17:04

.755

16:17:06

.000
1.245

5 ' OR 1=1; pg_sleep(5)-- 788 60
16:27:24

.993

16:27:25

.557
0.564

6
<script>console.log(‘XSS’)<

/script>
801 60

19:36:27

.184

19:36:28

.341
1.157

7 javascript:alert(1) 773 60
19:44:03

.989

19:44:04

.550
0.561

8 <body onload=alert(1)> 780 60
21:18:48

.288

21:18:49

.998
1.710

9
<script>alert(document.cooki

e)</script>
801 60

19:31:05

.844

19:31:06

.199
0.355

10 <input onfocus=”alert(1) “> 788 60
22:04:45

.445

22:04:46

.234
0.789

11 $(whoami) && sleep 10 911 60
21:45:24

.458

21:45:25

.427
0.969

12 sleep 10; uname -r 1003 120
23:29:34

.522

23:29:35

.751
1.229

13 uname -s && whoami 953 60
00:04:42

.384

00:04:43

.736
1.352

14
curl http://attacker.com &&

sleep 10
1030 120

11:30:55

.859

11:30:57

.111
1.252

15
wget http://attacker.com/

shell.sh | bash
1110 120

11:01:02

.301

11:01:03

.261
0.960

Average 0.902

3.4. Analysis of Network Aspects Using Suricata IPS and iftop for Traffic Monitoring

 This testing aims to analyze network performance, security, and stability. Performance is measured by

the volume of outgoing (TX) and incoming (RX) traffic during simple and complex HTTP requests. Network

security is evaluated using Suricata IPS to detect threats such as SQL injection, while stability is assessed by

comparing traffic patterns from both types of requests. The test environment includes a target server (IP

10.66.66.6), Suricata as the IPS, and iftop for traffic monitoring. The testing is conducted in two scenarios: a

simple HTTP request using the command curl 10.66.66.6 --user-agent 0 and a complex request with suspicious

queries using curl --url "10.66.66.6?query='+group BY+1--+-" --max-time 5 -v --user-agent "tesis". The

observed parameters in this testing include outgoing traffic (TX), which is the volume of data sent from the

server incoming traffic (RX), which is the volume of data received by the server and Suricata’s response in

detecting and mitigating threats. The observations from these two scenarios provide insights into the

performance, security, and stability of the network when handling various types of HTTP requests as shown

on Fig. 17.

Fig.17 (a) shows using User-Agent 0 with a simple HTTP request, the outgoing traffic (TX) volume was

recorded at 2.47 MB, with a peak rate of 467 Kb. Meanwhile, the incoming traffic (RX) was relatively small,

at only 178 KB, with a peak rate of 30.1 Kb. Observations indicate that this simple request generated

predominantly outgoing traffic, while the server response was minimal (low RX traffic). Suricata likely did not

log or intervene in this request as no suspicious patterns were detected. The traffic appeared stable with no

significant spikes. Fig. 17 (b) shows using User-Agent “tesis” and a more complex query string, the test results

showed an increase in traffic compared to the first scenario. The outgoing traffic (TX) volume was recorded at

2.99 MB, with a peak rate of 4.03 Kb, while incoming traffic (RX) increased to 214 KB, with a peak rate of

5.21 Kb. The increase in RX traffic indicates that the server provided a more complex response, possibly due

to processing a heavy query like group BY, which Suricata may flag as an SQL Injection threat. TX traffic also

increased as the request required additional data to be sent to the server.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
http://attacker.com/

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1015

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

Fig. 17. Iftop (a) HTTP Request (b) Complex Query String

The analysis indicates the complex query can be identified by Suricata as a potential threat, such as an

SQL injection. This enables Suricata to trigger preconfigured rules, either by blocking the request or logging

it for further analysis. In contrast for HTTP Request, the traffic appears lighter and does not activate Suricata,

demonstrating the system’s ability to differentiate between normal and suspicious requests. This confirms

Suricata’s effectiveness in identifying suspicious request patterns.

3.5. Evaluation of Network Traffic Performance and IPS Effectiveness in Mitigating Slow HTTP

Attacks

This Test aims to evaluate network performance under normal conditions and during an attack using the

Slow HTTP Test method, as well as measure the effectiveness of IPS Suricata in detecting and mitigating

attacks. The testing utilizes iperf3 to measure data transfer and network bitrate [49], [50], both before and after

the attack. The testing environment consists of a Target Server (IP 10.66.66.6) running a vulnerable application

(DVWA), IPS Suricata for detecting and blocking attacks, and a Client (IP 10.66.66.5) as the testing device.

The Slow HTTP Test command (slowhttptest -c 1000 -H -g -o slowhttp -i 10 -r 200 -t GET -u

http://10.66.66.6/DVWA/login.php -x 24 -p 3) is utilized to simulate high-traffic conditions or simultaneous

attacks on the target server. This test exerts pressure on the server by opening up to 1000 simultaneous

connections (-c 1000) and generating 200 new requests per second (-r 200), while maintaining the connections

for 24 seconds (-x 24). The Slowloris attack technique used (-H) keeps the server occupied by slowly

processing HTTP headers at 10-second intervals (-i 10), simulating a real-world attack on the target login page

(http://10.66.66.6/DVWA/login.php). The login page is an ideal target because disruptions to authentication

functionality can cripple system operations.

The testing process involves three stages, first measuring network performance without an attack,

launching a Slow HTTP Test attack to disrupt the server and re-measuring network performance after attack

mitigation by IPS Suricata. The observed parameters include Transfer Data (volume of data successfully sent),

Bitrate (data transfer speed in Mbits/sec), and IPS Efficiency (the system’s ability to block attacks without

disrupting server functionality) refer to Fig. 18.

Fig. 18. Iperf3 (a) Normal Network Traffic (b) During-Attack Traffic

When an attack using the Slow HTTP method was launched against the server protected by IPS Suricata,

data transfer and bitrate dropped significantly shows on Fig. 18, the total data transfer decreased to 6.75 MB

from the sender and 6.56 MB received by the receiver, with an average bitrate of 5.66 Mbits/sec for the sender

and 5.40 Mbits/sec for the receiver, indicating a drop of more than 50% compared to normal conditions. During

the 2.00–3.01 second interval, no data was transferred (0.00 bits/sec), indicating that Suricata successfully

detected and completely blocked the attack. Afterward, the traffic resumed, although at a lower bitrate than in

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

1016 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

normal conditions. The correlation between traffic reduction and Suricata’s effectiveness is clearly evident.

The IPS successfully blocked suspicious traffic, keeping the server operational without downtime. The

decrease in bitrate and data transfer indicates disruption caused by the attack, but Suricata effectively

minimized its impact. This testing proves that Suricata is effective in detecting and mitigating Slow HTTP

attacks, although further system security enhancements and real-time monitoring are still recommended.

3.6. Performance Comparison of CPU and Memory Utilization

The CPU and memory testing on the web server aims to compare processor and memory usage between

normal conditions and when the web server is under attack, specifically from SQL injection, XSS, and

command injection attacks. The method involves monitoring resource usage (CPU and memory) on the web

server when no attack is present and then comparing it to the conditions during an attack. The goal of this

testing is to assess the impact of the attack on the web server’s performance and to understand the extent of the

increase in CPU and memory load during the attack.

Based on the test results in Table 3 CPU and memory usage increased significantly after the attack. Before

the attack, the average CPU usage was only 0.7%, but it rose to an average of 20.7% after the attack, peaking

at 61.1%. Memory usage also increased from 0.4% to 4.8%. This increase was due to the additional workload

involved in threat detection and blocking processes. These results indicate that the attack had a substantial

impact on resource consumption, particularly CPU usage, highlighting the need for increased capacity or

system optimization to maintain performance when facing future attacks.

Table 3. Perfomance Results

Trial Component
Pre-Attack

(%)

During-Attack

(%)
Trial Component

Pre-Attack

(%)

During-Attack

(%)

1

Processor

CPU
0.7 21.2

6

Processor

CPU
0.7 38.8

Memory 0.4 4.8 Memory 0.4 4.8

2

Processor

CPU
0.7 23.3

7

Processor

CPU
0.7 39.9

Memory 0.4 4.8 Memory 0.4 4.8

3

Processor

CPU
0.7 25.5

8

Processor

CPU
0.7 45.3

Memory 0.4 4.8 Memory 0.4 4.8

4

Processor

CPU
0.7 27.3

9

Processor

CPU
0.7 47.2

Memory 0.4 4.8 Memory 0.4 4.8

5

Processor

CPU
0.7 36.4

10

Processor

CPU
0.7 61.1

Memory 0.4 4.8 Memory 0.4 4.8

Average 0.55% 20.7%

In the previous study titled “Integrated Security Information and Event Management (SIEM) with

Intrusion Detection System (IDS) for Live Analysis based on Machine Learning” by Adabi Muhammad,

Parman Sukarno, and Aulia Wardana [5], the system was capable of detecting attacks within network traffic

but did not demonstrate the ability to prevent attacks directly. The system functioned solely to detect attack

logs using IDS integrated with SIEM. This study required medium-to-high specification hardware due to the

high resource consumption by Elasticsearch, which utilized up to 78% of CPU and 2300 MB of RAM. The

system employed machine learning to detect and classify attacks based on IDS logs within the network. In

contrast, the findings in this study demonstrated 100% effectiveness in blocking web application-based attacks,

such as SQL Injection, XSS, and Command Injection, through specifically designed rules. Suricata was

configured to recognize attack patterns directly, achieving an average detection time of 0.902 seconds. This

system proved to be efficient and capable of operating on low-specification devices, thanks to the integration

of Filebeat, Elasticsearch, Logstash, and Kibana within a single Docker container. This research focuses on

preventing attacks through an IPS based on rules designed to detect malicious payloads in real-time. The CPU

usage increased to an average of 20.7%, which remains within acceptable limits for low-resource devices.

4. CONCLUSION

This research successfully implemented an Intrusion Prevention System (IPS) using Suricata to enhance

web server security against threats such as SQL Injection, Cross-Site Scripting (XSS), and Command Injection.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1017

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

The rules configured in Suricata were able to detect and read attacks like SQL Injection, XSS, and Command

Injection and effectively block these threats. These rules were specifically designed to recognize attack patterns

in real-time and take preventive action to protect the system, with the average Time Differences demonstrating

the system’s efficiency in detecting and processing malicious payloads at 0.902 seconds.Following penetration

testing using the Damn Vulnerable Web Application (DVWA), all SQL Injection, XSS, and Command

Injection attack payloads were successfully blocked with 100% effectiveness. Flow Bytes To Server ranged

between 773 and 1110 bytes, influenced by payload complexity, while Flow Bytes To Client remained

consistent at 60 bytes, with occasional increases to 120 bytes. The system effectively restricted server

responses, ensuring the prevention of sensitive data leaks.

The testing confirmed the rules were effective and consistent in detecting and blocking attacks. Integration

of Filebeat, Logstash, Elasticsearch, and Kibana within a Docker container streamlined log management and

real-time analysis. Suricata logs in JSON format were efficiently processed and visualized, enabling

administrators to monitor threats seamlessly. Enhancing detection capabilities with adaptive rules using

machine learning or behavioral analysis is recommended, along with real-time alert systems via email or

messaging. Expanding Elasticsearch’s historical log storage capacity is also suggested for comprehensive trend

analysis and proactive security improvements.

Acknowledgments
The authors express their gratitude for the financial support provided by Indonesia’s DRTPM, DITJEN

DIKTIRISTEK, and KEMDIKBUDRISTEK through grants 043/SP2H/RT-MONO/LL4/2024 and

088/LIT07/PPM-LIT/2024. This support is gratefully acknowledged and appreciated.

REFERENCES
[1] R. A. Muzaki, O. C. Briliyant, M. A. Hasditama, and H. Ritchi, “Improving Security of Web-Based Application Using

ModSecurity and Reverse Proxy in Web Application Firewall,” in 2020 International Workshop on Big Data and

Information Security, IWBIS, pp. 85–90, Oct. 2020, https://doi.org/10.1109/IWBIS50925.2020.9255601.

[2] A. Fadhlillah, N. Karna, and A. Irawan, “IDS Performance Analysis using Anomaly-based Detection Method for DOS

Attack,” in IoTaIS 2020 - Proceedings: 2020 IEEE International Conference on Internet of Things and Intelligence

Systems, pp. 18–22, Jan. 2021, https://doi.org/10.1109/IoTaIS50849.2021.9359719.

[3] T. Rahmawati, R. W. Shiddiq, M. Sumpena, S. Setiawan, N. Karna, and S. Hertiana, “Web Application Firewall Using

Proxy and Security Information and Event Management for OWASP Cyber Attack Detection,” IEEE International

Conference on Internet of Things and Intelligence Systems (IoTaIS)), pp. 280–285, Nov. 2023,

https://doi.org/10.1109/IoTaIS60147.2023.10346051.

[4] F. Ahmed, U. Jahangir, H. Rahim, and K. Ali, “Centralized Log Management Using Elasticsearch, Logstash and

Kibana,” International Conference on Information Science and Communication Technology, pp. 1–7, 2020,

https://doi.org/10.1109/ICISCT49550.2020.9080053.

[5] A. R. Muhammad, P. Sukarno, and A. A. Wardana, “Integrated Security Information and Event Management (SIEM)

with Intrusion Detection System (IDS) for Live Analysis based on Machine Learning,” in Procedia Computer Science,

pp. 1406–1415, 2022, https://doi.org/10.1016/j.procs.2022.12.339.

[6] A. Coscia, V. Dentamaro, S. Galantucci, A. Maci, and G. Pirlo, “Automatic decision tree-based NIDPS ruleset

generation for DoS/DDoS attacks,” Journal of Information Security and Applications, vol. 82, May 2024,

https://doi.org/10.1016/j.jisa.2024.103736.

[7] S. Adiwal, B. Rajendran, P. S. D., and S. D. Sudarsan, “DNS Intrusion Detection (DID) — A SNORT-based solution

to detect DNS Amplification and DNS Tunneling attacks,” Franklin Open, vol. 2, p. 100010, Mar. 2023,

https://doi.org/10.1016/j.fraope.2023.100010.

[8] A. Wiranata, N. Karna, A. Irawan, and A. I. Prakoso, “Implementation and Analysis of Network Security in Raspberry

Pi against DOS Attack with HIPS Snort,” International Conference on Computer Science, Information Technology

and Engineering (ICCoSITE), pp. 892-896, 2023,

https://doi.org/https://doi.org/10.1109/ICCoSITE57641.2023.10127741.

[9] K. Barik and S. Misra, “IDS-Anta: An open-source code with a defense mechanism to detect adversarial attacks for

intrusion detection system,” Software Impacts, vol. 21, Sep. 2024, https://doi.org/10.1016/j.simpa.2024.100664.

[10] M. R. Ahmed and F. M. Ali, “Enhancing Hybrid Intrusion Detection and Prevention System for Flooding Attacks

Using Decision Tree,” 2019 International Conference on Computer, Control, Electrical, and Electronics Engineering

(ICCCEEE), pp. 1–4, 2019, https://doi.org/10.1109/ICCCEEE46830.2019.9071191.

[11] A. Paul, V. Sharma, and O. Olukoya, “SQL injection attack: Detection, prioritization & prevention,” Journal of

Information Security and Applications, vol. 85, Sep. 2024, https://doi.org/10.1016/j.jisa.2024.103871.

[12] I. T. Wibowo, A. Kurniawan, N. F. Sulaiman, P. Oktivasari, “Design and Implementation of Cloud Computing Using

the NDLC Method Combined with Tunnel Link Split,” in Proceeding - International Conference on Information

Technology and Computing, ICITCOM, pp. 131–135. 2023, https://doi.org/10.1109/ICITCOM60176.2023.10442875.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1109/IWBIS50925.2020.9255601
https://doi.org/10.1109/IoTaIS50849.2021.9359719
https://doi.org/10.1109/IoTaIS60147.2023.10346051
https://doi.org/10.1109/ICISCT49550.2020.9080053
https://doi.org/10.1016/j.procs.2022.12.339
https://doi.org/10.1016/j.jisa.2024.103736
https://doi.org/10.1016/j.fraope.2023.100010
https://doi.org/https:/doi.org/10.1109/ICCoSITE57641.2023.10127741
https://doi.org/10.1016/j.simpa.2024.100664
https://doi.org/10.1109/ICCCEEE46830.2019.9071191
https://doi.org/10.1016/j.jisa.2024.103871
https://doi.org/10.1109/ICITCOM60176.2023.10442875

1018 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

[13] Z. Noor, S. Hina, F. Hayat, and G. A. Shah, “An intelligent context-aware threat detection and response model for

smart cyber-physical systems,” Internet of Things (Netherlands), vol. 23, Oct. 2023,

https://doi.org/10.1016/j.iot.2023.100843.

[14] M. H. Nasir, J. Arshad, and M. M. Khan, “Collaborative device-level botnet detection for internet of things,” Comput

Secur, vol. 129, Jun. 2023, https://doi.org/10.1016/j.cose.2023.103172.

[15] D. Bhatnagar, R. J. Subalakshmi, and C. Vanmathi, “Twitter Sentiment Analysis Using Elasticsearch, LOGSTASH

and KIBANA,” in International Conference on Emerging Trends in Information Technology and Engineering, ic-

ETITE, pp. 1-5, Feb. 2020. https://doi.org/10.1109/ic-ETITE47903.2020.351.

[16] M. M. Rahman, S. Al Shakil, and M. R. Mustakim, “A survey on intrusion detection system in IoT networks,” Cyber

Security and Applications, p. 100082, 2024, https://doi.org/10.1016/j.csa.2024.100082.

[17] M. A. Hossain and M. S. Islam, “Ensuring network security with a robust intrusion detection system using ensemble-

based machine learning,” Array, vol. 19, Sep. 2023, https://doi.org/10.1016/j.array.2023.100306.

[18] R. A. Abed, E. K. Hamza, and A. J. Humaidi, “A modified CNN-IDS model for enhancing the efficacy of intrusion

detection system,” Measurement: Sensors, vol. 35, Oct. 2024, https://doi.org/10.1016/j.measen.2024.101299.

[19] F. Younas, A. Raza, N. Thalji, L. Abualigah, R. A. Zitar, and H. Jia, “An efficient artificial intelligence approach for

early detection of cross-site scripting attacks,” Decision Analytics Journal, vol. 11, Jun. 2024,

https://doi.org/10.1016/j.dajour.2024.100466.

[20] P. Nespoli, D. Díaz-López, and F. Gómez Mármol, “Cyberprotection in IoT environments: A dynamic rule-based

solution to defend smart devices,” Journal of Information Security and Applications, vol. 60, Aug. 2021,

https://doi.org/10.1016/j.jisa.2021.102878.

[21] A. Bhardwaj, S. Bharany, A. Almogren, A. Ur Rehman, and H. Hamam, “Proactive threat hunting to detect persistent

behaviour-based advanced adversaries,” Egyptian Informatics Journal, vol. 27, Sep. 2024,

https://doi.org/10.1016/j.eij.2024.100510.

[22] M. A. Hussain et al., “Provably throttling SQLI using an enciphering query and secure matching,” Egyptian

Informatics Journal, vol. 23, no. 4, pp. 145–162, Dec. 2022, https://doi.org/10.1016/j.eij.2022.10.001.

[23] J. Jung, T. Oh, I. Kim, and S. Park, “Open-sourced real-time visualization platform for traffic simulation,” in Procedia

Computer Science, pp. 243–250, 2023, https://doi.org/10.1016/j.procs.2023.03.033.

[24] X. Huang et al., “Clean: Minimize Switch Queue Length via Transparent ECN-proxy in Campus Networks,” in 2021

IEEE/ACM 29th International Symposium on Quality of Service, IWQOS, pp. 1-6, Jun. 2021.

https://doi.org/10.1109/IWQOS52092.2021.9521295.

[25] S. Alem, D. Espes, L. Nana, E. Martin, and F. De Lamotte, “A novel bi-anomaly-based intrusion detection system

approach for industry 4.0,” Future Generation Computer Systems, vol. 145, pp. 267-283, 2023,

https://doi.org/10.1016/j.future.2023.03.024.

[26] N. Negm et al., “Tasmanian devil optimization with deep autoencoder for intrusion detection in IoT assisted unmanned

aerial vehicle networks,” Ain Shams Engineering Journal, vol. 15, no. 11, p. 102943, Nov. 2024,

https://doi.org/10.1016/j.asej.2024.102943.

[27] F. Ullah, S. Ullah, G. Srivastava, and J. C. W. Lin, “IDS-INT: Intrusion detection system using transformer-based

transfer learning for imbalanced network traffic,” Digital Communications and Networks, vol. 10, no. 1, pp. 190–204,

Feb. 2024, https://doi.org/10.1016/j.dcan.2023.03.008.

[28] I. S. Crespo-Martínez, A. Campazas-Vega, Á. M. Guerrero-Higueras, V. Riego-DelCastillo, C. Álvarez-Aparicio, and

C. Fernández-Llamas, “SQL injection attack detection in network flow data,” Comput Secur, vol. 127, Apr. 2023,

https://doi.org/10.1016/j.cose.2023.103093.

[29] T. O. Ojewumi, G. O. Ogunleye, B. O. Oguntunde, O. Folorunsho, S. G. Fashoto, and N. Ogbu, “Performance

evaluation of machine learning tools for detection of phishing attacks on web pages,” Sci Afr, vol. 16, Jul. 2022,

https://doi.org/10.1016/j.sciaf.2022.e01165.

[30] F. Wang, “Design of Computer Network Security Intrusion Prevention Strategy and Evaluation Algorithm Analysis

Technology,” in Procedia Computer Science, pp. 1270–1276, 2023, https://doi.org/10.1016/j.procs.2023.11.093.

[31] L. Shuai and S. Li, “Performance optimization of Snort based on DPDK and Hyperscan,” in Procedia Computer

Science, pp. 837–843, 2021, https://doi.org/10.1016/j.procs.2021.03.007.

[32] R. A. Abed, E. K. Hamza, and A. J. Humaidi, “A modified CNN-IDS model for enhancing the efficacy of intrusion

detection system,” Measurement: Sensors, vol. 35, Oct. 2024, https://doi.org/10.1016/j.measen.2024.101299.

[33] A. S. Alghawli, “Complex methods detect anomalies in real time based on time series analysis,” Alexandria

Engineering Journal, vol. 61, no. 1, pp. 549–561, Jan. 2022, https://doi.org/10.1016/j.aej.2021.06.033.

[34] M. Husák, M. Žádník, V. Bartoš, and P. Sokol, “Dataset of intrusion detection alerts from a sharing platform,” Data

in Brief, vol. 33, p. 106530, Nov. 2020, https://doi.org/10.17632/p6tym3fghz.1.

[35] J. Ye, W. Zhao, and D. Wang, “A Tool Design for SQL injection vulnerability detection based on improved crawler,”

in Procedia Computer Science, pp. 1331–1339, 2023, https://doi.org/10.1016/j.procs.2024.10.159.

[36] R. L. Alaoui and E. H. Nfaoui, “Web attacks detection using stacked generalization ensemble for LSTMs and word

embedding,” in Procedia Computer Science, pp. 687–696, 2022, https://doi.org/10.1016/j.procs.2022.12.070.

[37] A. Haydar and M. Ramparison, “Modeling Wazuh rules with Weighted Timed Automata,” Procedia Comput Sci, vol.

251, pp. 75–82, 2024, https://doi.org/10.1016/j.procs.2024.11.086.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1016/j.iot.2023.100843
https://doi.org/10.1016/j.cose.2023.103172
https://doi.org/10.1109/ic-ETITE47903.2020.351
https://doi.org/10.1016/j.csa.2024.100082
https://doi.org/10.1016/j.array.2023.100306
https://doi.org/10.1016/j.measen.2024.101299
https://doi.org/10.1016/j.dajour.2024.100466
https://doi.org/10.1016/j.jisa.2021.102878
https://doi.org/10.1016/j.eij.2024.100510
https://doi.org/10.1016/j.eij.2022.10.001
https://doi.org/10.1016/j.procs.2023.03.033
https://doi.org/10.1109/IWQOS52092.2021.9521295
https://doi.org/10.1016/j.future.2023.03.024
https://doi.org/10.1016/j.asej.2024.102943
https://doi.org/10.1016/j.dcan.2023.03.008
https://doi.org/10.1016/j.cose.2023.103093
https://doi.org/10.1016/j.sciaf.2022.e01165
https://doi.org/10.1016/j.procs.2023.11.093
https://doi.org/10.1016/j.procs.2021.03.007
https://doi.org/10.1016/j.measen.2024.101299
https://doi.org/10.1016/j.aej.2021.06.033
https://doi.org/10.17632/p6tym3fghz.1
https://doi.org/10.1016/j.procs.2024.10.159
https://doi.org/10.1016/j.procs.2022.12.070
https://doi.org/10.1016/j.procs.2024.11.086

ISSN: 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 1019

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

[38] H. Haugerud, H. N. Tran, N. Aitsaadi, and A. Yazidi, “A dynamic and scalable parallel Network Intrusion Detection

System using intelligent rule ordering and Network Function Virtualization,” Future Generation Computer Systems,

vol. 124, pp. 254–267, Nov. 2021, https://doi.org/10.1016/j.future.2021.05.037.

[39] A. Adu-Kyere, E. Nigussie, and J. Isoaho, “Analyzing the effectiveness of IDS/IPS in real-time with a custom in-

vehicle design,” in Procedia Computer Science, pp. 175–183, 2024, https://doi.org/10.1016/j.procs.2024.06.013.

[40] T. S. Pooja, P. Shrinivasacharya, “Evaluating neural networks using Bi-Directional LSTM for network IDS (intrusion

detection systems) in cyber security,” Global Transitions Proceedings, vol. 2, no. 2, pp. 448–454, Nov. 2021,

https://doi.org/10.1016/j.gltp.2021.08.017.

[41] Z. Chiba, N. Abghour, K. Moussaid, O. Lifandali, and R. Kinta, “A Deep Study of Novel Intrusion Detection Systems

and Intrusion Prevention Systems for Internet of Things Networks,” in Procedia Computer Science, pp. 94–103, 2022,

https://doi.org/10.1016/j.procs.2022.10.124.

[42] D. Arnaldy and T. S. Hati, “Performance Analysis of Reverse Proxy and Web Application Firewall with Telegram

Bot as Attack Notification on Web Server,” in 2020 3rd International Conference on Computer and Informatics

Engineering, IC2IE, pp. 455–459, Sep. 2020, https://doi.org/10.1109/IC2IE50715.2020.9274592.

[43] T. Gaber, J. B. Awotunde, M. Torky, S. A. Ajagbe, M. Hammoudeh, and W. Li, “Metaverse-IDS: Deep learning-

based intrusion detection system for Metaverse-IoT networks,” Internet of Things (Netherlands), vol. 24, Dec. 2023,

https://doi.org/10.1016/j.iot.2023.100977.

[44] O. Nyarko-Boateng, I. K. Nti, A. A. Mensah, and E. K. Gyamfi, “Controlling user access with scripting to mitigate

cyber-attacks,” Sci Afr, vol. 26, Dec. 2024, https://doi.org/10.1016/j.sciaf.2024.e02355.

[45] A. C. Rus, M. El-Hajj, and D. K. Sarmah, “NAISS: A reverse proxy approach to mitigate MageCart’s e-skimmers in

e-commerce,” Comput Secur, vol. 140, May 2024, https://doi.org/10.1016/j.cose.2024.103797.

[46] L. F. Sikos, “Packet analysis for network forensics: A comprehensive survey,” Forensic Science International: Digital

Investigation, vol. 32, p. 200892. 2020, https://doi.org/10.1016/j.fsidi.2019.200892.

[47] V. Devalla, S. Srinivasa Raghavan, S. Maste, J. D. Kotian, and D. Annapurna, “MURLi: A Tool for Detection of

Malicious URLs and Injection Attacks,” in Procedia Computer Science, pp. 662–676, 2022,

https://doi.org/10.1016/j.procs.2022.12.068.

[48] O. Takaki, N. Hamamoto, A. Takefusa, S. Yokoyama, and K. Aida, “Implementation of Anonymization Algorithms

for Log Data Analysis on a Cloud-Based Learning Management System,” in Procedia Computer Science, pp. 3774–

3784, 2023, https://doi.org/10.1016/j.procs.2023.10.373.

[49] M. A. Lawall, R. A. Shaikh, and S. R. Hassan, “A DDoS Attack Mitigation Framework for IoT Networks using Fog

Computing,” in Procedia Computer Science, pp. 13–20, 2021, https://doi.org/10.1016/j.procs.2021.02.003.

[50] T. Bajtoš, P. Sokol, and F. Kurimský, “Processing of IDS alerts in multi-step attacks [Formula presented],” Software

Impacts, vol. 19, Mar. 2024, https://doi.org/10.1016/j.simpa.2024.100622.

BIOGRAPHY OF AUTHORS

Tia Rahmawati, received her Bachelor’s degree in Telecommunication Engineering from

Telkom University, Indonesia, in 2023, after earning a Diploma in Telecommunication

Technology from the same institution in 2021. She is currently pursuing her Master’s

degree at the School of Electrical Engineering, Telkom University, Indonesia. She has been

working as a Security Analyst at Defenxor. Her research interests include cybersecurity,

image processing and microcontroller. Email: tiatrw@student.telkomuniversity.ac.id,

Orcid: 0009-0008-4138-4756.

Nyoman Bogi Aditya Karna, received the Ph.D. degree in electrical engineering and

computer science from Bandung Institute of Technology, West Java, Indonesia, in 2018.

He has been a full-time Lecturer with the School of Electrical Engineering, Telkom Higher

School of Technology (now Telkom University), West Java, since 1999. His research

interests include the intelligent IoT, cybersecurity, and the Internet of Drone Things. Email:

aditya@telkomuniversity.ac.id, Orcid: 0000-0002-0092-2692.

Soo Young Shin, received his Ph.D. degrees in electrical engineering and computer science

from Seoul National University in 2006. He was with WiMAX Design Lab, Samsung

Electronics, Suwon, South Korea, from 2007 to 2010. He is currently an associate professor

in the Department of IT Convergence Engineering at Kumoh National Institute of

Technology, Korea. He was a postdoctoral researcher at the University of Washington in

2007 and a visiting scholar at the University of British Columbia, Canada, in 2017. His

research interests include 5G/6G wireless communications and networks, signal

processing, the Internet of Things, mixed reality, drone applications, and more. Email:

wdragon@kumoh.ac.kr, Orcid: 0000-0002-2526-2395.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1016/j.future.2021.05.037
https://doi.org/10.1016/j.procs.2024.06.013
https://doi.org/10.1016/j.gltp.2021.08.017
https://doi.org/10.1016/j.procs.2022.10.124
https://doi.org/10.1109/IC2IE50715.2020.9274592
https://doi.org/10.1016/j.iot.2023.100977
https://doi.org/10.1016/j.sciaf.2024.e02355
https://doi.org/10.1016/j.cose.2024.103797
https://doi.org/10.1016/j.fsidi.2019.200892
https://doi.org/10.1016/j.procs.2022.12.068
https://doi.org/10.1016/j.procs.2023.10.373
https://doi.org/10.1016/j.procs.2021.02.003
https://doi.org/10.1016/j.simpa.2024.100622
mailto:tiatrw@student.telkomuniversity.ac.id
file:///C:/Users/USER/Downloads/aditya@telkomuniversity.ac.id
file:///C:/Users/USER/Downloads/wdragon@kumoh.ac.kr

1020 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN: 2338-3070

 Vol. 10, No. 4, December 2024, pp. 1004-1020

Enhancing Network Security Through Real-Time Threat Detection with Intrusion Prevention System (Case Study on

Web Attack) (Tia Rahmawati)

Made Adi Paramartha Putra, received the Ph.D. degree in IT convergence engineering

from the Kumoh National Institute of Technology, Gumi, South Korea, in 2024. He is

currently a full-time Lecturer of informatics engineering with Primakara University, Bali,

Indonesia, and also the Director of the Postgraduate Studies, in 2024. His research interests

include named data networks (NDN), the real-time Internet of Things, federated learning

optimization, blockchain, and energy efficient architecture.of Drone Things. Email:

adi@primakara.ac.id, Orcid: 0000-0002-6024-941X.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
mailto:adi@primakara.ac.id

